Browse

You are looking at 11 - 20 of 8,021 items for :

  • Journal of Physical Oceanography x
  • All content x
Clear All
Hua Zheng, Xiao-Hua Zhu, Chuanzheng Zhang, Ruixiang Zhao, Ze-Nan Zhu, and Zhao-Jun Liu

Abstract

Topographic Rossby waves (TRWs) are oscillations generated on sloping topography when water columns travel across isobaths under potential vorticity conservation. Based on our large-scale observations from 2016 to 2019, near 65-day TRWs were first observed in the deep basin of the South China Sea (SCS). The TRWs propagated westward with a larger wavelength (235 km) and phase speed (3.6 km/day) in the north of the array and a smaller wavelength (80 km) and phase speed (1.2 km/day) toward the southwest of the array. The ray-tracing model was used to identify the energy source and propagation features of the TRWs. The paths of the near 65-day TRWs mainly followed the isobaths with a slightly downslope propagation. The possible energy source of the TRWs was the variance of surface eddies southwest of Taiwan. The near 65-day energy propagated from the southwest of Taiwan to the northeast and southwest of the array over ~100–120 and ~105 days, respectively, corresponding to a group velocity of 4.2–5.0 and 10.5 km/day, respectively. This suggests that TRWs play an important role in deep-ocean dynamics and deep current variation, and upper ocean variance may adjust the intraseasonal variability in the deep SCS.

Restricted access
Arnaud Le Boyer and Matthew H. Alford

Abstract

Energy for ocean turbulence is thought to be transferred from its presumed sources (namely, the mesoscale eddy field, near-inertial internal waves and internal tides) to the internal wave continuum, and through the continuum via resonant triad interactions to breaking scales. To test these ideas, the level and variability of the oceanic internal gravity wave continuum spectrum are examined by computing time-dependent rotary spectra from a global database of 2260 current meter records deployed on 1362 separate moorings. Time series of energy in the continuum and the three “source bands” (near-inertial, tidal and mesoscale) are computed, and their variability and covariability examined. Seasonal modulation of the continuum by factors of up to 5 is seen in the upper ocean, implicating wind-driven near-inertial waves as an important source. The time series of the continuum is found to correlate more strongly with the near-inertial peak than with the semi-diurnal or mesoscale. The use of moored internal-wave kinetic energy frequency spectra as an alternate input to the traditional shear or strain wavenumber spectra in the Gregg-Henyey-Polzin finescale parameterization is explored and compared to traditional strain-based estimates.

Restricted access
Sydney Sroka and Kerry Emanuel

Abstract

The intensity of tropical cyclones is sensitive to the air-sea fluxes of enthalpy and momentum. Sea spray plays a critical role in mediating enthalpy and momentum fluxes over the ocean’s surface at high wind speeds, and parameterizing the influence of sea spray is a crucial component of any air-sea interaction scheme used for the high wind regime where sea spray is ubiquitous. Many studies have proposed parameterizations of air-sea flux that incorporate the microphysics of sea spray evaporation and the mechanics of sea spray stress. Unfortunately, there is not yet a consensus on which parameterization best represents air-sea exchange in tropical cyclones, and the different proposed parameterizations can yield substantially different tropical cyclone intensities. This paper seeks to review the developments in parameterizations of the sea spray-mediated enthalpy and momentum fluxes for the high wind speed regime and to synthesize key findings that are common across many investigations.

Restricted access
Dhruv Balwada, Qiyu Xiao, Shafer Smith, Ryan Abernathey, and Alison R. Gray

Abstract

It has been hypothesized that submesoscale flows play an important role in the vertical transport of climatically important tracers, due to their strong associated vertical velocities. However, the multi-scale, non-linear, and Lagrangian nature of transport makes it challenging to attribute proportions of the tracer fluxes to certain processes, scales, regions, or features. Here we show that criteria based on the surface vorticity and strain joint probability distribution function (JPDF) effectively decomposes the surface velocity field into distinguishable flow regions, and different flow features, like fronts or eddies, are contained in different flow regions. The JPDF has a distinct shape and approximately parses the flow into different scales, as stronger velocity gradients are usually associated with smaller scales. Conditioning the vertical tracer transport on the vorticity-strain JPDF can therefore help to attribute the transport to different types of flows and scales. Applied to a set of idealized Antarctic Circumpolar Current simulations that vary only in horizontal resolution, this diagnostic approach demonstrates that small-scale strain dominated regions that are generally associated with submesoscale fronts, despite their minuscule spatial footprint, play an outsized role in exchanging tracers across the mixed layer base and are an important contributor to the large-scale tracer budgets. Resolving these flows not only adds extra flux at the small scales, but also enhances the flux due to the larger-scale flows.

Restricted access
Jordi Isern-Fontanet and Antonio Turiel

Abstract

The multifractal theory of turbulence is used to investigate the energy cascade in the Northwestern Atlantic ocean. The statistics of singularity exponents of horizontal velocity gradients computed from in situ measurements at 2 km resolution are used to characterize the anomalous scaling of the velocity structure functions at depths between 50 ad 500 m. Here, we show that the degree of anomalous scaling can be quantified using singularity exponents. Observations reveal, on one side, that the anomalous scaling has a linear dependence on the exponent characterizing the strongest velocity gradient and, on the other side, that the slope of this linear dependence decreases with depth. Since the observed distribution of exponents is asymmetric about the mode at all depths, we use an infinitely divisible asymmetric model of the energy cascade, the log-Poisson model, to derive the functional dependence of the anomalous scaling with the exponent of the strongest velocity gradient, as well as the dependence with dissipation. Using this model we can interpret the vertical change of the linear slope between the anomalous scaling and the exponents of the strongest velocity gradients as a change in the energy cascade. This interpretation assumes the validity of the multifractal theory of turbulence, which has been assessed in previous studies.

Restricted access
Yisen Zhong, Meng Zhou, Joanna J. Waniek, Lei Zhou, and Zhaoru Zhang

Abstract

The long-term satellite altimeter and reanalysis data show that large seasonal variations are associated with geostrophic Kuroshio intrusion, but not with the current intensity, width and axis position east of Philippine. To address this issue, we examine the seasonal variability of surface intrusion patterns by a new streamline-based method. The along-streamline analysis reveals that the seasonality of geostrophic intrusion is only attributed to the cyclonic shear part of the flow, while the anticyclonic shear part always leaps across the Luzon Strait. A possible physical mechanism is proposed to accommodate these seasonal characteristics based on globally the vorticity (torque work) balance between the basin-wide negative wind stress curl and the positive vorticity fluxes induced by the lateral wall, as well as locally loss of balance between the torques of frictional stresses and normal stresses owing to the boundary gap. Through modifying the nearshore sea surface level, the northeasterly/southeasterly monsoon increases/decreases the positive vorticity fluxes in response to global vorticity balance, and simultaneously amplifies/alleviates the local imbalance by enhancing/reducing the positive frictional stress torque within the cyclonic shear layer. Therefore, in winter when the positive torque is large enough, the Kuroshio splits and the intrusion occurs, while in summer the stress torque is so weak that the entire current keeps flowing north.

Restricted access
Jianguo Yuan and Jun-Hong Liang

Abstract

Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman Buoyancy Flux (or the Ekman-Stokes Buoyancy Flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies.

Restricted access
MINGTING LI, HUIJIE XUE, JUN WEI, LINLIN LIANG, ARNOLD L. GORDON, and SONG YANG

Abstract

The role of the Mindoro Strait-Sibutu passage pathway in influencing the Luzon Strait inflow to the South China Sea (SCS) and the SCS multi-layer circulation is investigated with a high-resolution (0.1° × 0.1°) regional ocean model. Significant changes are evident in the SCS upper layer circulation (250-900 m) by closing the Mindoro-Sibutu pathway in sensitivity experiments, as Luzon Strait transport is reduced by 75%, from −4.4 Sv to −1.2 Sv. Because of the vertical coupling between the upper and middle layers, closing the Mindoro-Sibutu pathway also weakens clockwise circulation in the middle layer (900–2150 m), but there is no significant change in the deep layer (below 2150 m). The Mindoro-Sibutu pathway is an important branch of the SCS throughflow into the Indonesian Seas. It is also the gateway for oceanic waves propagating clockwise around the Philippines Archipelago from the western Pacific Ocean into the eastern SCS, projecting El Niño-Southern Oscillation sea level signals to the SCS, impacting its interannual variations and multi-layer circulation. The results provide insights into the dynamics of how upstream and downstream passage throughflows are coupled to affect the general circulation in marginal seas.

Restricted access
Olivier Marchal and Ning Zhao

Abstract

Measurements of radiocarbon concentration (Δ14C) in fossil biogenic carbonates have been interpreted as reecting a reduced ventilation of the deep Atlantic during the last ice age. Here we evaluate the (in)consistency of an updated compilation of fossil Δ14C data for the last deglaciation with the abyssal circulation in the modern Atlantic. A 14C transport equation, in which the mean velocity field is a modern field estimate and turbulent flux divergence is treated as a random fluctuation, is fitted to deglacial Δ14C records by using recursive weighted least-squares. This approach allows us to interpret the records in terms of deviations from the modern flow with due regard for uncertainties in the fossil data, the 14C transport equation, and its boundary conditions.

We find that the majority of fit residuals could be explained by uncertainties in fossil Δ14C data, for two distinct estimates of the modern flow and of the error variance in the boundary conditions. Thus, most, not all, deglacial data appear consistent with present-day ventilation rates. From 20 to 32% of the residuals exceed in magnitude the published errors in the fossil data by a factor of two. Residuals below 4000 m in the western North Atlantic are all negative, suggesting that deglacial Δ14C values from this region are too low to be explained by modern ventilation. Whilst deep water ventilation appeared different from today at some locations, a larger database and a better understanding of error (co)variances are needed to make reliable paleoceanographic inferences from fossil Δ14C records.

Restricted access
K.H. Brink

Abstract

A linear numerical model of an island or a tall seamount is used to explore superinertial leaky resonances forced by ambient vertically and horizontally uniform current fluctuations. The model assumes a circularly symmetric topography (including a shallow reef) and allows realistic stratification and bottom friction. As long as there is substantial stratification, a number of leaky resonances are found, and when the island’s flanks are narrow relative to the internal Rossby radius, some of the near-resonant modes resemble leaky internal Kelvin waves. Other “resonances” resemble higher radial mode long gravity waves as explored by Chambers (1965). The near-resonances amplify the cross-reef velocities that help fuel biological activity. Results for cases with the central island replaced by a lagoon do not differ greatly from the island case which has land at the center. As an aside, insight is provided on the question of offshore boundary conditions for superinertial nearly trapped waves along a straight coast.

Restricted access