Browse

You are looking at 101 - 110 of 118,180 items for :

  • All content x
Clear All
Er Lu, Jiawei Hao, and Kexin Yang

Abstract

The temporal–spatial variations of the static stability of dry air and the relative importance of their influencing quantities are explored. Derivation shows that while it links to the vertical difference of temperature, static stability also relates to the temperature itself. The static stability is expressed as a nonlinear function of temperature and the vertical difference of temperature. The relative importance of the two influencing quantities is assessed with linear regression. Tests show that the linear fitting method is robust. The results of the dominance rely on the data examined, which include an interannual variation, a seasonal variation, and a spatial variation that consists of the grid points over the globe. It is revealed that in the lower troposphere, while the temporal variations of static stability are dominated by the vertical difference of temperature, the temperature itself may also have considerable influence, especially over the high latitudes of the two hemispheres. In the stratosphere, temperature tends to have more contributions. Over the Antarctic, temperature dominates the seasonal and interannual variations of the static stability. The spatial variation of the static stability of July is influenced by both temperature and its vertical difference before 1980, but after that it is dominated by temperature.

Restricted access
Qi Quan, Zhongya Cai, Guangzhen Jin, and Zhiqiang Liu

Abstract

Topographic Rossby waves (TRWs) in the abyssal South China Sea (SCS) are investigated using observations and high-resolution numerical simulations. These energetic waves can account for over 40% of the kinetic energy (KE) variability in the deep western boundary current and seamount region in the central SCS. This proportion can even reach 70% over slopes in the northern and southern SCS. The TRW-induced currents exhibit columnar (i.e., in phase) structure in which the speed increases downward. Wave properties such as the period (5–60 days), wavelength (100–500 km), and vertical trapping scale (102–103 m) vary significantly depending on environmental parameters of the SCS. The TRW energy propagates along steep topography with phase propagation offshore. TRWs with high frequencies exhibit a stronger climbing effect than low-frequency ones and hence can move further upslope. For TRWs with a certain frequency, the wavelength and trapping scale are dominated by the topographic beta, whereas the group velocity is more sensitive to the internal Rossby deformation radius. Background circulation with horizontal shear can change the wavelength and direction of TRWs if the flow velocity is comparable to the group velocity, particularly in the central, southern, and eastern SCS. A case study suggests two possible energy sources for TRWs: mesoscale perturbation in the upper layer and large-scale background circulation in the deep layer. The former provides KE by pressure work, whereas the latter transfers the available potential energy (APE) through baroclinic instability.

Restricted access
Chaim I Garfinkel, Ofer Shamir, Itzhak Fouxon, and Nathan Paldor

Abstract

Variability in the tropical atmosphere is concentrated at wavenumber–frequency combinations where linear theory indicates wave modes can freely propagate, but with substantial power in between. This study demonstrates that such a power spectrum can arise from small-scale convection triggering large-scale waves via wave–wave interactions in a moderately turbulent fluid. Two key pieces of evidence are provided for this interpretation of tropical dynamics using a nonlinear rotating shallow-water model: a parameter sweep experiment in which the amplitude of an external forcing is gradually ramped up, and also an external forcing in which only symmetric or only antisymmetric modes are forced. These experiments do not support a commonly accepted mechanism involving the forcing projecting directly onto the wave modes with a strong response, yet still simulate a power spectrum resembling that observed, though the linear projection mechanism could still complement the mechanism proposed here in observations. Interpreting the observed tropical power spectrum using turbulence offers a simple explanation as to why power should be concentrated at the theoretical wave modes, and also provides a solid footing for the common assumption that the background spectrum is red, even as it clarifies why there is no expectation for a turbulent cascade with a specific, theoretically derived slope such as −5/3. However, it does explain why the cascade should be toward lower wavenumbers, that is an inverse energy cascade, similar to the midlatitudes even as compressible wave modes are important for tropical dynamics.

Open access
Tao Zhu and Jing Yang

Abstract

Two types of mid-high-latitude low-frequency intraseasonal oscillations (LF-ISOs), featuring eastward and westward propagation, have been identified over the Eurasian continent in the past 37 summers (1982–2018). The eastward and westward propagating modes commonly have a dominant periodicity of 30–50 days near the Ural Mountains (UM) but have different origins and evolutions. The eastward propagating LF-ISO initiates over eastern North America, migrates northeastward across northeastern North America–western North Atlantic, central North Atlantic, western Europe, and the UM, then propagates southeastward to northwestern and eastern China, which is the Atlantic-Eurasian continental mode. In contrast, the westward propagating mode is quasi-circumpolar, initiating over the East Siberian Sea and moving southwestward across the UM and northern Europe and eventually reaching Greenland and the Canadian Arctic Archipelago. These two mid-high-latitude LF-ISOs are accompanied by significant tropical intraseasonal variations with evident tropical–extratropical interactions. Meanwhile, these two LF-ISOs have different decadal preferences before and after 2000, which are ascribed to the decadal change of both intraseasonal efficient kinetic energy obtained from the mean flow over their genesis region and their background flow associated with the North Atlantic Oscillation/Arctic Oscillation decadal change. This study deepens the understanding of subseasonal variations for mid-high latitudes and subseasonal prediction sources for low-latitude regions.

Open access
Wen Wang, Jingshu Wang, and Renata Romanowicz

Abstract

Uncertainty in the calculation of a standardized precipitation index (SPI) attracted growing concerns in the hydrometeorology research community in the last decade. This issue is addressed in the present study from the perspective of candidate probability distributions, the data record length, the cumulative time scale, and the selection of a reference period with the bootstrap and Monte Carlo methods using daily precipitation data observed in four climate regions across China. The impacts of the uncertainty in an SPI calculation on drought assessment are also investigated. Results show that the gamma distribution is optimal in describing the cumulative precipitation in China; among the four time scales investigated in the present study (i.e., 10, 20, 30, and 90 days), the minimal time scale appropriate for SPI calculation is 20 days for the humid region, 30 days for the semihumid/semiarid region and Tibetan Plateau (mostly its eastern part), and 90 days for the arid region. The uncertainty in SPI calculation decreases with the increase of time scale and record length, essentially as a consequence of the decrease of the confidence interval width of gamma distribution parameters with the increase of time scale and record length. But there is little improvement for the parameter estimation with record length longer than 70 years. There is greater uncertainty for high absolute SPI values than for small ones; consequently, there is greater uncertainty in assessing extreme droughts than moderate droughts. Reference period selection has large impacts on drought assessment, especially in the context of climate change. The uncertainty of the SPI calculation has large impacts on categorizing droughts, but no impact on assessing the temporal features of drought variation.

Restricted access
Timothy D. Mitchell and Joanne Camp

Abstract

The Conway–Maxwell–Poisson distribution improves the precision with which seasonal counts of tropical cyclones may be modeled. Conventionally the Poisson is used, which assumes that the formation and transit of tropical cyclones is the result of a Poisson process, such that their frequency distribution has equal mean and variance (“equi-dispersion”). However, earlier studies of observed records have sometimes found overdispersion, where the variance exceeds the mean, indicating that tropical cyclones are clustered in particular years. The evidence presented here demonstrates that at least some of this overdispersion arises from observational inhomogeneities. Once this is removed, and particularly near the coasts, there is evidence for equi-dispersion or underdispersion. To more accurately model numbers of tropical cyclones, we investigate the use of the Conway–Maxwell–Poisson as an alternative to the Poisson that represents any dispersion characteristic. An example is given for East China where using it improves the skill of a prototype seasonal forecast of tropical cyclone landfall.

Open access
Xuejin Wang, Baoqing Zhang, Feng Li, Xiang Li, Xuliang Li, Yibo Wang, Rui Shao, Jie Tian, and Chansheng He

Abstract

From 1998 to the present, the Chinese government has implemented numerous large-scale ecological programs to restore ecosystems and improve environmental protection in the agro-pastoral ecotone of northern China (APENC). However, it remains unclear how vegetation restoration modulates intraregional moisture cycles and changes regional water balance. To fill this gap, we first investigated the variation in precipitation (P) from the China Meteorological Forcing Dataset and evapotranspiration (ET) estimated using the Priestley–Taylor Jet Propulsion Laboratory model under two scenarios: dynamic vegetation (DV) and no dynamic vegetation (no-DV). We then used the dynamic recycling model to analyze the changes in precipitation recycling ratio (PRR). Finally, we examined how vegetation restoration modulates intraregional moisture recycling to change the regional water cycle in APENC. Results indicate P increased at an average rate of 4.42 mm yr−2 from 1995 to 2015. ET with DV exhibited a significant increase at a rate of 1.57, 3.58, 1.53, and 1.84 mm yr−2 in the four subregions, respectively, compared with no-DV, and the annual mean PRR values were 10.15%, 9.30%, 11.01%, and 12.76% in the four subregions, and significant increasing trends were found in the APENC during 1995–2015. Further analysis of regional moisture recycling shows that vegetation restoration does not increase local P directly, but has an indirect effect by enhancing moisture recycling process to produce more P by increasing PRR. Our findings show that large-scale ecological restoration programs have a positive effect on local moisture cycle and precipitation.

Restricted access
Julia Jeworrek, Gregory West, and Roland Stull

Abstract

Physics parameterizations in the Weather Research and Forecasting (WRF) Model are systematically varied to investigate precipitation forecast performance over the complex terrain of southwest British Columbia (BC). Comparing a full year of modeling data from over 100 WRF configurations to station observations reveals sensitivities of precipitation intensity, season, location, grid resolution, and accumulation window. The choice of cumulus and microphysics parameterizations is most important. The WSM5 microphysics scheme yields competitive verification scores when compared to more sophisticated and computationally expensive parameterizations. Although the scale-aware Grell–Freitas cumulus parameterization performs better for summertime convective precipitation, the conventional Kain–Fritsch parameterization better simulates wintertime frontal precipitation, which contributes to the majority of the annual precipitation in southwest BC. Finer grid spacings have lower relative biases and a more realistic spread in precipitation intensity distribution, yet higher relative standard deviations of their errors—they produce finer spatial differences and local extrema. Finer resolutions produce the best fraction of correct-to-incorrect forecasts across all precipitation intensities, whereas the coarser 27-km domain yields the highest hit rates and equitable threat scores. Verification metrics improve greatly with longer accumulation windows—hourly precipitation values are prone to double-penalty issues, while longer accumulation windows compensate for timing errors but lose information about short-term precipitation intensities. This study provides insights regarding WRF precipitation performance in complex terrain across a wide variety of configurations, using metrics important to a range of end users.

Open access
Hussen Seid Endris, Linda Hirons, Zewdu Tessema Segele, Masilin Gudoshava, Steve Woolnough, and Guleid A. Artan

Abstract

The skill of precipitation forecasts from global prediction systems has a strong regional and seasonal dependence. Quantifying the skill of models for different regions and timescales is important, not only to improve forecast skill, but to enhance the effective uptake of forecast information. The sub-seasonal to seasonal prediction (S2S) database contains near real-time forecasts and re-forecasts from 11 operational centres and provides a great opportunity to evaluate and compare the skill of operational S2S systems. This study evaluates the skill of these state-of-the-art global prediction systems in predicting monthly precipitation over the Greater Horn of Africa. This comprehensive evaluation was performed using deterministic and probabilistic forecast verification metrics. Results from the analysis showed that the prediction skill varies with months and region. Generally, the models show high prediction skill during the start of the rainfall season in March and lower prediction skill during the peak of the rainfall in April. ECCC, ECMWF, KMA, NCEP and UKMO show better prediction skill over the region for most of the months compared with the rest of the models. Conversely, BoM, CMA, HMCR and ISAC show poor prediction skill over the region. Overall, the ECMWF model performs best over the region among the 11 models analyzed. Importantly, this study serves as a baseline skill assessment with the findings helping to inform how a subset of models could be selected to construct an objectively consolidated multi-model ensemble of S2S forecast products for the Greater Horn of Africa region, as recommended by the World Meteorological Organization.

Restricted access
Allison Lynn Brannan and Jeffrey M. Chagnon

Abstract

Given the ability of recurving Atlantic tropical cyclones (TCs) to disturb the amplitude of Rossby waves on the extratropical jet, this study investigates whether the predictability of the synoptic-scale flow is significantly modified from climatology downstream from and after TC recurvature events. Predictability is evaluated as the standard deviation of isentropic potential vorticity among a 50-member ensemble and is compared to a model climatology. It is shown that forecast uncertainty is dependent upon the relative location of the nearest trough at the time of recurvature and the relative zonal speed between the aforementioned trough and the TC in the 72 hours after recurvature. Predictability is significantly degraded when recurvature occurs downstream of a trough; the elevated uncertainty subsequently propagates downstream along with the trough axis. Furthermore, this study evaluates predictability in spectral space in order to distinguish between uncertainty tied to the exact location of troughs and ridges and uncertainty in Rossby wave amplitude. The wavelet analysis demonstrates that the increase in uncertainty is not solely limited to the trough location, as there is also significantly elevated uncertainty in the Rossby wave amplitude that originates from the upstream trough and spans across downstream troughs and ridges. Uncertainty is also increased near the recurvature longitude in the subset of cases in which the Rossby wave train propagates zonally slower than the TC after recurvature, which is hypothesized to be linked to baroclinic growth processes.

Restricted access