Browse

You are looking at 51 - 60 of 118,004 items for :

  • All content x
Clear All
Stacy E. Porter, Ellen Mosley-Thompson, Lonnie G. Thompson, and Aaron B. Wilson

Abstract

Using an assemblage of four ice cores collected around the Pacific basin, one of the first basinwide histories of Pacific climate variability has been created. This ice core–derived index of the interdecadal Pacific oscillation (IPO) incorporates ice core records from South America, the Himalayas, the Antarctic Peninsula, and northwestern North America. The reconstructed IPO is annually resolved and dates to 1450 CE. The IPO index compares well with observations during the instrumental period and with paleo-proxy assimilated datasets throughout the entire record, which indicates a robust and temporally stationary IPO signal for the last ~550 years. Paleoclimate reconstructions from the tropical Pacific region vary greatly during the Little Ice Age (LIA), although the reconstructed IPO index in this study suggests that the LIA was primarily defined by a weak, negative IPO phase and hence more La Niña–like conditions. Although the mean state of the tropical Pacific Ocean during the LIA remains uncertain, the reconstructed IPO reveals some interesting dynamical relationships with the intertropical convergence zone (ITCZ). In the current warm period, a positive (negative) IPO coincides with an expansion (contraction) of the seasonal latitudinal range of the ITCZ. This relationship is not stationary, however, and is virtually absent throughout the LIA, suggesting that external forcing, such as that from volcanoes and/or reduced solar irradiance, could be driving either the ITCZ shifts or the climate dominating the ice core sites used in the IPO reconstruction.

Restricted access
Richard G. Williams, Anna Katavouta, and Vassil Roussenov

Abstract

Projected changes in ocean heat and carbon storage are assessed in terms of the added and redistributed tracer using a transport-based framework, which is applied to an idealized climate model and a suite of six CMIP5 Earth system models following an annual 1% rise in atmospheric CO2. Heat and carbon budgets for the added and redistributed tracer are used to explain opposing regional patterns in the storage of ocean heat and carbon anomalies, such as in the tropics and subpolar North Atlantic, and the relatively reduced storage within the Southern Ocean. Here the added tracer takes account of the net tracer source and the advection of the added tracer by the circulation, while the redistributed tracer takes account of the time-varying circulation advecting the preindustrial tracer distribution. The added heat and carbon often have a similar sign to each other with the net source usually acting to supply the tracer. In contrast, the redistributed heat and carbon consistently have an opposing sign to each other due to the opposing gradients in the preindustrial temperature and carbon. These different signs in heat and carbon redistribution can lead to regional asymmetries in the climate-driven changes in ocean heat and carbon storage. For a weakening in the Atlantic overturning and strengthening in the Southern Ocean residual circulation, the high latitudes are expected to have heat anomalies of variable sign and carbon anomalies of a consistently positive sign, since added and redistributed tracers are opposing in sign for heat and the same sign for carbon there.

Open access
Yen-Ting Hwang, Hung-Yi Tseng, Kuan-Chen Li, Sarah M. Kang, Yung-Jen Chen, and John C. H. Chiang

Abstract

This study investigates the transient responses of atmospheric energy and momentum fluxes to a time-invariant extratropical thermal heating in an atmospheric model coupled to an aquaplanet mixed layer ocean with the goal of understanding the mechanisms and time scales governing the extratropical-to-tropical connection. Two distinct stages are observed in the teleconnection: 1) A decrease in the meridional temperature gradient in midlatitudes leads to a rapid weakening of the eddy momentum flux and a slight reduction of the Hadley cell strength in the forced hemisphere. 2) The subtropical trades in the forced hemisphere decrease and reduce evaporation. The resulting change to sea surface temperature leads to the development of a cross-equatorial Hadley cell, and the intertropical convergence zone shifts to the warmer hemisphere. The Hadley cell weakening in the first stage is related to decreased eddy momentum flux divergence, and the response time scale is independent of the mixed layer depth. In contrast, the time taken for the development of the cross-equatorial cell in the latter stage increases as the mixed layer depth increases. Once developed, the deep tropical cross-equatorial cell response is an order of magnitude stronger than the initial subtropical response and dominates the anomalous circulation. The analysis combines the momentum and energetic perspectives on this extratropical-to-tropical teleconnection and moreover shows that the subtropical circulation changes associated with the momentum budget occur with a time scale that is distinct from the deep tropical response determined by the thermal inertia of the tropical ocean.

Restricted access
Seiji Kato and Fred G. Rose

Abstract

This reply addresses a comment on the study by Kato and Rose (herein referred to as KR2020). The comment raises four points of criticism. These are 1) on notations used, 2) on a steady-state assumption made, 3) on the result of entropy production change with Earth’s albedo, and 4) disputing the statement that a simple energy balance model cannot produce absorption temperature change with Earth’s albedo. We concur on points 2 and 3 raised by the comment and recognize the significance of entropy storage due to ocean heating in the analysis of how entropy production changes with the shortwave absorptivity of Earth. Once entropy storage is considered, the results of KR2020 indicate that the increase of entropy production rate by irreversible processes, including by radiative processes, is smaller than the increase of entropy storage when absorptivity is increased. This is a manifestation of the primary contribution of positive top-of-atmosphere net irradiances (i.e., energy input to Earth) to heating the ocean and is consistent with an energy budget perspective. Once entropy storage is separated, the entropy production by irreversible processes increases with the shortwave absorptivity.

Open access
Katrina L. Hui and Simona Bordoni

Abstract

Recent studies have shown that the rapid onset of the monsoon can be interpreted as a switch in the tropical circulation, which can occur even in the absence of land–sea contrast, from a dynamical regime controlled by eddy momentum fluxes to a monsoon regime more directly controlled by energetic constraints. Here we investigate how one aspect of continental geometry, that is, the position of the equatorward coastal boundary, influences such transitions. Experiments are conducted with an aquaplanet model with a slab ocean, in which different zonally symmetric continents are prescribed in the Northern Hemisphere poleward from southern boundaries at various latitudes, with “land” having a mixed layer depth two orders of magnitude smaller than ocean. For continents extending to tropical latitudes, the simulated monsoon features a rapid migration of the convergence zone over the continent, similar to what is seen in observed monsoons. For continents with more poleward southern boundaries, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. We show that the absence of land at tropical latitudes prevents the rapid displacement into the subtropics of the maximum in lower-level moist static energy and, with it, the establishment of an overturning circulation with a subtropical convergence zone that can transition rapidly into an angular momentum–conserving monsoon regime.

Restricted access
Liming Zhou, Yuhong Tian, Nan Wei, Shu-peng Ho, and Jing Li

Abstract

Turbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979–2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations.

Restricted access
Tsz-Kin Lai, Eric A. Hendricks, M. K. Yau, and Konstantinos Menelaou

Abstract

Intense tropical cyclones (TCs) often experience secondary eyewall formations and the ensuing eyewall replacement cycles. Better understanding of the underlying dynamics is crucial to make improvements to the TC intensity and structure forecasting. Radar imagery of some double-eyewall TCs and a real-case simulation study indicated that the barotropic instability (BI) across the moat (aka type-2 BI) may play a role in inner eyewall decay. A three-dimensional numerical study accompanying this paper pointed out that type-2 BI is able to withdraw the inner eyewall absolute angular momentum (AAM) and increase the outer eyewall AAM through the eddy radial transport of eddy AAM. This paper explores the reason why the eddy radial transport of eddy AAM is intrinsically nonzero. Linear and nonlinear shallow water experiments are performed and they produce expected evolutions under type-2 BI. It will be shown that only nonlinear experiments have changes in AAM over the inner and outer eyewalls, and the changes solely originate from the eddy radial transport of eddy AAM. This result highlights the importance of nonlinearity of type-2 BI. Based on the distribution of vorticity perturbations and the balanced-waves arguments, it will be demonstrated that the nonzero eddy radial transport of eddy AAM is an essential outcome from the intrinsic interaction between the mutually growing vortex Rossby waves across the moat under type-2 BI. The analyses of the most unstable mode support the findings and will further attribute the inner eyewall decay and outer eyewall intensification to the divergence and convergence of the eddy angular momentum flux, respectively.

Restricted access
Marvin Xiang Ce Seow, Yushi Morioka, and Tomoki Tozuka

Abstract

Influences from the tropical Pacific and Indian Oceans and atmospheric internal variability on the South China Sea (SCS) atmospheric circulation and cold tongue (CT) variabilities in boreal winter and the relative roles of remote forcings at interannual time scales are studied using observational data, reanalysis products, and coupled model experiments. In the observation, strong CT years are accompanied by local cyclonic wind anomalies, which are an equatorial Rossby wave response to enhanced convection over the warmer-than-normal western equatorial Pacific associated with La Niña. Also, the cyclonic wind anomalies are an atmospheric Kelvin wave response to diabatic cooling anomalies linked to both the decaying late fall negative Indian Ocean dipole (IOD) and winter atmospheric internal variability. Partially coupled experiments reveal that both the tropical Pacific air–sea coupling and atmospheric internal variability positively contribute to the coupled variability of the SCS CT, while the air–sea coupling over the tropical Indian Ocean weakens such variabilities. The northwest Pacific anticyclonic wind anomalies that usually precede El Niño–Southern Oscillation–independent negative IOD generated under the tropical Indian Ocean air–sea coupling undermine such variabilities.

Restricted access
Yen-Ting Hwang and Po-Chun Chung

Abstract

This study explores the seasonal sensitivity of tropical circulation responses to an idealized extratropical thermal forcing using the Community Atmosphere Model version 5 coupled to a slab ocean. The thermal heating over the Southern Ocean is held constant, and the tropical responses in each month of the year are investigated. An anomalous cross-equatorial cell and a southward tropical rain belt shift occur every month. The anomalous cross-equatorial cell has a strong influence on the strengths of the Hadley cell and the subtropical jet in the winter hemisphere; in contrast, it has nearly no impact on the Hadley cell and the subtropical jet strengths in the summer hemisphere. The seasonal variation of the anomalous cross-equatorial cell is small (30% of the annual mean change), and could be understood via the energetic and the sea surface temperature gradient perspectives. Both perspectives point to the seasonality of the anomalous ocean heat uptake within the deep tropics as the key factor explaining the weak seasonality of the anomalous cross-equatorial cell. We propose a hypothesis explaining about 75% of this seasonal variation via the climatological position of the ITCZ relative to the anomalous cross-equatorial cell. The results suggest a modest seasonality in tropical precipitation and circulation responses to extratropical forcing. Also, such seasonality may be partly predicted by the climatological seasonal cycle of the tropical circulations.

Restricted access
Lin Zhang, Minghu Ding, Tingfeng Dou, Yi Huang, Junmei Lv, and Cunde Xiao

Abstract

Temperature inversions play an important role in various physical processes by affecting the atmospheric stability, regulating the development of clouds and fog, and controlling the transport of heat and moisture fluxes. In the past few decades, previous studies have analyzed the spatiotemporal variability of Arctic inversions, but few studies have investigated changes in temperature inversions. In this study, the changes in the depth of Arctic inversions in the mid-twenty-first century are projected based on a 30-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. The ERA-Interim, JRA-55, and NCEP–NCAR reanalysis were employed to verify the model results. The CESM-LE can adequately reproduce the spatial distribution and trends of present-day inversion depth in the Arctic, and the simulation is better in winter. The mean inversion depth in the CESM-LE is slightly underestimated, and the discrepancy is less than 11 hPa, within a reasonable range. The model results show that during the mid-twenty-first century, the inversion depth will strongly decrease in autumn and slightly decrease in winter. The shallowing of the inversion is most obvious over the Arctic Ocean, and the maximum decrease is over 65 hPa in the Pacific sector in autumn. In contrast, the largest decrease in the inversion depth, which is more than 45 hPa, occurs over the Barents Sea in winter. Moreover, the area where the inversion shallows is consistent with the area where the sea ice is retreating, indicating that the inversion depth over the Arctic Ocean in autumn and winter is likely regulated by the sea ice extent through modulating surface heat fluxes.

Restricted access