Browse

You are looking at 91 - 100 of 117,964 items for

  • All content x
Clear All
Chiung-Yin Chang and Malte F. Jansen

Abstract

Although the reconfiguration of the abyssal overturning circulation has been argued to be a salient feature of Earth’s past climate changes, our understanding of the physical mechanisms controlling its strength remains limited. In particular, existing scaling theories disagree on the relative importance of the dynamics in the Southern Ocean versus the dynamics in the basins to the north. In this study, we systematically investigate these theories and compare them with a set of numerical simulations generated from an ocean general circulation model with idealized geometry, designed to capture only the basic ingredients considered by the theories. It is shown that the disagreement between existing theories can be partially explained by the fact that the overturning strengths measured in the channel and in the basin scale distinctly with the external parameters, including surface buoyancy loss, diapycnal diffusivity, wind stress, and eddy diffusivity. The overturning in the re-entrant channel, which represents the Southern Ocean, is found to be sensitive to all these parameters, in addition to a strong dependence on bottom topography. By contrast, the basin overturning varies with the integrated surface buoyancy loss rate and diapycnal diffusivity but is mostly unaffected by winds and channel topography. The simulated parameter dependence of the basin overturning can be described by a scaling theory that is based only on basin dynamics.

Restricted access
Cui Liu, Jianhua Sun, Xinlin Yang, Shuanglong Jin, and Shenming Fu

Abstract

Precipitation forecasts from the ECMWF model from March to September during 2015–2018 were evaluated using observed precipitation at 2411 stations from the China Meteorological Administration. To eliminate the influence of varying climatology in different regions in China, the Stable Equitable Error in Probability Space method was used to obtain criteria for 3-h and 6-h accumulated precipitation at each station and classified precipitation into light, medium, and heavy precipitation. The model was evaluated for these categories using categorical and continuous methods. The threat score and the equitable threat score showed that the model’s forecasts of rainfall were generally more accurate at shorter lead times, and the best performance occurred in the middle and lower reaches of the Yangtze River Basin. The miss ratio for heavy precipitation was higher in the northern region than in the southern region, while heavy precipitation false alarms were more frequent in the southwestern China. Overall, the miss ratio and false alarm ratio for heavy precipitation were highest in northern China and western China, respectively. For light and medium precipitation, the model performed best in the middle and lower reaches of the Yangtze River Basin. The model predicted too much light and medium precipitation, but too little heavy precipitation. Heavy precipitation was generally underestimated over all of China, especially in the western region of China, South China, and the Yungui Plateau. Heavy precipitation was systematically underestimated because of the resolution and the related parametrization of convection.

Restricted access
Yuntao Wei and Zhaoxia Pu

Abstract

Despite the great importance of interactions between moisture, clouds, radiation, and convection in the Madden-Julian Oscillation, their role in the boreal summer intraseasonal oscillation (BSISO) has not been well established. This study investigates the moisture variation of a BSISO during its rapid redevelopment over the eastern Maritime Continent through a cloud-permitting-scale numerical simulation. It is found that moisture variation depends closely on the evolution of clouds and precipitation. Total moisture budget analysis reveals that the deepening and strengthening (lessening) of humidity before (after) the BSISO deep convection are attributed largely to zonal advection. In addition, the column moistening/drying is mostly in phase with the humidity and is related to the maintenance of BSISO.

An objective cloud-type classification method and a weak temperature gradient approximation are used to further understand the column moistening/drying. Results indicate that elevated stratiform clouds play a significant role in moistening the lower troposphere through cloud water evaporation. Decreases in deep convection condensation and re-evaporation of deep stratiform precipitation induce moistening during the development and after the decay of BSISO deep convection, respectively. Meanwhile, anomalous longwave radiative heating appears first in the lower troposphere during the developing stage of BSISO, further strengthens via the increase of deep stratiform clouds, and eventually deepens with elevated stratiform clouds. Accordingly, anomalous moistening largely in phase with the humidity of BSISO toward its suppressed stage is induced via compensated ascent. Owing to the anomalous decrease in the ratio of vertical moisture and potential temperature gradients, the cloud-radiation effect is further enhanced in the convective phase of BSISO.

Restricted access
Matthew L. Walker McLinden, Lihua Li, Gerald M. Heymsfield, Michael Coon, and Amber Emory

Abstract

The NASA/Goddard Space Flight Center’s (GSFC’s) W-band (94 GHz) Cloud Radar System (CRS) has been comprehensively updated to modern solid-state and digital technology. This W-band (94 GHz) radar flies in nadir-pointing mode on the NASA ER-2 high-altitude aircraft, providing polarimetric reflectivity and Doppler measurements of clouds and precipitation. This paper describes the design and signal processing of the upgraded CRS. It includes details on the hardware upgrades (SSPA transmitter, antenna, and digital receiver) including a new reflectarray antenna and solid-state transmitter. It also includes algorithms, including internal loop-back calibration, external calibration using a direct relationship between volume reflectivity and the range-integrated backscatter of the ocean, and a modified staggered-PRF Doppler algorithm that is highly resistant to unfolding errors. Data samples obtained by upgraded CRS through recent NASA airborne science missions are provided.

Restricted access
Gregory Tierney, Walter A. Robinson, Gary Lackmann, and Rebecca Miller

Abstract

High-impact events such as heat waves and droughts are often associated with persistent positive geopotential height anomalies (PAs). Understanding how PA activity will change in a future warmer climate is therefore fundamental to projecting associated changes in weather and climate extremes. This is a complex problem because the dynamics of PAs and their associated blocking activity are still poorly understood. Furthermore, climate-change influences on PA activity may be geographically dependent and encompass competing influences. To expose the salient impacts of climate change, we use an oceanic channel configuration of the Weather Research and Forecasting model (WRF) in a bivariate experiment focused on changes in environmental temperature, moisture, and baroclinicity. The 500-hPa wind speed and flow variability are found to increase with increasing temperature and baroclinicity, driven by increases in latent heat release and a stronger virtual temperature gradient. Changes to 500-hPa sinuosity are negligible. PAs are objectively identified at the 500-hPa level using an anomaly threshold method. When using a fixed threshold, PA trends indicate increased activity and strength with warming, but decreased activity and strength with Arctic amplification. Use of a climate-relative threshold hides these trends and highlights the importance of accurate characterization of the mean flow. Changes in PA activity mirror corresponding changes in 500-hPa flow variability and are found to be attributable to changes in three distinct dynamical mechanisms: baroclinic wave activity, virtual temperature effects, and latent heat release.

Restricted access
Lu Han, Harvey Seim, John Bane, Robert E. Todd, and Mike Muglia

Abstract

Carbon-rich Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) shelf waters typically converge on the continental shelf near Cape Hatteras. Both are often exported to the adjacent open ocean in this region. During a survey of the region in mid-January 2018, there was no sign of shelf water export at the surface. Instead, a subsurface layer of shelf water with high chlorophyll and dissolved oxygen was observed at the edge of the Gulf Stream east of Cape Hatteras. Strong cooling over the MAB and SAB shelves in early January led to shelf waters being denser than offshore surface waters. Driven by the density gradient, the denser shelf waters cascaded beneath the Gulf Stream and were subsequently entrained into the Gulf Stream, as they were advected northeastward. Underwater glider observations 80 km downstream of the export location captured 0.44 Sv of shelf waters transported along the edge of the Gulf Stream in January 2018. In total, as much as 7×106 kg of carbon was exported from the continental shelf to a greater depth in the open ocean during this 5-day-long cascading event. Earlier observations of near-bottom temperature and salinity at a depth of 230 m captured several multiday episodes of shelf water at a location that was otherwise dominated by Gulf Stream water, indicating that the January 2018 cascading event was not unique. Cascading is an important, yet little-studied pathway of carbon export and sequestration at Cape Hatteras.

Open access
Mark Weber, Kurt Hondl, Nusrat Yussouf, Youngsun Jung, Derek Stratman, Bryan Putnam, Xuguang Wang, Terry Schuur, Charles Kuster, Yixin Wen, Juanzhen Sun, Jeff Keeler, Zhuming Ying, John Cho, James Kurdzo, Sebastian Torres, Chris Curtis, David Schvartzman, Jami Boettcher, Feng Nai, Henry Thomas, Dusan Zrnić, Igor Ivić, Djordje Mirković, Caleb Fulton, Jorge Salazar, Guifu Zhang, Robert Palmer, Mark Yeary, Kevin Cooley, Michael Istok, and Mark Vincent

Abstract

This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA’s future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these benefits using storm observations and analyses, observing system simulation experiments, and real radar-data assimilation studies. Changes in the number and/or locations of radars in the future network could improve coverage at low altitude. Analysis of benefits that might be so realized indicates the possibility for additional improvement in severe-weather and flash-flood warning performance, with associated reduction in casualties. Simulations are used to evaluate techniques for rapid volumetric scanning and assess data quality characteristics of PAR. Finally, we describe progress in developing methods to compensate for polarimetric variable estimate biases introduced by electronic beam-steering. A research-to-operations (R2O) strategy for the PAR alternative for the WSR-88D replacement network is presented.

Full access
Andrew Hazelton, Zhan Zhang, Bin Liu, Jili Dong, Ghassan Alaka, Weiguo Wang, Tim Marchok, Avichal Mehra, Sundararaman Gopalakrishnan, Xuejin Zhang, Morris Bender, Vijay Tallapragada, and Frank Marks

Abstract

NOAA’s Hurricane Analysis and Forecast System (HAFS) is an evolving FV3-based hurricane modeling system that is expected to replace the operational hurricane models at the National Weather Service. Supported by the Hurricane Forecast Improvement Program (HFIP), global-nested and regional versions of HAFS were run in real time in 2019 to create the first baseline for the HAFS advancement. In this study, forecasts from the global-nested configuration of HAFS (HAFS-globalnest) are evaluated and compared with other operational and experimental models. The forecasts by HAFS-globalnest covered the period from July through October during the 2019 hurricane season. Tropical cyclone (TC) track, intensity, and structure forecast verifications are examined. HAFS-globalnest showed track skill superior to several operational hurricane models and comparable intensity and structure skill, although the skill in predicting rapid intensification was slightly inferior to the operational model skill. HAFS-globalnest correctly predicted that Hurricane Dorian would slow and turn north in the Bahamas and also correctly predicted structural features in other TCs such as a sting jet in Hurricane Humberto during extratropical transition. Humberto was also a case where HAFS-globalnest had better track forecasts than a regional version of HAFS (HAFS-SAR) due to a better representation of the large-scale flow. These examples and others are examined through comparisons with airborne tail Doppler radar from the NOAA WP-3D to provide a more detailed evaluation of TC structure prediction. The results from this real-time experiment motivate several future model improvements, and highlight the promise of HAFS-globalnest for improved TC prediction.

Restricted access
Elisa M. Murillo, Cameron R. Homeyer, and John T. Allen

Abstract

Assessments of spatiotemporal severe hailfall characteristics using hail reports are plagued by serious limitations in report databases, including biases in reported sizes, occurrence time, and location. Multiple studies have used Next Generation Weather Radar (NEXRAD) network observations or environmental hail proxies from reanalyses. Previous work has specifically utilized the single-polarization radar parameter maximum expected size of hail (MESH). In addition to previous work being temporally limited, updates are needed to include recent improvements that have been made to MESH. This study aims to quantify severe hailfall characteristics during a 23-yr period, markedly longer than previous studies, using both radar observations and reanalysis data. First, the improved MESH configuration is applied to the full archive of gridded hourly radar observations known as GridRad (1995–2017). Next, environmental constraints from the Modern-Era Retrospective Analysis for Research and Applications, version 2, are applied to the MESH distributions to produce a corrected hailfall climatology that accounts for the reduced likelihood of hail reaching the ground. Spatial, diurnal, and seasonal patterns show that in contrast to the report climatology indicating one high-frequency hail maximum centered on the Great Plains, the MESH-only method characterizes two regions: the Great Plains and the Gulf Coast. The environmentally filtered MESH climatology reveals improved agreement between report characteristics (frequency, location, and timing) and the recently improved MESH calculation methods, and it reveals an overall increase in diagnosed hail days and westward broadening in the spatial maximum in the Great Plains than that seen in reports.

Restricted access
David A. Williams, David M. Schultz, Kevin J. Horsburgh, and Chris W. Hughes

Abstract

Meteotsunamis are shallow-water waves that, despite often being small (~0.3 m), can cause damage, injuries, and fatalities due to relatively strong currents (>1 m s−1). Previous case studies, modeling, and localized climatologies have indicated that dangerous meteotsunamis can occur across northwest Europe. Using 71 tide gauges across northwest Europe between 2010 and 2017, a regional climatology was made to understand the typical sizes, times, and atmospheric systems that generate meteotsunamis. A total of 349 meteotsunamis (54.0 meteotsunamis per year) were identified with 0.27–0.40-m median wave heights. The largest waves (~1 m high) were measured in France and the Republic of Ireland. Most meteotsunamis were identified in winter (43%–59%), and the fewest identified meteotsunamis occurred in either spring or summer (0%–15%). There was a weak diurnal signal, with most meteotsunami identifications between 1200 and 1859 UTC (30%) and the fewest between 0000 and 0659 UTC (23%). Radar-derived precipitation was used to identify and classify the morphologies of mesoscale precipitating weather systems occurring within 6 h of each meteotsunami. Most mesoscale atmospheric systems were quasi-linear systems (46%) or open-cellular convection (33%), with some nonlinear clusters (17%) and a few isolated cells (4%). These systems occurred under westerly geostrophic flow, with Proudman resonance possible in 43 out of 45 selected meteotsunamis. Because most meteotsunamis occur on cold winter days, with precipitation, and in large tides, wintertime meteotsunamis may be missed by eyewitnesses, helping to explain why previous observationally based case studies of meteotsunamis are documented predominantly in summer.

Open access