Browse

You are looking at 21 - 30 of 118,415 items for :

  • All content x
Clear All
Cheng Shen, Jinlin Zha, Jian Wu, and Deming Zhao

Abstract

Investigations of variations and causes of near-surface wind speed (NWS) further understanding of atmospheric changes and improve the ability of climate analysis and projections. NWS varies on multiple temporal scales; however, the centennial-scale variability in NWS and associated causes over China remains unknown. In this study, we employ the European Centre for Medium-Range Weather Forecasts (ECMWF) Twentieth Century Reanalysis (ERA-20C) to study the centennial-scale changes in NWS from 1900 to 2010. Meanwhile, a forward stepwise regression algorithm is used to reveal the relationships between NWS and large-scale ocean–atmosphere circulations. The results show three unique periods in annual mean NWS over China from 1900 to 2010. The annual mean NWS displayed decreasing trends of −0.87% and −11.75% decade−1 from 1900 to 1925 and from 1957 to 2010, respectively, which were caused by the decreases in the days with strong winds, with trends of −6.64 and −4.66 days decade−1, respectively. The annual mean NWS showed an upward trend of 55.47% decade−1 from 1926 to 1956, which was caused by increases in the days with moderate (0.43 days decade−1) and strong winds (23.55 days decade−1). The reconstructed wind speeds based on forward stepwise regression algorithm matched well with the original wind speeds; therefore, the decadal changes in NWS over China at the centennial scale were mainly induced by large-scale ocean–atmosphere circulations, with the total explanation power of 66%. The strongest explanation power was found in winter (74%), and the weakest explanation power was found in summer (46%).

Open access
Ying Zhang, Yan Du, Tangdong Qu, Yu Hong, Catia M. Domingues, and Ming Feng

Abstract

The Subantarctic Mode Water (SAMW) plays an essential role in the global heat, freshwater, carbon, and nutrient budgets. In this study, decadal changes in the SAMW properties in the southern Indian Ocean (SIO) and associated thermodynamic and dynamic processes are investigated during the Argo era. Both temperature and salinity of the SAMW in the SIO show increasing trends during 2004–18. A two-layer structure of the SAMW trend, with more warm and salty light SAMW but less cool and fresh dense SAMW, is identified. The heaving and spiciness processes are important but have opposite contributions to the temperature and salinity trends of the SAMW. A significant deepening of isopycnals (heaving), peaking at σ θ = 26.7–26.8 kg m−3 in the middle layer of the SAMW, expands the warm and salty light SAMW and compresses the cool and fresh dense SAMW corresponding to the change in subduction rate during 2004–18. The change in the SAMW subduction rate is dominated by the change in the mixed layer depth, controlled by the changes in wind stress curl and surface buoyancy fluxes. An increase in the mixed layer temperature due to weakening northward Ekman transport of cool water leads to a lighter surface density in the SAMW formation region. Consequently, density outcropping lines in the SAMW formation region shift southward and favor the intrusion and entrainment of the cooler and fresher Antarctic surface water from the south, contributing to the cooling/freshening trend of isopycnals (spiciness). Subsequently, the cooler and fresher SAMW spiciness anomalies spread in the SIO via the subtropical gyre.

Restricted access
K. Fagiewicz, P. Churski, T. Herodowicz, P. Kaczmarek, P. Lupa, J. Morawska-Jancelewicz, and A. Mizgajski

Abstract

This study determines the conditions and provides a recommendation for fostering cocreation for climate change adaptation and mitigation (CCA&M). In postulating that insufficient cocreation by stakeholders in the quadruple helix model is an important factor contributing to the low effectiveness of climate actions in the regions, we have focused our research on identifying real stakeholder engagement in climate action and identifying the needs, barriers, and drivers for strengthening the cocreation process. We identified the needs for action highlighted by stakeholders as having an impact on reducing barriers and stimulating drivers. We treated the identified needs for action as deep leverage points (intent and design) focused on three realms—knowledge, values, and institutions—in which engagement and cocreation can be strengthened and have the potential to increase the effectiveness of climate action taken by stakeholders within our quadruple helix. We recommend knowledge-based cocreation, which puts the importance of climate action in the value system and leads to paradigm reevaluation. The implementation of the identified needs for action requires the support of institutions, whereby they develop standards of cooperation and mechanisms for their implementation as a sustainable framework for stakeholder cooperation. The research has proved how the quadruple helix operates for climate action in the Poznań Agglomeration. We believe that this case study can be a reference point for regions at a similar level of development, and the methods used and results obtained can be applied in similar real contexts to foster local stakeholders in climate action.

Open access
David T. Bolvin, George J. Huffman, Eric J. Nelkin, and Jackson Tan

Abstract

Satellite-based precipitation estimates provide valuable information where surface observations are not readily available, especially over the large expanses of the ocean where in situ precipitation observations are very sparse. This study compares monthly precipitation estimates from the Integrated Multisatellite Retrievals for GPM (IMERG) with gauge observations from 37 low-lying atolls from the Pacific Rainfall Database for the period June 2000–August 2020. Over the analysis period, IMERG estimates are slightly higher than the atoll observations by 0.67% with a monthly correlation of 0.68. Seasonally, DJF shows excellent agreement with a near-zero bias, while MAM shows IMERG is low by 4.6%, and JJA is high by 1.2%. SON exhibits the worst performance, with IMERG overestimating by 6.5% compared to the atolls. The seasonal correlations are well contained in the range 0.67–0.72, with the exception of SON at 0.62. Furthermore, SON has the highest RMSE at 4.70 mm day−1, making it the worst season for all metrics. Scatterplots of IMERG versus atolls show IMERG, on average, is generally low for light precipitation accumulations and high for intense precipitation accumulations, with best agreement at intermediate rates. Seasonal variations exist at light and intermediate rate accumulations, but IMERG consistently overestimates at intense precipitation rates. The differences between IMERG and atolls vary over time but do not exhibit any discernable trend or dependence on atoll population. The PACRAIN atoll gauges are not wind-loss corrected, so application of an appropriate adjustment would increase the precipitation amounts compared to IMERG. These results provide useful insight to users as well as valuable information for future improvements to IMERG.

Restricted access
Mengye Chen, Zhi Li, Shang Gao, Xiangyu Luo, Oliver E. J. Wing, Xinyi Shen, Jonathan J. Gourley, Randall L. Kolar, and Yang Hong

Abstract

Because climate change will increase the frequency and intensity of precipitation extremes and coastal flooding, there is a clear need for an integrated hydrology and hydraulic system that has the ability to model the hydrologic conditions over a long period and the flow dynamic representations of when and where the extreme hydrometeorological events occur. This system coupling provides comprehensive information (flood wave, inundation extents, and depths) about coastal flood events for emergency management and risk minimization. This study provides an integrated hydrologic and hydraulic coupled modeling system that is based on the Coupled Routing and Excessive Storage (CREST) model and the Australia National University-Geophysics Australia (ANUGA) model to simulate flood. Forced by the near-real-time Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimates, this integrated modeling system was applied during the 2017 Hurricane Harvey event to simulate the streamflow, the flood extent, and the inundation depth. The results were compared with postevent high-water-mark survey data and its interpolated flood extent by the U.S. Geological Survey and the Federal Emergency Management Agency flood insurance claims, as well as a satellite-based flood map, the National Water Model (NWM), and the Fathom (LISFLOOD-FP) model simulated flood map. The proposed hydrologic and hydraulic model simulation indicated that it could capture 87% of all flood insurance claims within the study area, and the overall error of water depth was 0.91 m, which is comparable to the mainstream operational flood models (NWM and Fathom).

Open access
David Leutwyler, Adel Imamovic, and Christoph Schär

Abstract

Soil moisture–atmosphere interactions are key elements of the regional climate system. There is a well-founded hope that a more accurate representation of the soil moisture–precipitation feedback would improve the simulation of summer precipitation on daily to seasonal, to climate time scales. However, uncertainties have persistently remained as the simulated feedback is strongly sensitive to the model representation of deep convection. Here we assess the feedback representation using a GPU-accelerated version of the regional climate model COSMO. We simulate and compare the impact of continental-scale springtime soil moisture anomalies on summer precipitation at convection-resolving (2.2 km) and convection-parameterizing resolution (12 km). We conduct reanalysis-driven simulations of 10 summer seasons (1999–2008) in continental Europe. While both simulations qualitatively agree on a positive sign of soil moisture–induced precipitation, they strongly differ in precipitation frequency: when convection is parameterized, wetter soil predominantly leads to more frequent precipitation events, and when convection is treated explicitly, they primarily become more intense. The results indicate that the sensitivity to soil moisture is stronger with parameterized convection, suggesting that the land surface–atmosphere coupling may be overestimated. In addition, the feedback’s sensitivity in complex terrain is assessed for soil perturbations of different horizontal scales. The convection-resolving simulations confirm a negative feedback for subcontinental soil moisture anomalies, which manifests itself in a local decrease of wet-hour frequency. However, the intensity feedback reinforces precipitation events at the same time (positive feedback). The two processes are represented differently in simulations with explicit and parameterized convection, explaining much of the difference between the two simulations.

Open access
Matthew D. Cann and Allen B. White

Abstract

Nonbrightband (NBB) rain is a shallow, orographic precipitation that does not produce a radar bright band as a result of melting ice crystals. However, NBB rain is not the same as warm rain, which excludes ice from being involved in the microphysical growth of precipitation. Despite this difference, NBB rain is often treated as warm rain in the literature, and past studies have mostly ignored the role of ice. Here, we use two wet seasons (2015/16 and 2016/17) at four precipitation-observing sites in the Northern Coast Ranges of California to show the role of echo top height and ice in determining NBB rain intensity. It was found that NBB rain was only absent of bright bands 32%–46% of the time depending on location of the site. Additionally, all NBB rain rates that exceeded 10 mm h−1 exhibited observable bright bands during the hour period. We also define growth efficiency (GE) as the ability of shallow rain clouds to produce raindrops larger than drizzle size (D > 0.5 mm). High-GE rain drop size distributions were composed of fewer small drops and more large drops than low-GE rain, which was mostly drizzle. High-GE rain occurred with echo top heights above the freezing level where rapid growth of precipitation was observed by radar. Echo tops that only extended 1 km or less above the freezing level suggested hydrometeor growth from mixed-phase processes, indicating that ice may be present in coastal precipitation at warmer temperatures than previously considered.

Restricted access
David C. Eisenhauer

Abstract

This paper presents a case study of how boundary objects were deployed to support a collaborative knowledge production process that resulted in the creation of climate change knowledge usable to municipal governments in the New Jersey shore region. In doing so, a case is made that boundary objects are useful throughout the collaborative process in overcoming ambiguity and disagreement. This points to boundary objects possessing a wider array of capabilities than is frequently theorized in the climate policy literature. Effectively designing and using boundary objects, however, requires carefully considering how they interface and interact with one another.

Restricted access
Jake Aylmer, David Ferreira, and Daniel Feltham
Open access
Astrid Pacini, Robert S. Pickart, Isabela A. Le Bras, Fiammetta Straneo, N. Penny Holliday, and Michael A. Spall

Abstract

The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 middepth intensified cyclones were identified that passed the array near the 2000-m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm s−1, and a core propagation velocity of 27 cm s−1. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m-thick lens of dense water at the bottom of the water column and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features that shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.

Restricted access