Browse

You are looking at 61 - 70 of 117,981 items for

  • All content x
Clear All
Graciela B. Raga, Luis A. Ladino, Darrel Baumgardner, Carolina Ramirez-Romero, Fernanda Córdoba, Harry Alvarez-Ospina, Daniel Rosas, Talib Amador, Javier Miranda, Irma Rosas, Alejandro Jaramillo, Jacqueline Yakobi-Hancock, Jong Sung Kim, Leticia Martínez, Eva Salinas, and Bernardo Figueroa

Abstract

Biomass burning (BB) emissions and African dust (AD) are often associated with poor regional air quality, particularly in the tropics. The Yucatan Peninsula is a fairly pristine site due to predominant trade winds, but occasionally BB and AD plumes severely degrade its air quality. The African Dust And Biomass Burning Over Yucatan (ADABBOY) project (Jan 2017- Aug 2018) was conducted in the Yucatan Peninsula to characterize physical and biological properties of particulate pollution at remote seaside and urban sites. The 18-month long project quantified the large interannual variability in frequency and spatial extent of BB and AD plumes. Remote and urban sites experienced air quality degradation under the influence of these plumes, with up to 200 and 300% increases in coarse particle mass under BB and AD influence, respectively. ADABBOY is the first project to systematically characterize elemental composition of airborne particles as a function of these sources and identify bioaerosol over Yucatan. Bacteria, actinobacteria (both continental and marine) and fungi propagules vary seasonally and interannually and revealed the presence of very different species and genera associated with different sources. A novel contribution of ADABBOY was the determination of the ice-nucleating abilities of particles emitted by different sources within an under-sampled region of the world. BB particles were found to be inefficient ice nucleating particles at temperatures warmer than -20°C, whereas both AD and background marine aerosol activated ice nucleating particles below -10°C.

Full access
Aoyun Xue, Wenjun Zhang, Julien Boucharel, and Fei-Fei Jin

Abstract

Although the 1997/98 and 2015/16 El Niño events are considered to be the strongest on record, their subsequent La Niña events exhibited contrasted evolutions. In this study, we demonstrate that the extremely strong period of Tropical Instability Waves (TIWs) at the beginning of boreal summer of 2016 played an important role in hindering the subsequent La Niña’s development by transporting extra off-equatorial heat into the Pacific cold tongue. By comparing the TIWs contribution based on an oceanic mixed-layer heat budget analysis for the 1998 and 2016 episodes, we establish that TIW-induced nonlinear dynamical heating (NDH) is a significant contributor to the El Niño-Southern Oscillation (ENSO) phase transition in 2016. TIW-induced NDH contributed to around 0.4°C per month warming during the early boreal summer (May-June) following the 2015/16 El Niño’s peak, which is found to be an essential inhibiting factor that prevented the subsequent La Niña’s growth. A time-mean eddy kinetic energy analysis reveals that anomalous TIWs during 2016 mainly gained their energy from the baroclinic instability conversion due to a strong SST warming in the northeastern off-equatorial Pacific that promoted an increased meridional SST gradient. This highlights the importance of accurately reproducing TIW activity in ENSO simulation and the benefit of off-equatorial SST anomalies in the eastern Pacific as an independent precursor for ENSO predictions.

Restricted access
Cheng Shen, Jinlin Zha, Jian Wu, and Deming Zhao

Abstract

Investigations of variations and causes of near-surface wind speed (NWS) further understanding of the atmospheric changes and improve the ability of climate analysis and projections. NWS varies on multiple temporal scales; however, the centennial-scale variability in NWS and associated causes over China remains unknown. In this study, we employ the European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth century reanalysis (ERA-20C) to study the centennial-scale changes in NWS from 1900–2010. Meanwhile, a forward stepwise regression algorithm is used to reveal the relationships between NWS and large-scale ocean-atmosphere circulations. The results show three unique periods in annual mean NWS over China from 1900–2010. The annual mean NWS displayed a decreasing trend of -0.87% decade-1 and -11.75% decade-1 from 1900–1925 and 1957–2010, respectively, which were caused by the decreases in the days with strong winds, with trends of -6.64 and -4.66 days decade-1, respectively. The annual mean NWS showed an upward trend of 55.47% decade-1 from 1926–1956, which was caused by increases in the days with moderate (0.43 days decade-1) and strong winds (23.55 days decade-1). The reconstructed wind speeds based on forward stepwise regression algorithm matched well with the original wind speeds; therefore, the decadal changes in NWS over China at centennial-scale were mainly induced by large-scale ocean-atmosphere circulations, with the total explanation power of 66%. The strongest explanation power was found in winter (74%), and the weakest explanation power was found in summer (46%).

Restricted access
Joonsuk M. Kang and Seok-Woo Son

Abstract

A novel method that quantitatively evaluates the development processes of extratropical cyclones is devised and applied to the explosive cyclones over the Northwest Pacific in the cold season (October–April). By inverting the potential vorticity (PV) tendency equation, the contribution of dynamic and thermodynamic processes at different levels to explosive cyclone development is quantified. In terms of geostrophic vorticity tendency at 850 hPa, which is utilized to quantify cyclone development, the leading factors for the explosive cyclone intensification are upper-level PV advection by the mean zonal flow and the PV production from latent heating. However, explosive cyclones are also subject to hindrances from vertical and meridional PV advections. Quantitatively, the sum of thermodynamic contributions by the latent heating, vertical PV advection, and surface temperature tendency is about 1.6 times more important than the dynamical PV redistribution by horizontal advections on the explosive cyclone intensification. This result confirms the dominant role of thermodynamic processes in explosive cyclone development over the Northwest Pacific. It turns out from further analysis that the interactions of lower-level anomalous flows are important for thermodynamic processes, whereas the advections by the upper-level mean flow are primary for dynamic processes.

Restricted access
Lucas J. Sterzinger and Adele L. Igel

Abstract

Many factors are at play in determining the amount and distribution of mountain snowfall that is predicted by weather models; among them is the influence of assumed ice habit on snowfall distribution. Ice habit is necessarily greatly simplified in microphysics schemes and uncertainty remains in how best to model ice processes. In this study we simulate a Sierra Nevada snowfall event driven by an extratropical cyclone in February 2014. We have simulated the storm with four fixed habit types as well as with an ice habit scheme that is variable in time and space. In contrast to some previous studies, we found substantially smaller sensitivity of total accumulated precipitation amount and negligible changes in spatial distribution to the ice habit specification. The reason for smaller sensitivity seems to be linked to strong aggregation of ice crystals in the model. Nonetheless, while changes in total accumulated precipitation were small, changes in accumulated ice hydrometeors were larger. The variable-habit simulation produced up to 37% more ice precipitation than any of the fixed-habit simulations with an average increase of 14%. The variable-habit simulation led to a maximization of ice growth in the atmosphere and, subsequently, ice accumulation at the surface. This result points to the potential importance of accounting for the time and space variation of ice crystal properties in simulations of orographic precipitation.

Restricted access
Sachin Patade, Vaughan T. J. Phillips, Pierre Amato, Heinz G. Bingemer, Susannah M. Burrows, Paul J. DeMott, Fabio L. T. Goncalves, Daniel A. Knopf, Cindy E. Morris, Carl Alwmark, Paulo Artaxo, Christopher Pöhlker, Jann Schrod, and Bettina Weber

Abstract

To resolve the various types of biological ice nuclei (IN) with atmospheric models, an extension of the empirical parameterization (EP) (Phillips et al. 2008; 2013) is proposed to predict the active IN from multiple groups of primary biological aerosol particles (PBAPs). Our approach is to utilize coincident observations of PBAP sizes, concentrations, biological composition, and ice-nucleating ability. The parameterization organizes the PBAPs into five basic groups: fungal spores, bacteria, pollen, viral particles, plant/animal detritus, algae, and their respective fragments. This new biological component of the EP was constructed by fitting predicted concentrations of PBAP IN to those observed at the Amazon Tall Tower Observatory (ATTO) site located in the central Amazon. The fitting parameters for pollen and viral particles, plant/animal detritus, which are much less active as IN than fungal and bacterial groups, are constrained based on their ice nucleation activity from the literature. The parameterization has empirically derived dependencies on the surface area of each group (except algae), and the effects of variability in their mean sizes and number concentrations are represented via their influences on the surface area. The concentration of active algal IN is estimated from literature-based measurements.

Predictions of this new biological component of the EP are consistent with previous laboratory and field observations not used in its construction. The EP scheme was implemented in a 0D parcel model. It confirms that biological IN account for most of the total IN activation at temperatures warmer than −20°C and at colder temperatures dust and soot become increasingly more important to ice nucleation.

Restricted access
Jake P. Mulholland, John M. Peters, and Hugh Morrison

Abstract

The influence of vertical wind shear on updraft entrainment in squall lines is not well understood. To address this knowledge gap, a suite of high-resolution idealized numerical model simulations of squall lines were run in various vertical wind shear (hereafter “shear”) environments to study the effects of shear on entrainment in deep convective updrafts. Low-level horizontal mass flux into the leading edge of the cold pool was strongest in the simulations with the strongest low-level shear. These simulations consequently displayed wider updrafts, less entrainment-driven dilution, and larger buoyancy than the simulations with comparatively weak low-level shear. An analysis of vertical accelerations along trajectories that passed through updrafts showed larger net accelerations from buoyancy in the simulations with stronger low-level shear, which demonstrates how less entrainment-driven dilution equated to stronger updrafts. The effects of upper-level shear on entrainment and updraft vertical velocities were generally less pronounced than the effects of low-level shear. We argue that in addition to the outflow boundary-shear interactions and their effect on updraft tilt established by previous authors, decreased entrainment-driven dilution is yet another beneficial effect of strong low-level shear on squall line updraft intensity.

Restricted access
James S. Risbey, Didier P. Monselesan, Amanda S. Black, Thomas S. Moore, Doug Richardson, Dougal T. Squire, and Carly R. Tozer

Abstract

From time to time atmospheric flows become organized and form coherent long-lived structures. Such structures could be propagating, quasi-stationary, or recur in place. We investigate the ability of Principal Components Analysis (PCA) and Archetypal Analysis (AA) to identify long-lived events, excluding propagating forms. Our analysis is carried out on the Southern Hemisphere mid-tropospheric flow represented by geopotential height at 500hPa (Z 500). The leading basis patterns of Z 500 for PCA and AA are similar and describe structures representing (or similar to) the Southern Annular Mode (SAM) and Pacific South American (PSA) pattern. Long-lived events are identified here from sequences of 8 days or longer where the same basis pattern dominates for PCA or AA. AA identifies more long-lived events than PCA using this approach. The most commonly occurring long-lived event for both AA and PCA is the annular SAM-like pattern. The second most commonly occurring event is the PSA-like Pacific wavetrain for both AA and PCA. For AA the flow at any given time is approximated as weighted contributions from each basis pattern, which lends itself to metrics for discriminating among basis patterns. These show that the longest long-lived events are in general better expressed than shorter events. Case studies of long-lived events featuring a blocking structure and an annular structure show that both PCA and AA can identify and discriminate the dominant basis pattern that most closely resembles the flow event.

Restricted access
Shu-Ya Chen, Cheng-Peng Shih, Ching-Yuang Huang, and Wen-Hsin Teng

Abstract

Conventional soundings are rather limited over the western North Pacific and can be largely compensated by GNSS radio occultation (RO) data. We utilize the GSI hybrid assimilation system to assimilate RO data and the multi-resolution global model (MPAS) to investigate the RO data impact on prediction of Typhoon Nepartak that passed over southern Taiwan in 2016. In this study, the performances of assimilation with local RO refractivity and bending angle operators are compared for the assimilation analysis and typhoon forecast.

Assimilations with both RO data have shown similar and comparable temperature and moisture increments after cycling assimilation and largely reduce the RMSEs of the forecast without RO data assimilation at later times. The forecast results at 60-15-km resolution show that RO data assimilation largely improves the typhoon track prediction compared to that without RO data assimilation, and assimilation with bending angle has better performances than assimilation with refractivity, in particular for wind forecast. The improvement in the forecasted track is mainly due to the improved simulation for the translation of the typhoon. Diagnostics of wavenumber-one potential vorticity (PV) tendency budget indicates that the northwestward typhoon translation dominated by PV horizontal advection is slowed down by the southward tendency induced by the stronger differential diabatic heating south of the typhoon center for bending-angle assimilation. Simulations with the enhanced resolution of 3 km in the region of the storm track show further improvements in both typhoon track and intensity prediction with RO data assimilation. Positive RO impacts on track prediction are also illustrated for other two typhoons using the MPAS-GSI system.

Restricted access
Bradley Wade Bishop, Ashley Marie Orehek, and Hannah R. Collier

Abstract

This study’s purpose is to capture the skills of Earth science data managers and librarians through interviews with current job holders. Job analysis interviews were conducted of fourteen participants –six librarians and eight data managers—to assess the types and frequencies of job tasks. Participants identified tasks related to communication, including collaboration, teaching, and project management activities. Data specific tasks included data discovery, processing, and curation, which require an understanding of the data, technology, and information infrastructures to support data use, re-use, and preservation. Most respondents had formal science education and six had a master’s degree in Library and Information Sciences. Most of the knowledge, skills, and abilities for these workers were acquired through on-the-job experience, but future professionals in these careers may benefit from tailored education informed through job analyses.

Full access