Browse

You are looking at 81 - 90 of 8,018 items for :

  • Journal of Physical Oceanography x
  • All content x
Clear All
Charles W. McMahon, Joseph J. Kuehl, and Vitalii A. Sheremet

Abstract

The dynamics of gap-leaping western boundary currents (e.g. the Kuroshio intrusion, the Loop Current) are explored through rotating table experiments and a numerical model designed to replicate the experimental apparatus. Simplified experimental and numerical models of gap-leaping systems are known to exhibit two dominant states (leaping or penetrating into the gap) as the inertia of the current competes with vorticity constraints (in this case the β-effect). These systems are also known to admit multiple states with hysteresis. To advance towards more realistic oceanographic scenarios, recent studies have explored the effects of islands, mesoscale eddies, and variable baroclinic deformation radii on the dynamical system. Here, the effect of throughflow forcing is considered, with particle tracking velocimetry (PTV) used in the lab experiments. Mean transport in or out of the gap is found to significantly shift the hysteresis range as well as change its width. Because of these transformations, changes in throughflow can induce transitions in the gap-leaping system when near a critical state (leaping-to-penetrating/ penetrating-to-leaping). Results from the study are interpreted within a nonlinear dynamical framework and various properties of the system are explored.

Restricted access
Haijin Cao, Baylor Fox-Kemper, and Zhiyou Jing

Abstract

The submesoscale energy budget is complex and remains understood only in region-by-region analyses. Based on a series of nested numerical simulations, this study investigated the submesoscale energy budget and flux in the upper ocean of the Kuroshio Extension, including some innovations for examining submesoscale energy budgets in general. The highest-resolution simulation on a ~500 m grid resolves a variety of submesoscale instabilities allowing an energetic analysis in the submesoscale range. The frequency–wavenumber spectra of vertical vorticity variance (i.e., enstrophy) and horizontal divergence variance were used to identify the scales of submesoscale flows as distinct from those of inertia-gravity waves but dominating horizontal divergence variance. Next, the energy transfers between the background scales and the submesoscale were examined. The submesoscale kinetic and potential energy (SMKE and SMPE) were mainly contained in the mixed layer and energized through both barotropic (shear production) and baroclinic (buoyancy production) routes. Averaged over the upper 50 m of ROMS2, the baroclinic transfers amounted to approximately 75% of the sources for the SMKE (3.42 × 10−9 W/kg) versus the remaining 25% (1.12 × 10−9 W/kg) via barotropic downscale KE transfers. The KE field was greatly strengthened by energy sources through the boundary—this flux is larger than the mesoscale-to-submesoscale transfers in this region. Spectral energy production, importantly, reveals upscale KE transfers at larger submesoscales and downscale KE transfers at smaller submesoscales (i.e., a transition from inverse to forward KE cascade). This study seeks to extend our understanding of the energy cycle to the submesoscale and highlight the forward KE cascade induced by upper-ocean submesoscale activities in the research domain.

Restricted access
David A. Williams, David M. Schultz, Kevin J. Horsburgh, and Chris W. Hughes

Abstract

Meteotsunamis are shallow-water waves that, despite often being small (~0.3 m), can cause damage, injuries, and fatalities due to relatively strong currents (>1 m s−1). Previous case studies, modeling, and localized climatologies have indicated that dangerous meteotsunamis can occur across northwest Europe. Using 71 tide gauges across northwest Europe between 2010 and 2017, a regional climatology was made to understand the typical sizes, times, and atmospheric systems that generate meteotsunamis. A total of 349 meteotsunamis (54.0 meteotsunamis per year) were identified with 0.27–0.40-m median wave heights. The largest waves (~1 m high) were measured in France and the Republic of Ireland. Most meteotsunamis were identified in winter (43%–59%), and the fewest identified meteotsunamis occurred in either spring or summer (0%–15%). There was a weak diurnal signal, with most meteotsunami identifications between 1200 and 1859 UTC (30%) and the fewest between 0000 and 0659 UTC (23%). Radar-derived precipitation was used to identify and classify the morphologies of mesoscale precipitating weather systems occurring within 6 h of each meteotsunami. Most mesoscale atmospheric systems were quasi-linear systems (46%) or open-cellular convection (33%), with some nonlinear clusters (17%) and a few isolated cells (4%). These systems occurred under westerly geostrophic flow, with Proudman resonance possible in 43 out of 45 selected meteotsunamis. Because most meteotsunamis occur on cold winter days, with precipitation, and in large tides, wintertime meteotsunamis may be missed by eyewitnesses, helping to explain why previous observationally based case studies of meteotsunamis are documented predominantly in summer.

Open access
Kristin L. Zeiden, Jennifer A. MacKinnon, Matthew H. Alford, Daniel L. Rudnick, Gunnar Voet, and Hemantha Wijesekera

Abstract

An array of moorings deployed off the coast of Palau is used to characterize submesoscale vorticity generated by broadband upper-ocean flows around the island. Palau is a steep-sided archipelago lying in the path of strong zonal geostrophic currents, but tides and inertial oscillations are energetic as well. Vorticity is correspondingly broadband, with both mean and variance O(f) in a surface and subsurface layer (where f is the local Coriolis frequency). However, while subinertial vorticity is linearly related to the incident subinertial current, the relationship between superinertial velocity and superinertial vorticity is weak. Instead, there is a strong nonlinear relationship between subinertial velocity and superinertial vorticity. A key observation of this study is that during periods of strong westward flow, vorticity in the tidal bands increases by an order of magnitude. Empirical orthogonal functions (EOFs) of velocity show this nonstationary, superinertial vorticity variance is due to eddy motion at the scale of the array. Comparison of kinetic energy and vorticity time series suggest that lateral shear against the island varies with the subinertial flow, while tidal currents lead to flow reversals inshore of the recirculating wake and possibly eddy shedding. This is a departure from the idealized analog typically drawn on in island wake studies: a cylinder in a steady flow. In that case, eddy formation occurs at a frequency dependent on the scale of the obstacle and strength of the flow alone. The observed tidal formation frequency likely modulates the strength of submesoscale wake eddies and thus their dynamic relationship to the mesoscale wake downstream of Palau.

Restricted access
Cátia C. Azevedo, Carolina M. L. Camargo, José Alves, and Rui M. A. Caldeira

Abstract

The interaction between the incoming winds and high mountainous islands produces a wind-sheltered area on the leeward side, known as the atmospheric wake. In addition to weaker winds, the wake is also characterized by a clearing of clouds, resulting in intense solar radiation reaching the sea surface. As a consequence, a warm oceanic wake forms on the leeward side. This phenomenon, detectable from space, can extend 100 km offshore of Madeira, where the sea surface temperature can be 4°C higher than the surrounding oceanic waters. This study considers in situ, remote sensing, and ocean circulation model data to investigate the effects of the warm wake in the vertical structure of the upper ocean. To characterize the convective layer (25–70 m) developing within the oceanic wake, 200 vertical profiles of temperature, salinity, and turbulence were considered, together with the computation of the density ratio and Turner angle. In comparison with the open-ocean water column, wake waters are strongly stratified with respect to temperature, although highly unstable. The vertical profiles of salinity show distinct water parcels that sink and/or rise as a response to the intense heat fluxes. During the night, the ocean surface cools, leading to the stretching of the mixed layer, which was replicated by the ocean circulation model. In exposed, nonwake regions, however, particularly on the southeast and north coasts of the island, the stretching of the mixed layer is not detectable.

Open access
James Morison, Ron Kwok, Suzanne Dickinson, Roger Andersen, Cecilia Peralta-Ferriz, David Morison, Ignatius Rigor, Sarah Dewey, and John Guthrie

Abstract

Arctic Ocean surface circulation change should not be viewed as the strength of the anticyclonic Beaufort Gyre. While the Beaufort Gyre is a dominant feature of average Arctic Ocean surface circulation, empirical orthogonal function analysis of dynamic height (1950–89) and satellite altimetry–derived dynamic ocean topography (2004–19) show the primary pattern of variability in its cyclonic mode is dominated by a depression of the sea surface and cyclonic surface circulation on the Russian side of the Arctic Ocean. Changes in surface circulation after Arctic Oscillation (AO) maxima in 1989 and 2007–08 and after an AO minimum in 2010 indicate the cyclonic mode is forced by the AO with a lag of about 1 year. Associated with a one standard deviation increase in the average AO starting in the early 1990s, Arctic Ocean surface circulation underwent a cyclonic shift evidenced by increased spatial-average vorticity. Under increased AO, the cyclonic mode complex also includes increased export of sea ice and near-surface freshwater, a changed path of Eurasian runoff, a freshened Beaufort Sea, and weakened cold halocline layer that insulates sea ice from Atlantic water heat, an impact compounded by increased Atlantic Water inflow and cyclonic circulation at depth. The cyclonic mode’s connection with the AO is important because the AO is a major global scale climate index predicted to increase with global warming. Given the present bias in concentration of in situ measurements in the Beaufort Gyre and Transpolar Drift, a coordinated effort should be made to better observe the cyclonic mode.

Open access
Xiaoting Yang, Eli Tziperman, and Kevin Speer

Abstract

Concentrated poleward flows along eastern boundaries between 2- and 4-km depth in the southeast Pacific, Atlantic, and Indian Oceans have been observed, and appear in data assimilation products and regional model simulations at sufficiently high horizontal resolution, but their dynamics are still not well understood. We study the local dynamics of these deep eastern boundary currents (DEBCs) using idealized GCM simulations, and we use a conceptual vorticity model for the DEBCs to gain additional insights into the dynamics. Over most of the zonal width of the DEBCs, the vorticity balance is between meridional advection of planetary vorticity and vortex stretching, which is an interior-like vorticity balance. Over a thinner layer very close to the eastern boundary, a balance between vorticity tendencies due to friction and stretching that rapidly decay away from the boundary is found. Over the part of the DEBC that is governed by an interior-like vorticity balance, vertical stretching is driven by both the topography and temperature diffusion, while in the thinner boundary layer, it is driven instead by parameterized horizontal temperature mixing. The topographic driving acts via a cross-isobath flow that leads to stretching and thus to vorticity forcing for the concentrated DEBCs.

Restricted access
José Ochoa, Vicente Ferreira-Bartrina, Julio Candela, Julio Sheinbaum, Manuel López, Paula Pérez-Brunius, Sharon Herzka, and Rainer M.W. Amon

Abstract

A key consequence in climate change is the warming of deep waters, away from the faster warming rates of near-surface subtropical and tropical waters. Since surface and near-surface oceanic temperatures have been measured far more frequently in time and space than deep waters (>2000 m), deep measurements become quite valuable. Semi-enclosed basins, such as the Gulf of Mexico, are of particular interest as the waters below sills that connect with the neighboring oceans have residence times much longer than upper layers. Within the western Gulf of Mexico, near-bottom measurements at ~3500-m depths at four sites show a stable linear warming trend of ~16 ± 2 m°C decade−1 for the period 2007–18, and CTD data from eight oceanographic cruises occurring from 2003 to 2019 show a trend of ~18 ± ~2 m°C decade−1 from the bottom to ~2000 m below the surface. The bottom geothermal heat flux is a contributing factor to be considered in the warming and renewal of such waters, but it has not changed over millennia and is therefore unlikely to be the cause of the observed trend. The densest waters that spill into the Gulf of Mexico, over the Yucatan Channel sill, must mix substantially during their descent and in the near-bottom interior, losing their extreme values. A simple box model connects the observed warming, well within the Gulf interior, with that expected in the densest waters that spill from the North Atlantic into the Cayman Basin through Windward Passage and suggests that the source waters at the entrance to the Caribbean have been warming for at least 100 years.

Open access
Qunshu Tang, Zhiyou Jing, Jianmin Lin, and Jie Sun

Abstract

The Mariana Ridge is one of the prominent mixing hotspots of the open ocean. The high-resolution underway marine seismic reflection technique provides an improved understanding of the spatiotemporal continuous map of ocean turbulent mixing. Using this novel technique, this study quantifies the diapycnal diffusivity of the subthermocline (300–1200-m depth) turbulence around the Mariana Ridge. The autotracked wave fields on seismic images allow us to derive the dissipation rate ε and diapycnal diffusivity K ρ based on the Batchelor model, which relates the horizontal slope spectra with +1/3 slope to the inertial convective turbulence regime. Diffusivity is locally intensified around the seamounts exceeding 10−3 m2 s−1 and gradually decreases to 10−5–10−4 m2 s−1 in ~60-km range, a distance that may be associated with the internal tide beam emanating paths. The overall pattern suggests a large portion of the energy dissipates locally and a significant portion dissipates in the far field. Empirical diffusivity models K ρ(x) and K ρ(z), varying with the distance from seamounts and the height above seafloor, respectively, are constructed for potential use in ocean model parameterization. Geographic distributions of both the vertically averaged dissipation rate and diffusivity show tight relationships with the topography. Additionally, a strong agreement of the dissipation results between seismic observation and numerical simulation is found for the first time. Such an agreement confirms the suitability of the seismic method in turbulence quantification and suggests the energy cascade from large-scale tides to small-scale turbulence via possible mechanisms of local direct tidal dissipation, near-local wave–wave interactions, and far-field radiating and breaking.

Restricted access
Xiaozhou Ruan, Andrew F. Thompson, and John R. Taylor

Abstract

The influence of a sloping bottom and stratification on the evolution of an oceanic bottom boundary layer (BBL) in the presence of a mean flow is explored. As a complement to an earlier study by Ruan et al. (https://doi.org/10.1175/JPO-D-18-0079.1) examining Ekman arrest in a downslope regime, this paper describes turbulence and BBL dynamics during Ekman arrest in the upslope regime. In the upslope regime, an enhanced stratification develops in response to the upslope Ekman transport and suppresses turbulence. Using a suite of large-eddy simulations, we show that the BBL evolution can be described in a self-similar framework based on a nondimensional number X/X a. This nondimensional number is defined as the ratio between the lateral displacement of density surfaces across the slope X and a displacement X a required for Ekman arrest; the latter can be predicted from external parameters. Additionally, the evolution of the depth-integrated potential vorticity is considered in both upslope and downslope regimes. The PV destruction rate in the downslope regime is found to be twice the production rate in the upslope regime, using the same definition for the bottom mixed layer thickness. It is shown that this asymmetry is associated with the depth scale over which turbulent stresses are active. These results are a step toward improving parameterizations of BBL properties and evolution over sloping topography in coarse-resolution ocean models.

Restricted access