Browse

You are looking at 1 - 10 of 509 items for :

  • Weather, Climate, and Society x
  • All content x
Clear All
Sally Potter, Sara Harrison, and Peter Kreft

Abstract

Warnings about impending hazards help to minimise the impacts and reduce the risk through encouraging an appropriate and timely behavioural response. Many hydrometeorological agencies are moving towards impact-based forecast and warning (IBFW) systems, as encouraged by the World Meteorological Organization (WMO). Yet little research has been conducted on such systems from the perspectives of agencies who are or would be involved in their implementation. We investigated the challenges and benefits of IBFW systems as perceived by participants from agencies internationally and within New Zealand. Interviews and workshops were held with meteorologists and weather forecasters, flood forecasters and hydrologists, and emergency managers.

We found that the benefits of implementing IBFW systems included a perceived increase in the understanding of the potential impacts by the public, added awareness of antecedent conditions by forecasters, a possible reduction in ‘false alarms’, and increased interagency communication. Challenges identified by the participants included whether the system should be designed for individuals or society, a lack of impact data, verification of warnings based on impacts, a conflict with roles and responsibilities, the potential for conflicting messages, and the increased burden on agencies providing information to forecasters with a perception of little benefit in return.

We argue that IBFWs could be designed for individual members of the public, with an increased focus on understanding vulnerability and capacities; and that more impact data needs to be collected and stored to inform future warnings. Increased interagency coordination would assist with rapid decision-making and the success of IBFWs.

Restricted access
Jeannette Sutton and Laura M. Fischer

Abstract

Online channels for communicating risk frequently include features and technological capabilities to support sharing images of risk. In particular, the affordances found in social media, such as Twitter, include the ability to attach maps, photographs, videos, and other graphical information. The inclusion of visual cues such as colors and shapes and their different sizes are important for making sense of approaching threats, populations at risk, the potential impacts, and ranges of associated uncertainty. The reception of and attention to these visual cues in messages about a potential threat is the necessary first stage to making a decision about protective actions. Understanding what visual features capture individual attention and how attention is directed to visual images of risk on social media has the potential to affect the design of risk communication messages and the protective actions that follow. In this paper we use eye-tracking methods to identify where people allocate attention to a series of tweets and qualitative “think alouds” to determine what features of the tweets people attend to in their visual field are salient to message receivers. We investigate visual attention to a series of tweets that depict an emerging tornado threat to identify areas of visual interest and the properties of those visual cues that elicit attention. We find the use of color, properties of text presentation, and contents of messages affect attention allocation. These findings could help practitioners as they design and disseminate their weather messages to inform the public of emerging threats.

Restricted access
Stephen M. Strader, Alex M. Haberlie, and Alexandra G. Loitz

Abstract

This study investigates the interrelationships between National Weather Service (NWS) county warning area (CWA) tornado risk, exposure, and societal vulnerability. CWA climatological tornado risk is determined using historical tornado event data, while exposure and vulnerability are assessed by employing present-day population, housing, socioeconomic, and demographic metrics. Additionally, tornado watches, warnings, warning lead times, false alarm warnings, and unwarned tornado reports are examined in relation to CWA risk, exposure, and vulnerability. Results indicate that Southeast U.S. CWAs are more susceptible to tornado impacts due to their greater tornado frequencies and larger damage footprints intersecting more vulnerable populations (e.g., poverty, manufactured homes). Midwest CWAs experience fewer tornadoes compared to Southeast and Southern Plains CWAs but encompass faster tornado translational speeds and greater population densities where higher concentrations of vulnerable individuals often reside. Northern Plains CWAs contain longer-tracked tornadoes on average and larger percentages of vulnerable elderly and rural persons. Southern Plains CWAs experience the highest tornado frequencies in general and contain larger percentages of minority Latinx populations. Many of the most socially vulnerable CWAs have shorter warning lead times and greater percentages of false alarm warnings and unwarned tornadoes. Study findings provide NWS forecasters with an improved understanding of the relationships between tornado risk, exposure, vulnerability, and warning outcomes within their respective CWAs. Findings may also assist NWS Weather Forecast Offices (WFO) and the Warning Decision Training Division (WDTD) with developing training materials aimed at increasing NWS forecaster knowledge of how tornado risk, exposure, and vulnerability factors influence local tornado disaster potential.

Restricted access
Vikram S. Negi, Shinny Thakur, Rupesh Dhyani, Indra D. Bhatt, and Ranbeer S. Rawal

Abstract

Mountains are global important sites for monitoring biological and socio-ecological responses to climate change, and the Himalaya has some of the world’s most rapid and visible signs of climate change. The increased frequency and severity of climate anomalies in the region is expected to significantly affect livelihoods of indigenous communities in the region. This study documents the perceptions of indigenous communities on climate change in the western Himalaya of India. The study highlights the power of knowledge and understanding available to indigenous people as they observe and respond to climate change impacts. We conducted a field-based study in 14 villages that represent diverse socio-ecological features along an altitudinal range of 1000-3800 m asl in the western Himalaya. Among the sampled population, most of the respondents (>95%) agreed that climate is changing. However, people residing at low- and high-altitude villages differ significantly in their perception, with more people at high altitudes believing in an overall warming trend. Instrumental temperature and rainfall from nearby meteorological stations also supported the perception of local inhabitants. The climate change perceptions in the region were largely determined by socio-demographic variables such as age, gender, and income as well as altitude. A logistic regression, which exhibited significant association of socio-demographic characteristics with climate change perceptions, further supported these findings. The study concluded that the climate change observations of local communities can be usefully utilized to develop adaptation strategies and mitigation planning in the Himalayan region.

Restricted access
Lynda E. Chambers, Roan D. Plotz, Siosinamele Lui, Faapisa Aiono, Tile Tofaeono, David Hiriasia, Lloyd Tahani, ‘Ofa Fa’anunu, Seluvaia Finaulahi, and Albert Willy

Abstract

Traditional calendars document seasonal cycles and the communities’ relationships to their biophysical environment and are often used by communities, particularly subsistence farmers, to synchronize their livelihood activities with the timing of ecological processes. Because the timing of these ecological processes is not always consistent from year to year, the use of traditional seasonal calendars can help communities to cope with climate variability, particularly when biophysical phenomena become less predictable in relation to the Gregorian calendar, as has been observed in relation to climate change. Although the structure and content of seasonal calendars vary across the Pacific Ocean region, for many indigenous communities, knowledge of seasonal calendars can increase their capacity to cope with climate variability and change. To increase the effectiveness of their products and enhance their relevance to and uptake by the community, several Pacific meteorological services are now using traditional seasonal calendars in their climate communication and education, including in forecasts and warnings. The use of a participatory approach resulted in strong relationships and improved dialogues. Local communities appreciated assistance in enabling their knowledge to become available to future generations, and its inclusion in meteorological service products makes these products more accessible and relevant to community members.

Open access
Rachel E. Riley

Abstract

Decision-makers who have little to no formal training in atmospheric science are increasingly accessing and interpreting climate data and information within planning contexts. Many climate decision support tools (DSTs) have been developed to support decision-making across a variety of sectors and scales, but evaluation of such tools has only recently begun to take place. This study conducted a summative evaluation of the utility of a decision-maker-driven climate hazard assessment tool, the Simple Planning Tool (SPT), a climate DST. The SPT was inspired by and codeveloped with emergency managers, planners, and a boundary organization in two south-central U.S. states. The SPT’s target audience was surveyed to assess the tool’s utility, including its saliency, credibility, trustworthiness, and reasons for and impact of information use on decision-making. A high utility was found despite a relatively limited user base at the time of the study. In addition, SPT users represented a range of jurisdictional sizes, geographical scales, and years of experience. Although the small user sample limits generalizability of the study, it is likely a realistic reflection of the number of emergency managers and planners in the two states who are actively and regularly incorporating climate hazards into planning. The data also indicate that climate boundary organizations and climate service providers should work toward utilizing trusted information sources, channels, and procedures within the sectors to which their tool applies to help increase decision-maker awareness and use of their tool.

Restricted access
Rachael N. Cross and Daphne S. LaDue

Abstract

Weather forecasting is not an exact science, and, in regions near the southern end of the Appalachian Mountains, the vastly different types of topography and frequency of rapidly forming storms can result in high uncertainty in severe weather forecasts. NOAA created its VORTEX-Southeast (SE) research program to tackle these unique challenges and integrate them with social science research to increase the survivability of southeastern U.S. weather. As part of VORTEX-SE, this study focused on the severe weather preparation and decision-making of emergency management and, in particular, how uncertainty in severe weather forecasts impacted the relationship between emergency managers (EMs) and weather providers. We conducted in-depth, critical incident background interviews with 35 emergency management personnel across 14 counties. An inductive, data-driven analysis approach revealed several factors contributing to an added layer of practical uncertainty beyond the meteorological forecast uncertainty that impacted and helped to explain the nature of trust in the EM–National Weather Service (NWS) relationship. No- or short-notice events, null events, gaps in information, and differences in perspectives when compared with weather forecasters have led emergency managers to modify their procedures in ways that position them to adapt quickly to unexpected changes in the forecast. The need to do so creates a complex, nuanced trust between these groups. This paper explains how EMs developed a nuanced trust of forecast information, how that trust is a recognition of the inherent uncertainty in severe weather forecasts, and how to strengthen the NWS–EM relationship.

Restricted access
Adam M. Rainear and Carolyn A. Lin

Abstract

When attempting to communicate flood risk, trust in and perceptions toward risk information dissemination as well as individual efficacy factors can play a significant role in affecting risk-mitigation motivation and intention. This study seeks to examine how risk communication, risk perception, and efficacy factors affect evacuation motivation and behavioral intentions in response to a presumed flood risk, as based on a conceptual framework guided by protection motivation theory. An online survey was administered to college students (N = 239) from a region that is subject to sea level rise and storm surges. Path analysis results indicate that, while less information-source trust predicts greater risk perception, greater information-source trust predicts greater mitigation-information-seeking intention, lower self-efficacy, and stronger response efficacy. As lower mitigation-information-seeking intention similarly predicts greater risk perception, greater mitigation-information-seeking intention also predicts stronger response efficacy. Significant predictors of evacuation motivation include lower risk perception as well as greater information-source trust, severity perception, and response efficacy. Implications of these findings are discussed in terms of information dissemination channels, messaging strategies, and recent severe flooding events.

Restricted access
Morgan E. Gorris, James E. Neumann, Patrick L. Kinney, Megan Sheahan, and Marcus C. Sarofim

Abstract

Coccidioidomycosis, or valley fever, is an infectious fungal disease currently endemic to the southwestern United States. Symptoms of valley fever range in severity from flu-like illness to severe morbidity and mortality. Warming temperatures and changes in precipitation patterns may cause the area of endemicity to expand northward throughout the western United States, putting more people at risk for contracting valley fever. This may increase the health and economic burdens from this disease. We developed an approach to describe the relationship between climate conditions and valley fever incidence using historical data and generated projections of future incidence in response to both climate change and population trends using the Climate Change Impacts and Risk Analysis (CIRA) framework developed by the U.S. Environmental Protection Agency. We also developed a method to estimate economic impacts of valley fever that is based on case counts. For our 2000–15 baseline time period, we estimated annual medical costs, lost income, and economic welfare losses for valley fever in the United States were $400,000 per case, and the annual average total cost was $3.9 billion per year. For a high greenhouse gas emission scenario and accounting for population growth, we found that total annual costs for valley fever may increase up to 164% by year 2050 and up to 380% by 2090. By the end of the twenty-first century, valley fever may cost $620,000 per case and the annual average total cost may reach $18.5 billion per year. This work contributes to the broader effort to monetize climate change–attributable damages in the United States.

Open access
Kelly Helm Smith, Mark E. Burbach, Michael J. Hayes, Patrick E. Guinan, Andrew J. Tyre, Brian Fuchs, Tonya Haigh, and Mark D. Svoboda

Abstract

Drought-related decision making and policy should go beyond numeric hydro-meteorological data, incorporating information on how drought affects people, livelihoods and ecosystems. But the effects of drought are nested within environmental and human systems, and relevant data may not exist in readily accessible form. For example, drought may reduce forage growth, compounded by both late-season freezes and management decisions. An effort to gather crowdsourced drought observations in Missouri in 2018 yielded a much higher number of observations than previous related efforts. Here we examine 1) the interests, circumstances, history and recruitment messaging that coincided to produce a high number of reports in a short time; 2) whether and how information from volunteer observers was useful to state decision-makers and to U.S. Drought Monitor (USDM) authors; and 3) potential for complementary use of stakeholder and citizen science reports in assessing trustworthiness of volunteer-provided information. State officials and the Cattlemen’s Association made requests for reports, clearly linked to improving the accuracy of the USDM and the related financial benefit. Well-timed requests provided a focus for people’s energy and a reason to invest their time. State officials made use of the dense spatial coverage that observers provided. USDM authors were very cautious about a surge of reports coinciding closely with financial incentives linked to the Livestock Forage Disaster program. An after-the-fact comparison between stakeholder reports and parallel citizen science reports suggests that the two could be complementary, with potential for use protocols developed to facilitate real-time use.

Open access