Browse

You are looking at 31 - 40 of 7,994 items for :

  • Journal of Physical Oceanography x
  • All content x
Clear All
Jihai Dong, Baylor Fox-Kemper, Hong Zhang, and Changming Dong

Abstract

Symmetric instability (SI) extracts kinetic energy from fronts in the surface mixed layer (SML), potentially affecting the SML structure and dynamics. Here, a global submesoscale-permitting ocean model named MITgcm LLC4320 simulation is used to examine the Stone linear prediction of the maximum SI scale to estimate grid spacings needed to begin resolving SI. Furthermore, potential effects of SI on the usable wind work are estimated roughly: this estimate of SI “activity” is useful for assessing if these modes should be resolved or parameterized. The maximum SI scale varies by latitude with median values from 568 to 23 m. Strong seasonality is observed in the SI scale and activity. The median scale in winter is 188 m globally, 2.5 times of that of summer (75 m). SI is more active in winter: 15% of the time compared with 6% in summer. The strongest SI activity is found in the western Pacific, western Atlantic, and Southern Oceans. The required grid spacings for a global model to begin resolving SI eddies in the SML are 24 m (50% of regions resolved) and 7.9 m (90%) in winter, decreasing to 9.4 m (50%) and 3.6 m (90%) in summer. It is also estimated that SI may reduce usable wind work by an upper bound of 0.83 mW m−2 globally, or 5% of the global magnitude. The sensitivity of these estimates to empirical thresholds is provided in the text.

Open access
Etienne Pauthenet, Jean-Baptiste Sallée, Sunke Schmidtko, and David Nerini

Abstract

The Antarctic Slope Front (ASF) is a fundamental feature of the subpolar Southern Ocean that is still poorly observed. In this study we build a statistical climatology of the temperature and salinity fields of the upper 380 m of the Antarctic margin. We use a comprehensive compilation of observational datasets including the profiles gathered by instrumented marine mammals. The mapping method consists first of a decomposition in vertical modes of the combined temperature and salinity profiles. Then the resulting principal components are optimally interpolated on a regular grid and the monthly climatological profiles are reconstructed, providing a physically plausible representation of the ocean. The ASF is located with a contour method and a gradient method applied on the temperature field, two complementary approaches that provide a complete view of the ASF structure. The front extends from the Amundsen Sea to the eastern Weddell Sea and closely tracks the continental shelf break. It is associated with a sharp temperature gradient that is stronger in winter and weaker in summer. The emergence of the front in the Amundsen and Bellingshausen sectors appears to be seasonally variable (slightly more westward in winter than in summer). Investigation of the density gradients across the shelf break indicates a winter slowdown of the baroclinic component of the Antarctic Slope Current at the near surface, in contrast with the seasonal variability of the temperature gradient.

Open access
Suneil Iyer and Kyla Drushka

Abstract

Observations of salinity, temperature, and turbulent dissipation rate were made in the top meter of the ocean using the ship-towed Surface Salinity Profiler as part of the second Salinity Processes in the Upper Ocean Regional Study (SPURS-2) to assess the relationships between wind, rain, near-surface stratification, and turbulence. A wide range of wind and rain conditions were observed in the eastern tropical Pacific Ocean near 10°N, 125°W in summer–autumn 2016 and 2017. Wind was the primary driver of near-surface turbulence and the mixing of rain-formed fresh lenses, with lenses generally persisting for hours when wind speeds were under 5 m s−1 and mixing away immediately at higher wind speeds. Rain influenced near-surface turbulence primarily through stratification. Near-surface stratification caused by rainfall or diurnal warming suppressed deeper turbulent dissipation rates when wind speeds were under 3 m s−1. In one case with 4–5 m s−1 winds, rain-induced stratification enhanced dissipation rates within the stratified layer. At wind speeds above 7–8 m s−1, strong stratification was not observed in the upper meter during rain, indicating that rain lenses do not form at wind speeds above 8 m s−1. Raindrop impacts enhanced turbulent dissipation rates at these high wind speeds in the absence of near-surface stratification. Measurements of air–sea buoyancy flux, wind speed, and near-surface turbulence can be used to predict the presence of stratified layers. These findings could be used to improve model parameterizations of air–sea interactions and, ultimately, our understanding of the global water cycle.

Open access
Xiaoyan Wei, Henk M. Schuttelaars, Megan E. Williams, Jennifer M. Brown, Peter D. Thorne, and Laurent O. Amoudry

Abstract

Asymmetric tidal turbulence (ATT) strongly influences estuarine health and functioning. However, its impact on the three-dimensional estuarine dynamics and the feedback of water motion and salinity distribution on ATT remain poorly understood, especially for short estuaries (estuarine length ≪ tidal wavelength). This study systematically investigates the abovementioned interactions in a short estuary for the first time, considering periodically weakly stratified conditions. This is done by developing a three-dimensional semi-analytical model (combining perturbation method with finite element method) that allows a dissection of the contributions of different processes to ATT, estuarine circulation, and salt transport. The generation of ATT is dominated by (i) strain-induced periodic stratification and (ii) asymmetric bottom-shear-generated turbulence, and their contributions to ATT are different both in amplitude and phase. The magnitude of the residual circulation related to ATT and the eddy viscosity–shear covariance (ESCO) is about half of that of the gravitational circulation (GC) and shows a “reversed” pattern as compared to GC. ATT generated by strain-induced periodic stratification contributes to an ESCO circulation with a spatial structure similar to GC. This circulation reduces the longitudinal salinity gradients and thus weakens GC. Contrastingly, the ESCO circulation due to asymmetric bottom-shear-generated turbulence shows patterns opposite to GC and acts to enhance GC. Concerning the salinity dynamics at steady state, GC and tidal pumping are equally important to salt import, whereas ESCO circulation yields a significant seaward salt transport. These findings highlight the importance of identifying the sources of ATT to understand its impact on estuarine circulation and salt distribution.

Open access
Ruibin Ding, Jiliang Xuan, Tao Zhang, Lei Zhou, Feng Zhou, Qicheng Meng, and In-Sik Kang

Abstract

Eddy-induced heat transport (EHT) in the South China Sea (SCS) is important for the heat budget. However, knowledge of its variability is limited owing to discrepancies arising from the limitation of the down-gradient method and uncertainties arising from numerical models. Herein, we investigated the spatiotemporal variability and dynamics of EHT using a well-validated assimilated model. In particular, to the southeast of Vietnam (SEV) and west of Luzon Strait (WLS), significant values of annual mean EHT are observed and most EHT is confined in the upper 400 m. EHT also exhibits significant seasonality, and the largest EHT amplitude in autumn at SEV is mainly driven by the wind stress curl, while that in winter at WLS is mainly related to the Kuroshio intrusion. Energy budget analysis reveals that both the barotropic and baroclinic instabilities increase the eddy kinetic energy in autumn at SEV, whereas only the barotropic instability contributes to the eddy kinetic energy at WLS in winter. Specially, an up-gradient EHT is observed at WLS in all four seasons, characterized by the same directions between EHT and mean temperature gradient. The up-gradient EHT at WLS is induced by the baroclinic instability through an inverse energy transfer, which is generated by the interaction between the Kuroshio intrusion and topography below the surface layer. Moreover, the most significant up-gradient EHT in winter shows a wave-like southwestward propagating pattern in the subsurface layer.

Restricted access
Preston Spicer, Kelly L. Cole, Kimberly Huguenard, Daniel G. MacDonald, and Michael M. Whitney

Abstract

The mixing of river plumes into the coastal ocean influences the fate of river-borne tracers over the inner-shelf, though the relative importance of mixing mechanisms under different environmental conditions is not fully understood. In particular, the contribution to plume mixing from bottom generated shear stresses, referred to as tidal mixing, is rarely considered important relative to frontal and stratified shear (interfacial) mixing in surface advected plumes. The effect of different mixing mechanisms is investigated numerically on an idealized, tidally pulsed river plume with varying river discharge and tidal amplitudes. Frontal, interfacial, and tidal mixing are quantified via a mixing energy budget to compare the relative importance of each to the overall buoyancy flux over one tide. Results indicate that tidal mixing can dominate the energy budget when the tidal mixing power exceeds that of the input buoyancy flux. This occurs when the non-dimensional number, RiE R01 (the estuarine Richardson number divided by the mouth Rossby number), is generally less than 1. Tidal mixing accounts for between 60% and 90% of the net mixing when RiE R01 < 1, with the largest contributions during large tides and low discharge. Interfacial mixing varies from 10% to 90% of total mixing and dominates the budget for high discharge events with relatively weaker tides (RiE R01 > 1). Frontal mixing is always less than 10% of total mixing and never dominates the budget. This work is the first to show tidal mixing as an important mixing mechanism in surface advected river plumes.

Restricted access
Bingrong Sun, Shengpeng Wang, Man Yuan, Hong Wang, Zhao Jing, Zhaohui Chen, and Lixin Wu

Abstract

Near-inertial internal waves (NIWs) are thought to play an important role in powering the turbulent diapycnal mixing in the ocean interior. Nevertheless, the energy flux into NIWs below the surface boundary layer (SBL) in the global ocean is still poorly understood. This key problem is addressed in this study based on a Community Earth System Model (CESM) simulation with a horizontal resolution of ~0.1° for its oceanic component and ~0.25° for its atmospheric component.

The CESM shows good skill in simulating NIWs globally, reproducing the observed magnitude and spatial pattern of surface NIW currents and wind power on NIWs (WI). The simulated downward flux of NIW energy (FSBL) at the SBL base is positive everywhere. Its quasi-global integral (excluding the region within 5°S-5°N) is 0.13 TW, about one-third the value of WI. The ratio of local FSBL to WI varies substantially over the space. It exhibits an increasing trend with the enstrophy of balanced motions (BMs) and a decreasing trend with WI.

The kinetic energy transfer from model-resolved BMs to NIWs is positive from the SBL base to 600 m but becomes negative further downwards. The quasi-global integral of energy transfer below the SBL base is two orders of magnitude smaller than that of FSBL, suggesting the resolved BMs in the CESM simulations making negligible contributions to power NIWs in the ocean interior.

Restricted access
Constantin W. Arnscheidt, John Marshall, Pierre Dutrieux, Craig D. Rye, and Ali Ramadhan

Abstract

Antarctic glacial meltwater is thought to play an important role in determining large-scale Southern Ocean climate trends, yet recent modeling efforts have proceeded without a good understanding of how its vertical distribution in the water column is set. To rectify this, here we conduct new large-eddy simulations of the ascent of a buoyant meltwater plume after its escape from beneath an Antarctic ice shelf. We find that the meltwater’s settling depth is primarily a function of the buoyancy forcing per unit width of the source and the ambient stratification, consistent with the classical theory of turbulent buoyant plumes and in contrast to previous work that suggested an important role for centrifugal instability. Our results further highlight the significant role played by localized variability in stratification; this helps explain observed interannual variability in the vertical meltwater distribution near Pine Island Glacier. Because of the vast heterogeneity in mass loss rates and ambient conditions at different Antarctic ice shelves, a dynamic parameterization of meltwater settling depth may be crucial for accurately simulating high-latitude climate in a warming world; we discuss how this may be developed following this work, and where the remaining challenges lie.

Restricted access
Ying ZHANG, Yan DU, Tangdong QU, Yu HONG, Catia M. DOMINGUES, and Ming FENG

Abstract

The Subantarctic Mode Water (SAMW) plays an essential role in the global heat, freshwater, carbon, and nutrient budgets. In this study, decadal changes in the SAMW properties in the Southern Indian Ocean (SIO) and associated thermodynamic and dynamic processes are investigated during the Argo era. Both temperature and salinity of the SAMW in the SIO show increasing trends during 2004-2018. A two-layer structure of the SAMW trend, with more warm and salty light SAMW but less cool and fresh dense SAMW, is identified. The heaving and spiciness processes are important but have opposite contributions to the temperature and salinity trends of the SAMW. A significant deepening of isopycnals (heaving), peaking at σ θ=26.7-26.8 kg m−3in the middle layer of the SAMW, expands the warm and salty light SAMW and compresses the cool and fresh dense SAMW corresponding to the change in subduction rate during 2004-2018. The change in the SAMW subduction rate is dominated by the change in the mixed layer depth, controlled by the changes in wind stress curl and surface buoyancy loss. An increase in the mixed-layer temperature due to weakening northward Ekman transport of cool water leads to a lighter surface density in the SAMW formation region. Consequently, density outcropping lines in the SAMW formation region shift southward and favor the intrusion and entrainment of the cooler and fresher Antarctic surface water from the south, contributing to the cooling/freshening trend of isopycnals (spiciness). Subsequently, the cooler and fresher SAMW spiciness anomalies spread in the SIO via the subtropical gyre.

Restricted access
Charles W. McMahon, Joseph J. Kuehl, and Vitalii A. Sheremet

Abstract

The dynamics of gap-leaping western boundary currents (e.g. the Kuroshio intrusion, the Loop Current) are explored through rotating table experiments and a numerical model designed to replicate the experimental apparatus. Simplified experimental and numerical models of gap-leaping systems are known to exhibit two dominant states (leaping or penetrating into the gap) as the inertia of the current competes with vorticity constraints (in this case the β-effect). These systems are also known to admit multiple states with hysteresis. To advance towards more realistic oceanographic scenarios, recent studies have explored the effects of islands, mesoscale eddies, and variable baroclinic deformation radii on the dynamical system. Here, the effect of throughflow forcing is considered, with particle tracking velocimetry (PTV) used in the lab experiments. Mean transport in or out of the gap is found to significantly shift the hysteresis range as well as change its width. Because of these transformations, changes in throughflow can induce transitions in the gap-leaping system when near a critical state (leaping-to-penetrating/ penetrating-to-leaping). Results from the study are interpreted within a nonlinear dynamical framework and various properties of the system are explored.

Restricted access