Browse

You are looking at 91 - 100 of 14,459 items for :

  • Journal of the Atmospheric Sciences x
  • All content x
Clear All
Yun Lin, Jiwen Fan, Jong-Hoon Jeong, Yuwei Zhang, Cameron R. Homeyer, and Jingyu Wang

Abstract

Changes in land surface and aerosol characteristics from urbanization can affect dynamic and microphysical properties of severe storms, thus affecting hazardous weather events resulting from these storms such as hail and tornadoes. We examine the joint and individual effects of urban land and anthropogenic aerosols of Kansas City on a severe convective storm observed during the 2015 Plains Elevated Convection At Night (PECAN) field campaign, focusing on storm evolution, convective intensity, and hail characteristics. The simulations are carried out at the cloud-resolving scale (1 km) using a version of WRF-Chem in which the spectral-bin microphysics (SBM) is coupled with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). It is found that the urban land effect of Kansas City initiated a much stronger convective cell and the storm got further intensified when interacting with stronger turbulence induced by the urban land. The urban land effect also changed the storm path by diverting the storm toward the city, mainly resulting from enhanced urban land-induced convergence in the urban area and around the urban–rural boundaries. The joint effect of urban land and anthropogenic aerosols enhances occurrences of both severe hail and significant severe hail by ~20% by enhancing hail formation and growth from riming. Overall the urban land effect on convective intensity and hail is relatively larger than the anthropogenic aerosol effect, but the joint effect is more notable than either of the individual effects, emphasizing the importance of considering both effects in evaluating urbanization effects.

Restricted access
Qin Xu

Abstract

A variational method is formulated with theoretical considerations for analyzing vortex flows in Doppler radar–scanned tornadic mesocyclones. The method has the following features. (i) The vortex center axis (estimated as a continuous function of time and height in the four-dimensional space) is used as the vertical coordinate, so the coordinate system used for the analysis is slantwise curvilinear and nonorthogonal in general. (ii) The vortex flow (VF), defined by the three-dimensional vector wind minus the horizontal moving velocity of vortex center axis, is expressed in terms of the covariant basis vectors (tangent to the coordinate curves), so its axisymmetric part can be properly defined in that slantwise-curvilinear coordinate system. (iii) To satisfy the mass continuity automatically, the axisymmetric part is expressed by the scalar fields of azimuthally averaged tangential velocity and cylindrical streamfunction and the remaining asymmetric part is expressed by the scalar fields of streamfunction and vertically integrated velocity potential. (iv) VF-dependent covariance functions are formulated for these scalar variables and then deconvoluted to construct the square root of background error covariance matrix analytically with the latter used to transform the control vector to precondition the cost function. (v) The deconvoluted covariance functions and their transformed control variables satisfy two required boundary conditions (i.e., zero vertical velocity at the lower rigid boundary and zero cross-axis velocity along the vortex center axis), so the analyzed VF satisfies not only the mass continuity but also the two boundary conditions automatically.

Restricted access
Qin Xu and Li Wei

Abstract

The variational method formulated in Part I for analyzing vortex flow (VF), called VF-Var, is tested with simulated radar radial-velocity observations from idealized and pseudo-operational Doppler scans of analytically formulated benchmark vortices with spiral-band structures to resemble VFs in observed tornadic mesocyclones. The idealized Doppler scans are unidirectional in parallel along horizontal grid lines of a coarse-resolution grid, so they measure only the horizontal components of three-dimensional velocities in the analysis domain. The pseudo-operational Doppler scans mimic a scan mode used by operational WSR-88Ds for severe storms. Paired numerical experiments are designed and performed to test the two-step analysis versus single-step analysis formulated in VF-Var. Both analyses perform very well with dual-Doppler scans and reasonably well with single-Doppler scans. Errors in the analyzed velocities from single-Doppler scans are mainly in the unobserved velocity components and only in fractions of the benchmark velocities. When the vortex is upright or slanted in the direction perpendicular to idealized single-Doppler scans, the two-step analysis slightly outperforms the single-step analysis for idealized Doppler scans and pseudo-operational dual-Doppler scans. When the vortex becomes slanted in the direction largely along or against Doppler scans, both analyses become less (more) accurate in analyzing the horizontal (slantwise vertical) velocity, and the single-step analysis outperforms the two-step analysis especially for single-Doppler scans. By considering the projections of analyzed velocity on radar beams in the original Cartesian coordinates, useful insights are gained for understanding why and how the analysis accuracies are affected by vortex slanting.

Restricted access
David C. Fritts, Thomas S. Lund, Kam Wan, and Han-Li Liu

Abstract

A companion paper by Lund et al. (2020) employed a compressible model to describe the evolution of mountain waves arising due to increasing flow with time over the Southern Andes, their breaking, secondary gravity waves and acoustic waves arising from these dynamics, and their local responses. This paper describes the mountain wave, secondary gravity wave, and acoustic wave vertical fluxes of horizontal momentum, and the local and large-scale three-dimensional responses to gravity breaking and wave/mean-flow interactions accompanying this event. Mountain wave and secondary gravity wave momentum fluxes and deposition vary strongly in space and time due to variable large-scale winds and spatially-localized mountain wave and secondary gravity wave responses. Mountain wave instabilities accompanying breaking induce strong, local, largely-zonal forcing. Secondary gravity waves arising from mountain wave breaking also interact strongly with large-scale winds at altitudes above ~80km. Together, these mountain wave and secondary gravity wave interactions reveal systematic gravity-wave/mean-flow interactions having implications for both mean and tidal forcing and feedbacks. Acoustic waves likewise achieve large momentum fluxes, but typically imply significant responses only at much higher altitudes.

Restricted access
Katrina L. Hui and Simona Bordoni

Abstract

Recent studies have shown that the rapid onset of the monsoon can be interpreted as a switch in the tropical circulation, which can occur even in the absence of land-sea contrast, from a dynamical regime controlled by eddy momentum fluxes to a monsoon regime more directly controlled by energetic constraints. Here we investigate how one aspect of continental geometry, that is the position of the equatorward coastal boundary, influences such transitions. Experiments are conducted with an aquaplanet model with a slab ocean, in which different zonally symmetric continents are prescribed in the Northern Hemisphere poleward from southern boundaries at various latitudes, with “land” having a mixed layer depth two orders of magnitude smaller than ocean. For continents extending to tropical latitudes, the simulated monsoon features a rapid migration of the convergence zone over the continent, similar to what is seen in observed monsoons. For continents with more poleward southern boundaries, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. We show that the absence of land at tropical latitudes prevents the rapid displacement into the subtropics of the maximum in lower-level moist static energy and, with it, the establishment of an overturning circulation with a subtropical convergence zone that can transition rapidly into an angular momentum conserving monsoon regime.

Restricted access
Aaron Match and Stephan Fueglistaler

Abstract

The quasi-biennial oscillation (QBO) is an alternating, descending pattern of zonal winds in the tropical stratosphere with a period averaging 28 months. The QBO was disrupted in 2016, and arguably again in 2020, by the formation of an anomalous easterly shear zone, and unprecedented stagnation and ascent of shear zones aloft. Several mechanisms have been implicated in causing the 2016 disruption, most notably triggering by horizontal eddy momentum flux divergence, but also anomalous upwelling and wave stress. In this paper, the 1D theory of the QBO is used to show how seemingly disparate features of disruptions follow directly from the dynamics of the QBO response to triggering. The perturbed QBO is interpreted using a heuristic version of the 1D model, which establishes that 1) stagnation of shear zones aloft resulted from wave dissipation in the shear zone formed by the triggering, and 2) ascent of shear zones aloft resulted from climatological upwelling advecting the stagnant shear zones. Obstacles remain in the theory of triggering. In the 1D theory, the phasing of the triggering is key to determining the response, but the dependence on magnitude is less steep. Yet in MERRA-2, there are triggering events only 20% weaker than the 2016 triggering and equal to the 2020 triggering that did not lead to disruptions. Complicating matters further, MERRA-2 has record-large analysis tendencies during the 2016 disruption, reducing confidence in the resolved momentum budget.

Restricted access
David M. Romps

Abstract

Analytic solutions are derived for a convecting atmosphere with mean ascent using a zero-buoyancy bulk-plume approximation for moist convection. It has been suggested that such solutions should serve as a model for the relationship between humidity, instability, and precipitation in the tropics, but it is shown here that this interpretation is incompatible with the observed weak temperature gradient (WTG). Instead, the solutions can be used to understand the atmospheric state averaged over all tropical convecting regions. Using the analytic solutions in this way, they predict the changes in humidity, instability, and precipitation as a function of the size of the moist patch in a convectively aggregated state.

Restricted access
Reuben Demirdjian, Richard Rotunno, Bruce D. Cornuelle, Carolyn A. Reynolds, and James D. Doyle

Abstract

An analysis of the influence and sensitivity of moisture in an idealized two-dimensional moist semigeostrophic frontogenesis model is presented. A comparison between a dry (relative humidity RH = 0%) version and a moist (RH = 80%) version of the model demonstrates that the impact of moisture is to increase frontogenesis, strengthen the transverse circulation (u ag, w), generate a low-level potential-vorticity anomaly, and develop a low-level jet. The idealized model is compared with a real case simulated with the full-physics three-dimensional Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model, establishing good agreement and thereby confirming that the idealized model retains the essential physical processes relevant for improving understanding of midlatitude frontogenesis. Optimal perturbations of mixing ratio are calculated to quantify the circulation response of the model through the computation of singular vectors, which determines the fastest-growing modes of a linearized version of the idealized model. The vertical velocity is found to respond strongly to initial-condition mixing-ratio perturbations such that small changes in moisture lead to large changes in the ascent. The progression of physical processes responsible for this nonlinear growth is (in order) jet/front transverse circulation → moisture convergence ahead of the front → latent heating at mid- to low elevations → reduction in static stability ahead of the front → strengthening of the transverse circulation, and the feedback cycle repeats. Together, these physical processes represent a pathway by which small perturbations of moisture can have a strong impact on a forecast involving midlatitude frontogenesis.

Open access
Zhonghai Jin and Andrew Lacis

Abstract

A computationally efficient method is presented to account for the horizontal cloud inhomogeneity by using a radiatively equivalent plane-parallel homogeneous (PPH) cloud. The algorithm can accurately match the calculations of the reference (rPPH) independent column approximation (ICA) results but uses only the same computational time required for a single plane-parallel computation. The effective optical depth of this synthetic sPPH cloud is derived by exactly matching the direct transmission to that of the inhomogeneous ICA cloud. The effective scattering asymmetry factor is found from a precalculated albedo inverse lookup table that is allowed to vary over the range from −1.0 to 1.0. In the special cases of conservative scattering and total absorption, the synthetic method is exactly equivalent to the ICA, with only a small bias (about 0.2% in flux) relative to ICA resulting from imperfect interpolation in using the lookup tables. In principle, the ICA albedo can be approximated accurately regardless of cloud inhomogeneity. For a more complete comparison, the broadband shortwave albedo and transmission calculated from the synthetic sPPH cloud and averaged over all incident directions have RMS biases of 0.26% and 0.76%, respectively, for inhomogeneous clouds over a wide variation of particle size. The advantages of the synthetic PPH method are that 1) it is not required that all the cloud subcolumns have uniform microphysical characteristic, 2) it is applicable to any 1D radiative transfer scheme, and 3) it can handle arbitrary cloud optical depth distributions and an arbitrary number of cloud subcolumns with uniform computational efficiency.

Restricted access
Ryan Eastman, Christopher R. Terai, Daniel P. Grosvenor, and Robert Wood

Abstract

A Lagrangian framework is developed to show the daily-scale time evolution of low clouds over the eastern subtropical oceans. An identical framework is applied to two general circulation models (GCMs): the CAM5 and UKMET and a set of satellite observations. This approach follows thousands of parcels as they advect downwind in the subtropical trade winds, comparing cloud evolution in time and space. This study tracks cloud cover, in-cloud liquid water path (CLWP), droplet concentration N d, planetary boundary layer (PBL) depth, and rain rate as clouds transition from regions with predominately stratiform clouds to regions containing mostly trade cumulus. The two models generate fewer clouds with greater N d relative to observations. Models show stronger Lagrangian cloud cover decline and greater PBL deepening when compared with observations. In comparing frequency distributions of cloud variables over time, it is seen that models generate increasing frequencies of nearly clear conditions at the expense of overcast conditions, whereas observations show transitions from overcast to cloud amounts between 50% and 90%. Lagrangian decorrelation time scales (e-folding time τ) of cloud cover and CLWP are between 11 and 19 h for models and observations, although they are a bit shorter for models. A Lagrangian framework applied here resolves and compares the time evolution of cloud systems as they adjust to environmental perturbations in models and observations. Increasing subsidence in the overlying troposphere leads to declining cloud cover, CLWP, PBL depth, and rain rates in models and observations. Modeled cloud responses to other meteorological variables are less consistent with observations, suggesting a need for continuing mechanical improvements in GCMs.

Restricted access