You are looking at 1 - 3 of 3 items for :

  • Peter J. Lamb Special Collection: Climate Variability and Its Impacts x
  • Journal of Hydrometeorology x
  • All content x
Clear All
Thomas Engel, Andreas H. Fink, Peter Knippertz, Gregor Pante, and Jan Bliefernicht


Two extreme, high-impact events of heavy rainfall and severe floods in West African urban areas (Ouagadougou on 1 September 2009 and Dakar on 26 August 2012) are investigated with respect to their atmospheric causes and statistical return periods. In terms of the synoptic–convective dynamics, the Ouagadougou case is truly extraordinary. A succession of two slow-moving African easterly waves (AEWs) caused record-breaking values of tropospheric moisture. The second AEW, one of the strongest in recent decades, provided the synoptic forcing for the nighttime genesis of mesoscale convective systems (MCSs). Ouagadougou was hit by two MCSs within 6 h, as the strong convergence and rotation in the AEW-related vortex allowed a swift moisture refueling. An AEW was also instrumental in the overnight development of MCSs in the Dakar case, but neither the AEW vortex nor the tropospheric moisture content was as exceptional as in the Ouagadougou case. Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation data show some promise in estimating centennial return values (RVs) using the “peak over threshold” approach with a generalized Pareto distribution fit, although indications for errors in estimating extreme rainfall over the arid Sahel are found. In contrast, the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) dataset seems less suitable for this purpose despite the longer record. Notably, the Ouagadougou event demonstrates that highly unusual dynamical developments can create extremes well outside of RV estimates from century-long rainfall observations. Future research will investigate whether such developments may become more frequent in a warmer climate.

Open access
Susan Stillman, Xubin Zeng, and Michael G. Bosilovich


Precipitation and soil moisture are rigorously measured or estimated from a variety of sources. Here, 22 precipitation and 23 soil moisture products are evaluated against long-term daily observed precipitation (Pobs) and July–September daily observationally constrained soil moisture (SM) datasets over a densely monitored 150 km2 watershed in southeastern Arizona, United States. Gauge–radar precipitation products perform best, followed by reanalysis and satellite products, and the median correlations of annual precipitation from these three categories with Pobs are 0.83, 0.68, and 0.46, respectively. Precipitation results from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are the worst, including an overestimate of cold season precipitation and a lack of significant correlation of annual precipitation with Pobs from all (except one) models. Satellite soil moisture products perform best, followed by land data assimilation systems and reanalyses, and the CMIP5 results are the worst. For instance, the median unbiased root-mean-square difference (RMSD) values of July–September soil moisture compared with SM are 0.0070, 0.011, 0.014, and 0.029 m3 m−3 for these four product categories, respectively. All 17 (except 3) precipitation [17 (except 2) soil moisture] products with at least 20 years of data agree with Pobs (SM) without significant trends. The uncertainties associated with the scale mismatch between Pobs and coarser-resolution products are addressed using two 4-km gauge–radar precipitation products, and their impact on the results presented in this study is overall small. These results identify strengths and weaknesses of each product for future improvement; they also emphasize the importance of using multiple gauge–radar and satellite products along with their uncertainties in evaluating reanalyses and models.

Full access
Peter J. Lamb, Diane H. Portis, and Abraham Zangvil


The atmospheric moisture budget and surface interactions for the southern Great Plains are evaluated for contrasting May–June periods (1998, 2002, 2006, and 2007) as background for the Cloud and Land Surface Interaction Campaign (CLASIC) of (wet) 7–30 June 2007. Budget components [flux divergence (MFD), storage change (dPW), and inflow (IF/A)] are estimated from North American Regional Reanalysis data. Precipitation (P) is calculated from NCEP daily gridded data, evapotranspiration (E) is obtained as moisture budget equation residual, and the recycling ratio (PE/P) is estimated using a new equation. Regional averages are presented for months and five daily P categories. Monthly budget results show that E and E − P are strongly positively related to P; EP generally is positive and balanced by positive MFD that results from its horizontal velocity divergence component (HD, positive) exceeding its horizontal advection component (HA, negative). An exception is 2007 (CLASIC), when EP and MFD are negative and supported primarily by negative HA. These overall monthly results characterize low P days (≤0.6 mm), including for nonanomalous 2007, but weaken as daily P approaches 4 mm. In contrast, for 4 < P ≤ 8 mm day−1 EP and MFD are moderately negative and balanced largely by negative HD except in 2007 (negative HA). This overall pattern was accentuated (including for nonanomalous 2007) when daily P > 8 mm. Daily P E/P ratios are small and of limited range, with P category averages 0.15–0.19. Ratios for 2007 are above average only for daily P ≤ 4 mm. CLASIC wetness principally resulted from distinctive MFD characteristics. Solar radiation, soil moisture, and crop status/yield information document surface interactions.

Full access