You are looking at 1 - 3 of 3 items for :

  • Journal of Climate x
  • 12th International Precipitation Conference (IPC12) x
  • All content x
Clear All
Abby Stevens, Rebecca Willett, Antonios Mamalakis, Efi Foufoula-Georgiou, Alejandro Tejedor, James T. Randerson, Padhraic Smyth, and Stephen Wright


Understanding the physical drivers of seasonal hydroclimatic variability and improving predictive skill remains a challenge with important socioeconomic and environmental implications for many regions around the world. Physics-based deterministic models show limited ability to predict precipitation as the lead time increases, due to imperfect representation of physical processes and incomplete knowledge of initial conditions. Similarly, statistical methods drawing upon established climate teleconnections have low prediction skill due to the complex nature of the climate system. Recently, promising data-driven approaches have been proposed, but they often suffer from overparameterization and overfitting due to the short observational record, and they often do not account for spatiotemporal dependencies among covariates (i.e., predictors such as sea surface temperatures). This study addresses these challenges via a predictive model based on a graph-guided regularizer that simultaneously promotes similarity of predictive weights for highly correlated covariates and enforces sparsity in the covariate domain. This approach both decreases the effective dimensionality of the problem and identifies the most predictive features without specifying them a priori. We use large ensemble simulations from a climate model to construct this regularizer, reducing the structural uncertainty in the estimation. We apply the learned model to predict winter precipitation in the southwestern United States using sea surface temperatures over the entire Pacific basin, and demonstrate its superiority compared to other regularization approaches and statistical models informed by known teleconnections. Our results highlight the potential to combine optimally the space–time structure of predictor variables learned from climate models with new graph-based regularizers to improve seasonal prediction.

Open access
Clément Guilloteau, Antonios Mamalakis, Lawrence Vulis, Phong V. V. Le, Tryphon T. Georgiou, and Efi Foufoula-Georgiou


Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatiotemporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the continuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To improve the interpretability of the results, especially when several modes of similar amplitude exist within the same frequency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness). The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height (GPH) and sea surface temperature (SST) daily time series, the method accurately captures patterns of atmospheric Rossby waves at high frequencies (3–60-day periods) in both GPH and SST and El Niño–Southern Oscillation (ENSO) at low frequencies (2–7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing spatially coherent patterns with robust propagation dynamics.

Open access
Stephen E. Lang and Wei-Kuo Tao


The Goddard convective–stratiform heating (CSH) algorithm, used to estimate cloud heating in support of the Tropical Rainfall Measuring Mission (TRMM), is upgraded in support of the Global Precipitation Measurement (GPM) mission. The algorithm’s lookup tables (LUTs) are revised using new and additional cloud-resolving model (CRM) simulations from the Goddard Cumulus Ensemble (GCE) model, producing smoother heating patterns that span a wider range of intensities because of the increased sampling and finer GPM product grid. Low-level stratiform cooling rates are reduced in the land LUTs for a given rain intensity because of the rain evaporation correction in the new four-class ice (4ICE) scheme. Additional criteria, namely, echo-top heights and low-level reflectivity gradients, are tested for the selection of heating profiles. Those resulting LUTs show greater and more precise variation in their depth of heating as well as a tendency for stronger cooling and heating rates when low-level dBZ values decrease toward the surface. Comparisons versus TRMM for a 3-month period show much more low-level heating in the GPM retrievals because of increased detection of shallow convection, while upper-level heating patterns remain similar. The use of echo tops and low-level reflectivity gradients greatly reduces midlevel heating from ~2 to 5 km in the mean GPM heating profile, resulting in a more top-heavy profile like TRMM versus a more bottom-heavy profile with much more midlevel heating. Integrated latent heating rates are much better balanced versus surface rainfall for the GPM retrievals using the additional selection criteria with an overall bias of +4.3%.

Full access