Browse

You are looking at 21 - 30 of 542 items for :

  • Weather, Climate, and Society x
  • All content x
Clear All
Majid Shafiee-Jood, Tatyana Deryugina, and Ximing Cai

Abstract

Forecast valuation studies play a key role in understanding the determinants of the value of weather and climate forecasts. Such understanding provides opportunities to increase the value that users can obtain from forecasts, which can in turn increase the use of forecasts. One of the most important factors that influences how users process forecast information and incorporate forecasts into their decision-making is trust in forecasts. Despite the evidence from empirical and field-based studies, modeling users’ trust in forecasts has not received much attention in the literature and is therefore the focus of our study. We propose a theoretical model of trust in information, built into a forecast valuation framework, to better understand 1) the role of trust in users’ processing of drought forecast information and 2) the dynamic process of users’ trust formation and evolution. Using a numerical experiment, we show that considering the dynamic nature of trust is critical in more realistic assessment of forecast value. We find that the user may not perceive a potentially valuable forecast as such until they trust it enough, implying that exposure to even highly accurate forecasts may not immediately translate into forecast use. Ignoring this dynamic aspect could overestimate the economic gains from forecasts. Finally, the model offers hypotheses regarding targeting strategies that can be tested with empirical and field-based studies and used to guide policy interventions.

Restricted access
Nathan Beech and Micah J. Hewer

Abstract

Grape growth and wine production are both closely connected with weather and climate, making anthropogenic climate change a source of great uncertainty for the grape and wine industries. To assess the impacts of climate change on viticulture and oenology in the Fraser Valley, British Columbia, Canada, where no such assessment has been published to this date, a series of key indicators and critical thresholds were selected based on their relevance to the local climatology. Trends among these indicators and thresholds were calculated over a historic period (1970-2019) and projected over the 21st century for one intermediate-emissions and one high-emissions climate change scenario. Historic trends were assessed using Environment and Climate Change Canada weather station data from Abbotsford, British Columbia. Two statistical downscaling methods were evaluated based on their ability to reproduce observed conditions in the Fraser Valley and the most effective method was used to create projections of local, daily climate change scenarios. During the historic period, temperatures increased significantly, while precipitation and moisture variables displayed insignificant trends, reflecting the trends observed across other wine regions in Canada and the Northwestern United States. Throughout the 21st century, warming is expected to continue while precipitation decreases modestly. Extreme heat is projected to become far more frequent, while extreme cold and potential frost days become rare. In the short term, modifications to vineyard and winery operations may be sufficient adaptation strategies. Over the long term, new grape varieties will most likely need to be planted in existing vineyards and suitability for cool-climate varieties may shift northward in direction or upward in elevation.

Restricted access
Victoria A. Johnson, Kimberly E. Klockow-McClain, Randy A. Peppler, and Angela M. Person

Abstract

Residents of the Oklahoma City metropolitan area are frequently threatened by tornadoes. Previous research indicates that perceptions of tornado threat affect behavioral choices when severe weather threatens, and as such are important to study. In this paper, we examine the potential influence of tornado climatology on risk perception. Residents across central Oklahoma were surveyed about their perceptions of tornado proneness for their home location, and this was compared to the local tornado climatology. Mapping and programming tools were then used to identify relationships between respondents’ perceptions and actual tornado events. Research found that some dimensions of the climatology, such as tornado frequency, nearness, and intensity have complex effects on risk perception. In particular, tornadoes that were intense, close, and recent had the strongest positive influence on risk perception, but weaker tornadoes appeared to produce an “inoculating” effect. Additional factors were influential, including sharp spatial discontinuities between neighboring places that were not tied to any obvious physical feature or the tornado climatology. Respondents holding lower perceptions of risk also reported lower rates of intention to prepare during tornado watches. By studying place-based perceptions, this research aims to provide a scientific basis for improved communication efforts before and during tornado events, and for identifying vulnerable populations.

Restricted access
Daniel Leppert, Tobias Dalhaus, and Carl-Johan Lagerkvist

Abstract

Extreme heat events cause periodic damage to crop yields and may pose a threat to the income of farmers. Weather index insurance provides payouts to farmers in the case of measurable weather extremes to keep production going. However, its viability depends crucially on the accuracy of local weather indices to predict yield damages from adverse weather conditions. So far, extreme heat indices are poorly represented in weather index insurance. In this study, we construct indices of extreme heat using observations at the nearest weather station and estimates for each county using three interpolation techniques: inverse-distance weighting, ordinary kriging, and regression kriging. Applying these indices to insurance against heat damage to corn in Illinois and Iowa, we show that heat index insurance reduces relative risk premiums by 27%–29% and that interpolated indices outperform the nearest-neighbor index by around 2%–3% in terms of relative risk reduction. Further, we find that the advantage of interpolation over a nearest-neighbor index in terms of relative risk reduction increases as the sample of weather stations is reduced. These findings suggest that heat index insurance can work even when weather data are spatially sparse, which delivers important implications for insurance practice and policy makers. Further, our public code repository provides a rich toolbox of methods to be used for other perils, crops, and regions. Our results are therefore not only replicable but also constitute a cornerstone for projects to come.

Restricted access
Meaghan L. Guckian, Ezra M. Markowitz, Clay S. Tucker, Elsita Kiekebusch, Toni Klemm, Lindsey Middleton, Adrienne Wootten, and Michelle D. Staudinger

Abstract

Online science communities can serve as powerful platforms for advancing scientific knowledge, capacity, and outreach by increasing collaboration and information sharing among geographically distant peers, practitioners, and the public. Here, we examine the value and role of the Early Career Climate Forum (ECCF), a climate-focused online science community that is based in the United States and is dedicated to training and providing support to the next generation of climate scientists. In a survey of community users and contributors, we find that the ECCF played a unique role in providing users access to career resources as well as climate-related research and insights. Respondents also indicated that the ECCF provides them with a strong sense of community and a sense of hope for the future of climate science research. These findings highlight the importance of online science communities in shaping and supporting the next generation of scientists and practitioners working at the science–management interface on climate change issues.

Open access
Stephen M. Strader, Alex M. Haberlie, and Alexandra G. Loitz

Abstract

This study investigates the interrelationships between National Weather Service (NWS) county warning area (CWA) tornado risk, exposure, and societal vulnerability. CWA climatological tornado risk is determined using historical tornado event data, and exposure and vulnerability are assessed by employing present-day population, housing, socioeconomic, and demographic metrics. In addition, tornado watches, warnings, warning lead times, false alarm warnings, and unwarned tornado reports are examined in relation to CWA risk, exposure, and vulnerability. Results indicate that southeastern U.S. CWAs are more susceptible to tornado impacts because of their greater tornado frequencies and larger damage footprints intersecting more vulnerable populations (e.g., poverty and manufactured homes). Midwest CWAs experience fewer tornadoes relative to Southeast and southern plains CWAs but encompass faster tornado translational speeds and greater population densities where higher concentrations of vulnerable individuals often reside. Northern plains CWAs contain longer-tracked tornadoes on average and larger percentages of vulnerable elderly and rural persons. Southern plains CWAs experience the highest tornado frequencies in general and contain larger percentages of minority Latinx populations. Many of the most socially vulnerable CWAs have shorter warning lead times and greater percentages of false alarm warnings and unwarned tornadoes. Study findings provide NWS forecasters with an improved understanding of the relationships between tornado risk, exposure, vulnerability, and warning outcomes within their respective CWAs. Findings may also assist NWS Weather Forecast Offices and the Warning Decision Training Division with developing training materials aimed at increasing NWS forecaster knowledge of how tornado risk, exposure, and vulnerability factors influence local tornado disaster potential.

Restricted access
Sally Potter, Sara Harrison, and Peter Kreft

Abstract

Warnings about impending hazards help to minimize the impacts and reduce the risk of the hazard through encouraging an appropriate and timely behavioral response. Many hydrometeorological agencies are moving toward impact-based forecast and warning (IBFW) systems, as encouraged by the World Meteorological Organization. Yet little research has been conducted on such systems from the perspectives of agencies who are or would be involved in their implementation. We investigated the challenges and benefits of IBFW systems as perceived by participants from agencies internationally and within New Zealand. Interviews and workshops were held with meteorologists and weather forecasters, flood forecasters and hydrologists, and emergency managers. We found that the benefits of implementing IBFW systems included a perceived increase in the understanding of the potential impacts by the public, added awareness of antecedent conditions by forecasters, a possible reduction in “false alarms,” and increased interagency communication. Challenges identified by the participants included whether the system should be designed for individuals or society, a lack of impact data, verification of warnings based on impacts, a conflict with roles and responsibilities, the potential for conflicting messages, and the increased burden on agencies providing information to forecasters with a perception of little benefit in return. We argue that IBFWs could be designed for individual members of the public, with an increased focus on understanding vulnerability and capacities, and that more impact data need to be collected and stored to inform future warnings. Increased interagency coordination would assist with rapid decision-making and the success of IBFWs.

Open access
Vikram S. Negi, Shinny Thakur, Rupesh Dhyani, Indra D. Bhatt, and Ranbeer S. Rawal

Abstract

Mountains are important global sites for monitoring biological and socioecological responses to climate change, and the Himalaya has some of the world’s most rapid and visible signs of climate change. The increased frequency and severity of climate anomalies in the region are expected to significantly affect livelihoods of indigenous communities in the region. This study documents the perceptions of indigenous communities of climate change in the western Himalaya of India. The study highlights the power of knowledge and understanding available to indigenous people as they observe and respond to climate change impacts. We conducted a field-based study in 14 villages that represent diverse socioecological features along an altitudinal range of 1000–3800 m MSL in the western Himalaya. Among the sampled population, most of the respondents (>95%) agreed that climate is changing. However, people residing at low- and high-altitude villages differ significantly in their perception, with more people at high altitudes believing in an overall warming trend. Instrumental temperature and rainfall from nearby meteorological stations also supported the perception of local inhabitants. The climate change perceptions in the region were largely determined by sociodemographic variables such as age, gender, and income as well as altitude. A logistic regression, which exhibited significant association of sociodemographic characteristics with climate change perceptions, further supported these findings. The study concluded that the climate change observations of local communities can be usefully utilized to develop adaptation strategies and mitigation planning in the Himalayan region.

Restricted access
Carol R. Ember, Ian Skoggard, Benjamin Felzer, Emily Pitek, and Mingkai Jiang

Abstract

All societies have religious beliefs, but societies vary widely in the number and type of gods in which they believe as well as their ideas about what the gods do. In many societies, a god is thought to be responsible for weather events. In some of those societies, a god is thought to cause harm with weather and/or can choose to help, such as by bringing needed rain. In other societies, gods are not thought to be involved with weather. Using a worldwide, largely nonindustrial sample of 46 societies with high gods, this research explores whether certain climate patterns predict the belief that high gods are involved with weather. Our major expectation, largely supported, was that such beliefs would most likely be found in drier climates. Cold extremes and hot extremes have little or no relationship to the beliefs that gods are associated with weather. Since previous research by Skoggard et al. showed that greater resource stress predicted the association of high gods with weather, we also tested mediation path models to help us evaluate whether resource stress might be the mediator explaining the significant associations between drier climates and high god beliefs. The climate variables, particularly those pertaining to dryness, continue to have robust relationships to god beliefs when controlling on resource stress; at best, resource stress has only a partial mediating effect. We speculate that drought causes humans more anxiety than floods, which may result in the greater need to believe supernatural beings are not only responsible for weather but can help humans in times of need.

Restricted access
Emma J. S. Ferranti, Joanna Ho Yan Wong, and Surindar Dhesi

Abstract

As leaders of civil society, governments have a prime responsibility to communicate climate change information in order to motivate their citizens to mitigate and adapt. This study compares the approaches of the U.K. and Hong Kong governments. Although different in size and population, the United Kingdom and Hong Kong have similar climate change agendas to communicate to similarly educated and prosperous populations. The study finds that while both governments use similar means: policy, education, campaigns, internet, and social media, these have different characteristics, with different emphases in their climate change message. The United Kingdom’s top-down approach is more prominent in its legally binding policy and well-defined programs for adaptation and risk assessment. Hong Kong has more effectively embedded climate change education across the school curricula and has a more centralized and consistently branded campaign, with widespread use of visual language to connect the public to the problem. Hong Kong frames climate change as a science–society problem and has a greater focus on self-responsibility and bottom-up behavioral change. Thus, the U.K. and Hong Kong governments have polarized approaches to motivating their citizens into climate action. Moving forward, both governments should consider best practice elements of the other to develop their communication of climate change.

Restricted access