Browse

You are looking at 11 - 20 of 8,021 items for :

  • Journal of Physical Oceanography x
  • All content x
Clear All
Adrian Jenkins

Abstract

When the inclined base of an ice shelf melts into the ocean, it induces both a statically stable stratification and a buoyancy-forced, sheared flow along the interface. Understanding how those competing effects influence the dynamical stability of the boundary current is the key to quantifying the turbulent transfer of heat from far-field ocean to ice. The implications of the close coupling between shear, stability, and mixing are explored with the aid of a one-dimensional numerical model that simulates density and current profiles perpendicular to the ice. Diffusivity and viscosity are determined using a mixing length model within the turbulent boundary layer and empirical functions of the gradient Richardson number in the stratified layer below. Starting from rest, the boundary current is initially strongly stratified and dynamically stable, slowly thickening as meltwater diffuses away from the interface. Eventually, the current enters a second phase where dynamical instability generates a relatively well-mixed, turbulent layer adjacent to the ice, while beneath the current maximum, strong stratification suppresses mixing in the region of reverse shear. Under weak buoyancy forcing the time scale for development of the initial dynamical instability can be months or longer, but background flows, which are always present in reality, provide additional current shear that greatly accelerates the process. A third phase can be reached when the ice shelf base is sufficiently steep, with dynamical instability extending beyond the boundary layer into regions of geostrophic flow, generating a marginally stable pycnocline through which the heat flux is a simple function of ice–ocean interfacial slope.

Open access
Haijin Cao, Baylor Fox-Kemper, and Zhiyou Jing

Abstract

The submesoscale energy budget is complex and remains understood only in region-by-region analyses. Based on a series of nested numerical simulations, this study investigated the submesoscale energy budget and flux in the upper ocean of the Kuroshio Extension, including some innovations for examining submesoscale energy budgets in general. The highest-resolution simulation on a ~500-m grid resolves a variety of submesoscale instabilities allowing an energetic analysis in the submesoscale range. The frequency–wavenumber spectra of vertical vorticity variance (i.e., enstrophy) and horizontal divergence variance were used to identify the scales of submesoscale flows as distinct from those of inertia–gravity waves but dominating horizontal divergence variance. Next, the energy transfers between the background scales and the submesoscale were examined. The submesoscale kinetic and potential energy (SMKE and SMPE) were mainly contained in the mixed layer and energized through both barotropic (shear production) and baroclinic (buoyancy production) routes. Averaged over the upper 50 m of ROMS2, the baroclinic transfers amounted to approximately 75% of the sources for the SMKE (3.42 × 10−9 W kg−1) versus the remaining 25% (1.12 × 10−9 W kg−1) via barotropic downscale KE transfers. The KE field was greatly strengthened by energy sources through the boundary—this flux is larger than the mesoscale-to-submesoscale transfers in this region. Spectral energy production, importantly, reveals upscale KE transfers at larger submesoscales and downscale KE transfers at smaller submesoscales (i.e., a transition from inverse to forward KE cascade). This study seeks to extend our understanding of the energy cycle to the submesoscale and highlight the forward KE cascade induced by upper-ocean submesoscale activities in the research domain.

Restricted access
Youjia Zou and Xiangying Xi

Abstract

It is generally accepted that the El Niño–Southern Oscillation (ENSO) dominates interannual climate variability. Yet, its genesis and maintenance mechanisms are still under intense debate, with no scientific consensus. Some authors argued that the westerly winds originating over the equatorial Indian Ocean are significantly enhanced and extend eastward in the western and central equatorial Pacific during El Niño events, thus advecting the warm pool eastward along the equator and causing SST anomalies. However, this assertion is unlikely to be quantitatively supported by observational data. Here we present detailed observational data and modeling evidence to demonstrate that the westerly winds had little change in intensity in the western equatorial Pacific, with a wider zonal extent only during most El Niño events, and with a slight increase even in the most pronounced 1997 El Niño. Instead, an eastward equatorial current near the equator has been observed and is considered to play a significant role in shifting the eastern edge of the warm pool eastward, elevating SSTs in the central and eastern equatorial Pacific and giving rise to El Niño, with the interactions between the eastward warm pool and the upwelling in the eastern cold tongue ascertaining the amplitudes of SST anomalies.

Restricted access
W. D. Smyth, S. J. Warner, J. N. Moum, H. T. Pham, and S. Sarkar

Abstract

Factors thought to influence deep cycle turbulence in the equatorial Pacific are examined statistically for their predictive capacity using a 13-yr moored record that includes microstructure measurements of the turbulent kinetic energy dissipation rate. Wind stress and mean current shear are found to be most predictive of the dissipation rate. Those variables, together with the solar buoyancy flux and the diurnal mixed layer thickness, are combined to make a pair of useful parameterizations. The uncertainty in these predictions is typically 50% greater than the uncertainty in present-day in situ measurements. To illustrate the use of these parameterizations, the record of deep cycle turbulence, measured directly since 2005, is extended back to 1990 based on historical mooring data. The extended record is used to refine our understanding of the seasonal variation of deep cycle turbulence.

Open access
Luc Lenain and Nick Pizzo

Abstract

Internal waves are a regular feature of the open ocean and coastal waters. As a train of internal waves propagate, their surface induced currents modulate the surface waves, generating a characteristic rough and smooth banded structure. While the surface expression of these internal waves is well known and has been observed from a variety of remote sensing instruments, direct quantitative observations of the directional properties of the surface gravity wave field modulated by an internal wave remain sparse. In this work, we report on a comprehensive field campaign conducted off the coast of Point Sal, CA in September 2017. Using a unique combination of airborne remote sensing observations, along with in-situ surface and subsurface measurements, we investigate and quantify the interaction between surface gravity and internal wave processes. We find that surface waves are significantly modulated by the currents induced by the internal waves. Through novel observations of ocean topography, we characterize the rapid modification of the directional and spectral properties of surface waves over very short spatial scales (O(100)m or less). Over a range of wavelengths (3-9m waves), geometrical optics and wave action conservation predictions show good agreement with the observed wavenumber spectra in smooth and rough regions of the modulated surface waves. If a parameterization of wave action source terms is used, good agreement is found over a larger range of wavenumbers, down to 4rad/m. These results elucidate properties of surface waves interacting with a submesoscale ocean current, and should provide insight into more general interactions between surface waves and the fine scale structure of the upper ocean.

Open access
Hua Zheng, Xiao-Hua Zhu, Chuanzheng Zhang, Ruixiang Zhao, Ze-Nan Zhu, and Zhao-Jun Liu

Abstract

Topographic Rossby waves (TRWs) are oscillations generated on sloping topography when water columns travel across isobaths under potential vorticity conservation. Based on our large-scale observations from 2016 to 2019, near 65-day TRWs were first observed in the deep basin of the South China Sea (SCS). The TRWs propagated westward with a larger wavelength (235 km) and phase speed (3.6 km/day) in the north of the array and a smaller wavelength (80 km) and phase speed (1.2 km/day) toward the southwest of the array. The ray-tracing model was used to identify the energy source and propagation features of the TRWs. The paths of the near 65-day TRWs mainly followed the isobaths with a slightly downslope propagation. The possible energy source of the TRWs was the variance of surface eddies southwest of Taiwan. The near 65-day energy propagated from the southwest of Taiwan to the northeast and southwest of the array over ~100–120 and ~105 days, respectively, corresponding to a group velocity of 4.2–5.0 and 10.5 km/day, respectively. This suggests that TRWs play an important role in deep-ocean dynamics and deep current variation, and upper ocean variance may adjust the intraseasonal variability in the deep SCS.

Restricted access
Arnaud Le Boyer and Matthew H. Alford

Abstract

Energy for ocean turbulence is thought to be transferred from its presumed sources (namely, the mesoscale eddy field, near-inertial internal waves and internal tides) to the internal wave continuum, and through the continuum via resonant triad interactions to breaking scales. To test these ideas, the level and variability of the oceanic internal gravity wave continuum spectrum are examined by computing time-dependent rotary spectra from a global database of 2260 current meter records deployed on 1362 separate moorings. Time series of energy in the continuum and the three “source bands” (near-inertial, tidal and mesoscale) are computed, and their variability and covariability examined. Seasonal modulation of the continuum by factors of up to 5 is seen in the upper ocean, implicating wind-driven near-inertial waves as an important source. The time series of the continuum is found to correlate more strongly with the near-inertial peak than with the semi-diurnal or mesoscale. The use of moored internal-wave kinetic energy frequency spectra as an alternate input to the traditional shear or strain wavenumber spectra in the Gregg-Henyey-Polzin finescale parameterization is explored and compared to traditional strain-based estimates.

Restricted access
Sydney Sroka and Kerry Emanuel

Abstract

The intensity of tropical cyclones is sensitive to the air-sea fluxes of enthalpy and momentum. Sea spray plays a critical role in mediating enthalpy and momentum fluxes over the ocean’s surface at high wind speeds, and parameterizing the influence of sea spray is a crucial component of any air-sea interaction scheme used for the high wind regime where sea spray is ubiquitous. Many studies have proposed parameterizations of air-sea flux that incorporate the microphysics of sea spray evaporation and the mechanics of sea spray stress. Unfortunately, there is not yet a consensus on which parameterization best represents air-sea exchange in tropical cyclones, and the different proposed parameterizations can yield substantially different tropical cyclone intensities. This paper seeks to review the developments in parameterizations of the sea spray-mediated enthalpy and momentum fluxes for the high wind speed regime and to synthesize key findings that are common across many investigations.

Restricted access
Dhruv Balwada, Qiyu Xiao, Shafer Smith, Ryan Abernathey, and Alison R. Gray

Abstract

It has been hypothesized that submesoscale flows play an important role in the vertical transport of climatically important tracers, due to their strong associated vertical velocities. However, the multi-scale, non-linear, and Lagrangian nature of transport makes it challenging to attribute proportions of the tracer fluxes to certain processes, scales, regions, or features. Here we show that criteria based on the surface vorticity and strain joint probability distribution function (JPDF) effectively decomposes the surface velocity field into distinguishable flow regions, and different flow features, like fronts or eddies, are contained in different flow regions. The JPDF has a distinct shape and approximately parses the flow into different scales, as stronger velocity gradients are usually associated with smaller scales. Conditioning the vertical tracer transport on the vorticity-strain JPDF can therefore help to attribute the transport to different types of flows and scales. Applied to a set of idealized Antarctic Circumpolar Current simulations that vary only in horizontal resolution, this diagnostic approach demonstrates that small-scale strain dominated regions that are generally associated with submesoscale fronts, despite their minuscule spatial footprint, play an outsized role in exchanging tracers across the mixed layer base and are an important contributor to the large-scale tracer budgets. Resolving these flows not only adds extra flux at the small scales, but also enhances the flux due to the larger-scale flows.

Restricted access
Jordi Isern-Fontanet and Antonio Turiel

Abstract

The multifractal theory of turbulence is used to investigate the energy cascade in the Northwestern Atlantic ocean. The statistics of singularity exponents of horizontal velocity gradients computed from in situ measurements at 2 km resolution are used to characterize the anomalous scaling of the velocity structure functions at depths between 50 ad 500 m. Here, we show that the degree of anomalous scaling can be quantified using singularity exponents. Observations reveal, on one side, that the anomalous scaling has a linear dependence on the exponent characterizing the strongest velocity gradient and, on the other side, that the slope of this linear dependence decreases with depth. Since the observed distribution of exponents is asymmetric about the mode at all depths, we use an infinitely divisible asymmetric model of the energy cascade, the log-Poisson model, to derive the functional dependence of the anomalous scaling with the exponent of the strongest velocity gradient, as well as the dependence with dissipation. Using this model we can interpret the vertical change of the linear slope between the anomalous scaling and the exponents of the strongest velocity gradients as a change in the energy cascade. This interpretation assumes the validity of the multifractal theory of turbulence, which has been assessed in previous studies.

Restricted access