Browse

You are looking at 71 - 80 of 118,395 items for :

  • All content x
Clear All
Milind Sharma, Robin L. Tanamachi, Eric C. Bruning, and Kristin M. Calhoun

Abstract

We demonstrate the utility of transient polarimetric signatures (Z DR and K DP columns, a proxy for surges in a thunderstorm updraft) to explain variability in lightning flash rates in a tornadic supercell. Observational data from a WSR-88D and the Oklahoma lightning mapping array are used to map the temporal variance of polarimetric signatures and VHF sources from lightning channels. It is shown, via three-dimensional and cross-sectional analyses, that the storm was of inverted polarity resulting from anomalous electrification. Statistical analysis confirms that mean flash area in the Z DR column region was 10 times smaller than elsewhere in the storm. On an average, 5 times more flash initiations occurred within Z DR column regions, thereby supporting existing theory of an inverse relationship between flash initiation rates and lightning channel extent. Segmentation and object identification algorithms are applied to gridded radar data to calculate metrics such as height, width, and volume of Z DR and K DP columns. Variability in lightning flash rates is best explained by the fluctuations in Z DR column volume with a Spearman’s rank correlation coefficient value of 0.72. The highest flash rates occur in conjunction with the deepest Z DR columns (up to 5 km above environmental melting level) and largest volumes of Z DR columns extending up to the −20°C level (3 km above the melting level). Reduced flash rates toward the end of the analysis are indicative of weaker updrafts manifested as low Z DR column volumes at and above the −10°C level. These findings are consistent with recent studies linking lightning to the interplay between storm dynamics, kinematics, thermodynamics, and precipitation microphysics.

Open access
Inez Z. Ponce de Leon

Abstract

Supertyphoon Haiyan hit the Philippines in 2013, causing massive damage and loss of lives. The media blamed the government for faulty warnings, including using the term “storm surge,” which people reportedly did not understand. As a result, the national agency tasked with disaster risk management recommended translating the term for better response in future storms. Such an approach shortchanges the complexity of risk construction and dismisses the possibility that different communities also have different understandings of risk. In this study, the researcher examined the special case of Coron, Palawan: a major tourist destination that is rarely hit by storms but that became the site of Haiyan’s last landfall. Guided by encoding–decoding theory, the researcher interviewed local government officials and carried out focus group discussions with representatives of two communities (whose names have been hidden under pseudonyms for this study): Central, close to the municipal center, and Island, a coastal village far away from potential aid and rescue. The researcher found a portrait of contrasts that split Coron: a mayor who surrendered all control and a risk management officer who planned for long-term hazard response—Island waiting for government instructions despite knowing about storm behavior and Central taking the initiative to create long-term solutions. Island also knew what storm surges were and did not need translation of the term. These findings show that risk constructions can differ even at the municipal level, which should prompt further research into the role of local knowledge in understanding risk and hazard warnings.

Restricted access
Wenhao Dong, Ming Zhao, Yi Ming, and V. Ramaswamy

Abstract

The characteristics of tropical mesoscale convective systems (MCSs) simulated with a finer-resolution (~50 km) version of the Geophysical Fluid Dynamics Laboratory (GFDL) AM4 model are evaluated by comparing with a comprehensive long-term observational dataset. It is shown that the model can capture the various aspects of MCSs reasonably well. The simulated spatial distribution of MCSs is broadly in agreement with the observations. This is also true for seasonality and interannual variability over different land and oceanic regions. The simulated MCSs are generally longer-lived, weaker, and larger than observed. Despite these biases, an event-scale analysis suggests that their duration, intensity, and size are strongly correlated. Specifically, longer-lived and stronger events tend to be bigger, which is consistent with the observations. The same model is used to investigate the response of tropical MCSs to global warming using time-slice simulations forced by prescribed sea surface temperatures and sea ice. There is an overall decrease in occurrence frequency, and the reduction over land is more prominent than over ocean.

Open access
Jae-Heung Park, Mi-Kyung Sung, Young-Min Yang, Jiuwei Zhao, Soon-Il An, and Jong-Seong Kug

Abstract

The North Pacific Oscillation (NPO), a primary atmospheric mode over the North Pacific Ocean in boreal winter, is known to trigger El Niño–Southern Oscillation (ENSO) in the following winter, the process of which is recognized as the seasonal footprinting mechanism (SFM). On the basis of the analysis of model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), we found that the SFM acts differently among models, and the correlation between the NPO and subsequent ENSO events, called the SFM efficiency, depends on the background mean state of the model. That is, SFM efficiency becomes stronger as the climatological position of the Pacific intertropical convergence zone (ITCZ) moves poleward, representing an intensification of the northern branch of the ITCZ. When the Pacific ITCZ is located poleward, the wind–evaporation–sea surface temperature (SST) feedback becomes stronger as the precipitation response to the SST anomaly is stronger in higher latitudes than that in lower latitudes. In addition, such active ocean–atmosphere interactions enhance NPO variability, favoring the SFM to operate efficiently and trigger an ENSO event. Consistent with the model results, the observed SFM efficiency increased during the decades in which the northern branch of the climatological ITCZ was intensified, supporting the importance of the tropical mean state of precipitation around the Pacific ITCZ.

Restricted access
Chunxue Yang, Francesca Elisa Leonelli, Salvatore Marullo, Vincenzo Artale, Helen Beggs, Bruno Buongiorno Nardelli, Toshio M. Chin, Vincenzo De Toma, Simon Good, Boyin Huang, Christopher J. Merchant, Toshiyuki Sakurai, Rosalia Santoleri, Jorge Vazquez-Cuervo, Huai-Min Zhang, and Andrea Pisano

Abstract

A joint effort between the Copernicus Climate Change Service (C3S) and the Group for High Resolution Sea Surface Temperature (GHRSST) has been dedicated to an intercomparison study of eight global gap-free sea surface temperature (SST) products to assess their accurate representation of the SST relevant to climate analysis. In general, all SST products show consistent spatial patterns and temporal variability during the overlapping time period (2003–18). The main differences between each product are located in the western boundary current and Antarctic Circumpolar Current regions. Linear trends display consistent SST spatial patterns among all products and exhibit a strong warming trend from 2012 to 2018 with the Pacific Ocean basin as the main contributor. The SST discrepancy between all SST products is very small compared to the significant warming trend. Spatial power spectral density shows that the interpolation into 1° spatial resolution has negligible impacts on our results. The global mean SST time series reveals larger differences among all SST products during the early period of the satellite era (1982–2002) when there were fewer observations, indicating that the observation frequency is the main constraint of the SST climatology. The maturity matrix scores, which present the maturity of each product in terms of documentation, storage, and dissemination but not the scientific quality, demonstrate that ESA-CCI and OSTIA SST are well documented for users’ convenience. Improvements could be made for MGDSST and BoM SST. Finally, we have recommended that these SST products can be used for fundamental climate applications and climate studies (e.g., El Niño).

Open access
Soong-Ki Kim and Soon-Il An

Abstract

The life cycle of El Niño–Southern Oscillation (ENSO) typically follows a seasonal march, with onset in spring, developing during summer, maturing in boreal winter, and decaying over the following spring. This feature is referred to as ENSO phase locking. Recent studies have noted that seasonal modulation of the ENSO growth rate is essential for this process. This study investigates the fundamental effect of a seasonally varying growth rate on ENSO phase locking using a modified seasonally dependent recharge oscillator model. There are two phase locking regimes associated with the strength of the seasonal modulation of growth rate: 1) a weak regime in which only a single peak occurs and 2) a strong regime in which two types of events occur either with a single peak or with a double peak. Notably, there is a seasonal gap in the strong regime, during which the ENSO peak cannot occur because of large-scale ocean–atmosphere coupled processes. We also retrieve a simple analytical solution of the seasonal variance of ENSO, revealing that the variance is governed by the time integral of seasonally varying growth rate. Based on this formulation, we propose a seasonal energy index (SEI) that explains the seasonal gap and provides an intuitive explanation for ENSO phase locking, potentially applicable to global climate model ENSO diagnostics.

Open access
Adrian Jenkins

Abstract

When the inclined base of an ice shelf melts into the ocean, it induces both a statically stable stratification and a buoyancy-forced, sheared flow along the interface. Understanding how those competing effects influence the dynamical stability of the boundary current is the key to quantifying the turbulent transfer of heat from far-field ocean to ice. The implications of the close coupling between shear, stability, and mixing are explored with the aid of a one-dimensional numerical model that simulates density and current profiles perpendicular to the ice. Diffusivity and viscosity are determined using a mixing length model within the turbulent boundary layer and empirical functions of the gradient Richardson number in the stratified layer below. Starting from rest, the boundary current is initially strongly stratified and dynamically stable, slowly thickening as meltwater diffuses away from the interface. Eventually, the current enters a second phase where dynamical instability generates a relatively well-mixed, turbulent layer adjacent to the ice, while beneath the current maximum, strong stratification suppresses mixing in the region of reverse shear. Under weak buoyancy forcing the time scale for development of the initial dynamical instability can be months or longer, but background flows, which are always present in reality, provide additional current shear that greatly accelerates the process. A third phase can be reached when the ice shelf base is sufficiently steep, with dynamical instability extending beyond the boundary layer into regions of geostrophic flow, generating a marginally stable pycnocline through which the heat flux is a simple function of ice–ocean interfacial slope.

Open access
Yuwei Wang and Yi Huang

Abstract

An atmospheric global climate model (GCM) and its associated single-column model are used to study the tropical upper-tropospheric warming and elucidate how different processes drive this warming. In this modeling framework, on average the direct radiative process accounts for 13% of the total warming. The radiation increases the atmospheric lapse rate and triggers more convection, which further produces 74% of the total warming. The remaining 13% is attributable to the circulation adjustment. The relative importance of these processes differs in different regions. In the deep tropics, the radiative–convective adjustment produces the most significant warming and accounts for almost 100% of the total warming. In the subtropics, the radiative–convective adjustment accounts for 73% of the total warming and the circulation adjustment plays a more important role than in the deep tropics, especially at the levels above 200 hPa. When the lateral boundary conditions (i.e., the temperature and water vapor advections) are held fixed in single-column simulations, the tropospheric relative humidity significantly increases in the radiative–convective adjustment in response to the surface warming. This result, in contrast to the relative humidity conservation behavior in the GCM, highlights the importance of circulation adjustment in maintaining the constant relative humidity. The tropical upper-tropospheric warming in both the full GCM and the single-column simulations is found to be less strong than the warming predicted by reference moist adiabats. This evidences that the sub-moist-adiabatic warming occurs even without the dilution effect of the large-scale circulation adjustment.

Restricted access
Douglas E. Miller, Zhuo Wang, Bo Li, Daniel S. Harnos, and Trent Ford

Abstract

Skillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is developed to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during boreal summer in the United States. We use a leading principal component of U.S. soil moisture and an index based on the North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP Climate Forecast System, version 2 (CFSv2), at weeks 3–4 in the eastern United States. It is found that the North Pacific SST anomalies persist for several weeks and are associated with a persistent wave train pattern, which leads to increased occurrences of blocking and extreme temperature over the eastern United States. Extreme dry soil moisture conditions persist into week 4 and are associated with an increase in sensible heat flux and a decrease in latent heat flux, which may help to maintain the overlying anticyclone. The clear-sky conditions associated with blocking anticyclones further decrease soil moisture and increase the frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop planning, and reservoir operation and to provide mitigation of impacts from extreme heat events.

Restricted access
Yuan Sun, Zhong Zhong, Tim Li, Lan Yi, and Yixuan Shen

Abstract

Understanding the impact of climate change on tropical cyclones (TCs) has become a hot topic. The slowdown of TC translation speed contributes greatly to the locally accumulated TC damage. While the recent observational evidence shows that TC translation speed has decreased globally by 10% since the mid-twentieth century, the robustness of the trend is questioned by other studies as effects of changes in observational capability can strongly affect the global trend. Moreover, none of the published studies considered the dependence of TC slowdown on TC intensity. This is the caveat of these analyses as the effect of TC slowdown is closely related to TC intensity. Here, we investigate the relationship between TC translation speed trend and TC intensity, and reveal possible reasons for the trend. We show that the global slowing trend without weak TC moments (≤17 m s−1) is about double of that with weak TC moments in a recent study. This is because the slowing trend is dominated by the trend of the strong TCs. Stronger (weaker) TCs tend to be controlled more by upper-level (lower-level) steering flow, and the calculated trend of upper-level steering flow is much larger than that of lower-level steering flow. This may be an important reason for the large difference between the slowing trend without weak TC moments and that with weak TC moments. Furthermore, the changes of TC tracks (including interbasin trend and latitudinal shift), which are partly attributed to data inhomogeneity, make a much larger contribution to the slowing trend, compared with the weakening of tropical circulation, which is related to anthropogenic warming.

Open access