Browse

You are looking at 1 - 10 of 16 items for :

  • In Honor of Bach-Lien Hua: Ocean Scale Interactions x
  • Journal of Physical Oceanography x
  • All content x
Clear All
Audrey Delpech, Claire Ménesguen, Yves Morel, Leif N. Thomas, Frédéric Marin, Sophie Cravatte, and Sylvie Le Gentil

Abstract

At low latitudes in the ocean, the deep currents are shaped into narrow jets flowing eastward and westward, reversing periodically with latitude between 15°S and 15°N. These jets are present from the thermocline to the bottom. The energy sources and the physical mechanisms responsible for their formation are still debated and poorly understood. This study explores the role of the destabilization of intra-annual equatorial waves in the jets’ formation process, as these waves are known to be an important energy source at low latitudes. The study focuses particularly on the role of barotropic Rossby waves as a first step toward understanding the relevant physical mechanisms. It is shown from a set of idealized numerical simulations and analytical solutions that nonlinear triad interactions (NLTIs) play a crucial role in the transfer of energy toward jet-like structures (long waves with short meridional wavelengths) that induce a zonal residual mean circulation. The sensitivity of the instability emergence and the scale selection of the jet-like secondary wave to the forced primary wave are analyzed. For realistic amplitudes around 5–20 cm s−1, the primary waves that produce the most realistic jet-like structures are zonally propagating intra-annual waves with periods between 60 and 130 days and wavelengths between 200 and 300 km. The NLTI mechanism is a first step toward the generation of a permanent jet-structured circulation and is discussed in the context of turbulent cascade theories.

Restricted access
Thomas Meunier, Enric Pallàs Sanz, Miguel Tenreiro, José Ochoa, Angel Ruiz Angulo, and Christian Buckingham

Abstract

Two glider transects in the Gulf of Mexico reveal fine-vertical-scale thermohaline structures within a Loop Current eddy (LCE). Partially compensating temperature and salinity anomalies are shown to organize as thin layers below the eddy and near its edges. The anomalies have vertical scales ranging from 2 to 60 m and extend laterally over distances up to 120 km. These structures are evident in synthetic acoustic reflectivity derived from the glider data and are reminiscent of the intense layering observed in seismic imagery around meddies, Agulhas rings, and warm-core Kuroshio rings. The observed layers are aligned with the geostrophic streamfunction rather than isopycnals and develop preferentially in zones of intense vertical shear. These observations suggest that tracer stirring by the eddy’s vertically sheared azimuthal flow might be an important process for their generation. In an attempt to rationalize this process, high-resolution quasigeostrophic simulations were performed using an idealized anticyclonic ring for the initial conditions. As the vortex destabilizes, layering rapidly develops in the model, resulting in structures similar to those found in the observation data. Passive tracer experiments also suggest that the layers form through differential advection of the tracer field by the vertically sheared flow associated with the LCE.

Full access
C. Ménesguen, S. Le Gentil, P. Marchesiello, and N. Ducousso

Abstract

The increase of computational capabilities led recent studies to implement very high-resolution simulations that gave access to new scale interaction processes, particularly those associated with the transfer of energy from the oceanic mesoscales to smaller scales through an interior route to dissipation, which is still underexplored. In this context, we study spindown simulations of a mesoscale interior vortex, unstable to a mixed baroclinic–barotropic instability. Even though the global energy is almost conserved, some energy is transferred down to dissipation scales during the development of instabilities. However, in our parameter regime, there is no substantial forward energy cascade sustained by unbalanced dynamics. Rather than exploring the physical parameter range, we clarify numerical discretization issues that can be detrimental to the physical solutions and our interpretation of finescale dynamics. Special care is given to determining the effective resolution of the different simulations. We improve it by a factor of 2 in our primitive equation (PE) finite-difference Coastal and Regional Ocean Community (CROCO) model by implementing a fifth-order accurate horizontal advection scheme. We also explore a range of grid aspect ratios dx/dz and find that energy spectra converge for aspect ratios that are close to N/f, the ratio of the stratification N over the Coriolis parameter f. However, convergence is not reached in the PE model when using a fourth-order centered scheme for vertical tracer advection (standard in ROMS-family codes). The scheme produces dispersion errors that trigger baroclinic instabilities and generate spurious submesoscale horizontal features. This spurious instability shows great impact on submesoscale production and energy cascade, emphasizing the significance of numerical settings in oceanic turbulence studies.

Full access
Benjamin A. Storer, Francis J. Poulin, and Claire Ménesguen

Abstract

The stability of lens-shaped vortices is revisited in the context of an idealized quasigeostrophic model. We compute the stability characteristics with higher accuracy and for a wider range of Burger numbers (Bu) than what was previously done. It is found that there are four distinct Bu regions of linear instability. Over the primary region of interest (0.1 < Bu < 10), we confirm that the first and second azimuthal modes are the only linearly unstable modes, and they are associated with vortex tilting and tearing, respectively. Moreover, the most unstable first azimuthal mode is not precisely captured by the linear stability analysis because of the extra condition that is imposed at the vortex center, and accurate calculations of the second azimuthal mode require higher resolution than was previously considered. We also study the nonlinear evolution of lens-shaped vortices in the context of this model and present the following results. First, vortices with a horizontal length scale a little less than the radius of deformation (Bu > 1) are barotropically unstable and develop a wobble, whereas those with a larger horizontal length scale (Bu < 1) are baroclinically unstable and often split. Second, the transfer of energy between different horizontal scales is quantified in two typical cases of barotropic and baroclinic instability. Third, after the instability the effective Bu is closer to unity.

Full access
A. M. Treguier, C. Lique, J. Deshayes, and J. M. Molines

Abstract

Correlations between temperature and velocity fluctuations are a significant contribution to the North Atlantic meridional heat transport, especially at the northern boundary of the subtropical gyre. In satellite observations and in a numerical model at ⅞° resolution, a localized pattern of positive eddy heat flux is found northwest of the Gulf Stream, downstream of its separation at Cape Hatteras. It is confined to the upper 500 m. A simple kinematic model of a meandering jet can explain the surface eddy flux, taking into account a spatial shift between the maximum velocity of the jet and the maximum cross-jet temperature gradient. In the Gulf Stream such a spatial shift results from the nonlinear temperature profile and the vertical tilting of the velocity profile with depth. The numerical model suggests that the meandering of the Gulf Stream could account, at least in part, for the large eddy heat transport (of order 0.3 PW) near 36°N in the North Atlantic and for its compensation by the mean flow.

Full access
Rémi Tailleux

Abstract

In this paper, two new quasi-neutral density variables—generalized patched potential density (GPPD) and thermodynamic neutral density γ T—are introduced, which are showed to approximate Jackett and McDougall empirical neutral density γ n significantly better than the quasi-material rational polynomial approximation γ a previously introduced by McDougall and Jackett. In contrast to γ n, γ T is easily and efficiently computed for arbitrary climatologies of temperature and salinity (both realistic and idealized), has a clear physical basis rooted in the theory of available potential energy, and does not suffer from nonmaterial effects that make γ n so difficult to use in water masses analysis. In addition, γ T is also significantly more neutral than all known quasi-material density variables, such as σ 2, while remaining less neutral than γ n. Because unlike γ n, γ T is mathematically explicit, it can be used for theoretical as well as observational studies, as well as a generalized vertical coordinate in isopycnal models of the ocean circulation. On the downside, γ T exhibits inversions and degraded neutrality in the polar regions, where the Lorenz reference state is the furthest away from the actual state. Therefore, while γ T represents progress over previous approaches, further work is still needed to determine whether its polar deficiencies can be corrected, an essential requirement for γ T to be useful in Southern Ocean studies, for instance.

Full access
Alain Colin de Verdière and Michel Ollitrault

Abstract

The time-mean Argo float displacements and the World Ocean Atlas 2009 temperature–salinity climatology are used to obtain the total, top to bottom, mass transports. Outside of an equatorial band, the total transports are the sum of the vertical integrals of geostrophic- and wind-driven Ekman currents. However, these transports are generally divergent, and to obtain a mass conserving circulation, a Poisson equation is solved for the streamfunction with Dirichlet boundary conditions at solid boundaries. The value of the streamfunction on islands is also part of the unknowns. This study presents and discusses an energetic circulation in three basins: the North Atlantic, the North Pacific, and the Southern Ocean. This global method leads to new estimations of the time-mean western Eulerian boundary current transports maxima of 97 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) at 60°W for the Gulf Stream, 84 Sv at 157°E for the Kuroshio, 80 Sv for the Agulhas Current between 32° and 36°S, and finally 175 Sv for the Antarctic Circumpolar Current at Drake Passage. Although the large-scale structure and boundary of the interior gyres is well predicted by the Sverdrup relation, the transports derived from the wind stress curl are lower than the observed transports in the interior by roughly a factor of 2, suggesting an important contribution of the bottom torques. With additional Argo displacement data, the errors caused by the presence of remaining transient terms at the 1000-db reference level will continue to decrease, allowing this method to produce increasingly accurate results in the future.

Full access
A. C. Barbosa Aguiar, C. Ménesguen, S. Le Gentil, R. Schopp, and X. Carton

Abstract

Nearly all the subsurface eddies detected in seismic imaging of sections in the northeast Atlantic have been assumed to be anticyclones containing Mediterranean Water (MW). Fewer MW cyclones have been observed and studied. In this study, the work of previous numerical studies is extended to investigate some characteristics of layering surrounding MW cyclones, using a primitive equation model with equal diffusivities for salinity and temperature to suppress the effects of double diffusion. It is shown that, after a stable state is reached, both anticyclones and cyclones display similar patterns of layering: stacked thin layers of high acoustic reflectivity located above and below the core of each vortex, which do not match isopycnals. The authors conclude that it should not be possible to distinguish between MW cyclones and anticyclones based on their signature in seismic imaging alone. Complementary information is needed to determine the sense of rotation.

Full access
J. H. LaCasce and J. Wang

Abstract

A previously published method by Wang et al. for predicting subsurface velocities and density from sea surface buoyancy and surface height is extended by incorporating analytical solutions to make the vertical projection. One solution employs exponential stratification and the second has a weakly stratified surface layer, approximating a mixed layer. The results are evaluated using fields from a numerical simulation of the North Atlantic. The simple exponential solution yields realistic subsurface density and vorticity fields to nearly 1000 m in depth. Including a mixed layer improves the response in the mixed layer itself and at high latitudes where the mixed layer is deeper. It is in the mixed layer that the surface quasigeostrophic approximation is most applicable. Below that the first baroclinic mode dominates, and that mode is well approximated by the analytical solution with exponential stratification.

Full access
Nils Brüggemann and Carsten Eden

Abstract

In this study, it is investigated how ageostrophic dynamics generate an energy flux toward smaller scales. Numerical simulations of baroclinic instability are used with varying dynamical conditions ranging from quasigeostrophic balance to ageostrophic flows. It turns out that dissipation at smaller scales by viscous friction is much more efficient if the flow is dominated by ageostrophic dynamics than in quasigeostrophic conditions. In the presence of ageostrophic dynamics, an energy flux toward smaller scales is observed while energy is transferred toward larger scales for quasigeostrophic dynamics. Decomposing the velocity field into its rotational and divergent components shows that only the divergent velocity component, which becomes stronger for ageostrophic flows, features a downscale flux. Variation of the dynamical conditions from ageostrophic dynamics to quasigeostrophic balanced flows shows that the forward energy flux and therefore the small-scale dissipation decreases as soon as the horizontal divergent velocity component decreases. A functional relationship between the small-scale dissipation and the local Richardson number is estimated. This functional relationship is used to obtain a global estimate of the small-scale dissipation of 0.31 ± 0.23 TW from a high-resolution realistic global ocean model. This emphasizes that an ageostrophic direct route to dissipation might be of importance in the ocean energy cycle.

Full access