Browse

You are looking at 1 - 10 of 14,453 items for :

  • Journal of the Atmospheric Sciences x
  • All content x
Clear All
Michael J. Reeder, Thomas Spengler, and Clemens Spensberger

Abstract

It is thought that the sensible heat fluxes associated with sea surface temperature (SST) fronts can affect the genesis and evolution of atmospheric fronts. An analytic model is developed and used to explore this idea. The model predictions are compared with climatologies of atmospheric fronts over the North Atlantic Ocean identified in reanalyses. The climatologies are divided into times when fronts are detected at a point and times when they are not, and compared with model results with and without fronts in their initial conditions. In airstreams with fronts, both the climatologies and model show that adiabatic frontogenesis is much more important than diabatic frontogenesis. They also show that there is weak diabatic frontogenesis associated with differential sensible heating over the SST front and frontolysis either side of it. Because of the upstream and downstream frontolysis, the SST front has relatively little net effect on atmospheric fronts in the model. This result holds true as the width and strength of the SST front changes. In airstreams initially without fronts, a combination of adiabatic and diabatic frontogenesis is important for the local genesis of atmospheric fronts over the SST front. The model shows sustained frontogenesis only when the deformation is sufficiently strong or when the translation speed is low, as advection otherwise weakens the potential temperature gradient. This strong localized diabatic frontogenesis, which is amplified by adiabatic frontogenesis, can result in a front, which is consistent with atmospheric fronts in the region being most frequently located along the SST front.

Open access
Chaim I Garfinkel, Ofer Shamir, Itzhak Fouxon, and Nathan Paldor

Abstract

Variability in the tropical atmosphere is concentrated at wavenumber–frequency combinations where linear theory indicates wave modes can freely propagate, but with substantial power in between. This study demonstrates that such a power spectrum can arise from small-scale convection triggering large-scale waves via wave–wave interactions in a moderately turbulent fluid. Two key pieces of evidence are provided for this interpretation of tropical dynamics using a nonlinear rotating shallow-water model: a parameter sweep experiment in which the amplitude of an external forcing is gradually ramped up, and also an external forcing in which only symmetric or only antisymmetric modes are forced. These experiments do not support a commonly accepted mechanism involving the forcing projecting directly onto the wave modes with a strong response, yet still simulate a power spectrum resembling that observed, though the linear projection mechanism could still complement the mechanism proposed here in observations. Interpreting the observed tropical power spectrum using turbulence offers a simple explanation as to why power should be concentrated at the theoretical wave modes, and also provides a solid footing for the common assumption that the background spectrum is red, even as it clarifies why there is no expectation for a turbulent cascade with a specific, theoretically derived slope such as −5/3. However, it does explain why the cascade should be toward lower wavenumbers, that is an inverse energy cascade, similar to the midlatitudes even as compressible wave modes are important for tropical dynamics.

Open access
David H. Richter, Charlotte Wainwright, Daniel P. Stern, George H. Bryan, and Daniel Chavas

Abstract

Understanding momentum exchange at the air-sea interface is important for accurate hurricane predictions and understanding fundamental storm dynamics. One method for estimating air-sea momentum transfer in high winds is the flux-profile method, which infers surface momentum fluxes and the corresponding drag coefficient from mean velocity profiles obtained from either dropsondes or meteorological towers, under the assumption that the boundary-layer wind profile at low altitudes exhibits a logarithmic profile with height. In this study, we use dropsonde data from reconnaissance aircraft, as well as “virtual sondes” from a turbulence-resolving simulation of an intense tropical cyclone, to critically analyze the diagnosis of drag coefficient CD at hurricane-force wind speeds. In particular, the “roll-off” of the drag coefficient, where CD decreases at 10-m wind speeds ¿ 35 m s−1, is called into question based on uncertainty due to relatively low sample size and a lack of robustness of the flux-profile at high winds. In addition, multiple factors appear to favor an underestimate of CD at hurricane-force winds relative to their true values, including uncertainty in the height of recorded dropsonde data, violation of Monin-Obukhov similarity theory near the eyewall, and the short vertical extent of the logarithmic layer. Due to these and other related sources of uncertainty, it is likely that a quantitative limit has been reached in inferring the specific values of u * and CD using the flux-profile method, while at the same time the potential for underestimation may cast doubt on the CDU 10 relationship inferred from this method at high winds.

Restricted access
Or Hadas and Yohai Kaspi

Abstract

The midlatitude storm tracks are of the most prominent features of extratropical climate. Despite the theoretical expectation, based on baroclinic instability theory, that baroclinic eddies strengthen with jet intensification, there is evidence that this relation breaks when the jet is particularly strong. The most known case is the Pacific midwinter minimum in storm track activity. To isolate the effect of jet strength on storm activity, we conduct a series of GCM experiments systematically varying jet intensity. The simulations are analyzed using Lagrangian tracking to understand the response from a single-eddy perspective. The Lagrangian analysis shows that while the response of upper-level eddies is dominated by a reduction in the amount of tracked features, the lower-level eddies’ response is also affected by a reduction in their lifetime. Analyzing the jet strength effect on the pairing between the upper- and lower-level eddies, we find that the jet intensification increases the relative speed of the upper-level eddies, breaking the baroclinic wave structure and limiting its growth. We show that the Lagrangian response correlates with a shift in the midlatitude spectrum to low wavenumbers. The shift settles these results with linear baroclinic instability theory, as under the stronger jet conditions synoptic-scale eddies are predicted to have a sub-optimal growth rate. These results can potentially explain the midwinter suppression of storm activity over the Pacific and the difference from the Atlantic response.

Restricted access
Hanii Takahashi, Alejandro Bodas-Salcedo, and Graeme Stephens

Abstract

The latest configuration of the Hadley Centre Global Environmental Model version 3 (HadGEM3) contains significant changes in the formulation of warm rain processes and aerosols. We evaluate the impacts of these changes in the simulation of warm rain formation processes using A-Train observations. We introduce a new model evaluation tool, quartile-based Contoured Frequency by Optical Depth Diagrams (CFODDs), in order to fill in some blind spots that conventional CFODDs have. Results indicate that HadGEM3 has weak linkage between the size of particle radius and warm rain formation processes, and switching to the new warm rain microphysics scheme causes more difference in warm rain formation processes than switching to the new aerosol scheme through reducing overly produced drizzle mode in HadGEM3. Finally, we run an experiment in which we perturb the second aerosol indirect effect (AIE) to study the rainfall-aerosol interaction in HadGEM3. Since the large changes in the cloud droplet number concentration (CDNC) appear in the AIE experiment, a large impact in warm rain diagnostics is expected. However, regions with large fractional changes in CDNC show a muted change in precipitation, arguably because large-scale constraints act to reduce the impact of such a big change in CDNC. The adjustment in cloud liquid water path to the AIE perturbation produces a large negative shortwave forcing in the midlatitudes.

Restricted access
Matthew D. Flournoy and Erik N. Rasmussen

Abstract

Recent studies have highlighted the importance of near-ground storm-relative helicity (SRH) in supercell and tornado processes and how surface friction can play a role. In this study, we use an analytical approach to examine how uniform changes to the ground-relative wind profile above the near-ground layer influence SRH within the near-ground layer. We show how the ground-relative influence of surface friction alters the near-ground shear profile. For idealized semicircular and straight shear profiles, increasing preexisting ground-relative flow above the near-ground layer yields increasing SRH. The magnitude of the SRH increase is sensitive to storm motion, with more deviant motion yielding greater SRH increases given the same increase in ground-relative flow. Supercells may be more susceptible to storm-induced SRH enhancements given their deviant motion and ability to increase ground-relative flow in the background environment.

Restricted access
Marquette N. Rocque and Steven A. Rutledge

Abstract

This study uses shipborne [R/V Roger Revelle and R/V Mirai] radar, upper-air, ocean, and surface meteorology datasets from the DYNAMO field campaign to investigate the diurnal cycle (DC) of precipitation over the central Indian Ocean related to two distinct Madden-Julian oscillations (MJOs) observed. This study extends earlier studies on the MJO DC by examining the relationship between the DC of convective organization and the local environment and comparing these results on- and off-equator. During the suppressed phase on-equator, the DC of rain rates exhibited two weak maxima at 15 LT and 01 LT, which was largely controlled by the presence of sub-MCS nonlinear precipitation features (PFs). During the active phase on-equator, MCS nonlinear features dominated the rain volume, and the greatest increase in rain rates occurred between 21-01 LT. This maximum coincided with the maxima in convective available potential energy (CAPE) and sensible heat flux, and the column moistened significantly over night. Off-equator, the environment was much drier and there was little large-scale upward motion as a result of limited deep convection. The DC of rain rates during the active phase off-equator was most similar to the DC observed during the suppressed phase on-equator, while rainfall off-equator during the suppressed phase did not vary much throughout the day. The DC of MCS nonlinear PFs closely resembled the DC of rainfall during both phases off-equator, and the DC of environmental parameters, including sea surface temperature, CAPE, and latent heat flux, was typically much weaker off-equator compared to on-equator.

Restricted access
William R Cotton and Robert Walko

Abstract

We examine the potential role of aerosol pollution on the rainfall and intensity of hurricane Harvey. For this study, we use the global model, OLAM, with aerosol estimates from the global atmospheric chemistry model GEOS-Chem. Two sets of simulations of hurricane Harvey were performed. Simulations in the first set cover the intensification phase of Harvey until initial landfall in Texas and focus on the sensitivity of storm track and intensity, while simulations in the second set examine the sensitivity of storm track and precipitation during the period after initial landfall when record flooding occurred near Houston. During each period, simulations were performed with no anthropogenic sources of aerosol, with both natural and anthropogenic aerosol sources, and with both sources enhanced ten times.

During the rapid intensification phase, the results indicate that aerosol amounts had very little impact on storm motion. Moreover, very little difference was found on the intensity of the simulated storm to aerosol amounts for the no-anthropogenic vs the GEOS-Chem estimated amounts with anthropogenic sources. However, when both natural and anthropogenic aerosol amounts were enhanced ten times, the simulated storm intensity was enhanced appreciably in terms of minimum sea-level pressure.

During the second period of the simulation, through which Harvey remained a tropical storm, the main result was that very little sensitivity was found in precipitation or any other TC characteristic to aerosol concentrations. We cannot definitively state why the individual convective cells did not respond to high aerosol concentrations during this phase of the storm. However, the abundant precipitation in all three simulations scavenged the vast majority of aerosol as it flowed radially inward, and we speculate that this modulated the potential impact of aerosols on the inner TC and eyewall

Overall, the simulated response of hurricane Harvey to aerosols was far less spectacular than what has been simulated in the past. We conclude that this is because hurricane Harvey was a strongly dynamically-driven storm system that as a result was relatively impervious to the effects of aerosols.

Restricted access
Piyush Srivastava and Maithili Sharan

Abstract

In this study, an attempt has been made to analyze the possible uncertainties in the parameterization of surface fluxes associated with the form of non-dimensional wind and temperature profile functions used in weather and climate models under convective conditions within the framework of Monin-Obukhov similarity theory (MOST). For this purpose, these functions, which are commonly known as similarity functions, are classified into four categories based on the resemblance in their functional behaviour. The bulk flux algorithm is used for the estimation of transfer coefficients of momentum and heat using four different classes of similarity functions. Uncertainty in the estimated values of fluxes is presented in the form of deviation in the predicted values of momentum and heat transfer coefficients and their variation with the Monin-Obukhov stability parameter. The analysis suggests that a large deviation in the values of estimated fluxes might occur if different forms of similarity functions are utilized for the estimation of surface fluxes. Recommendations are made for the form of similarity function for momentum based on the analysis of one year-long turbulence observations over an Indian region. The study suggests that there is a distinct need to carry out a careful analysis of turbulence data in free convective conditions for determining a consistent functional form of the similarity functions to be utilized in the atmospheric models universally.

Restricted access
Michael Diaz and William R. Boos

Abstract

This study explores the effect of surface sensible and latent heat fluxes on monsoon depressions using a series of idealized convection-permitting simulations. Each experiment is initialized with a small amplitude wave that is allowed to grow within an environment representative of the South Asian monsoon. Comparing experiments with and without interactive surface heat fluxes, it is found that these fluxes enhance the growth of the simulated vortices. Without interactive surface fluxes, the strengthening period is short and the vortices fail to reach intensities characteristic of stronger monsoon depressions. Using a large set of experiments in which the vertical and meridional shear are systematically varied, it is found that surface heat fluxes enhance intensity the most when the upper-level shear is weak, the lower-level shear and associated moist static energy (MSE) gradient are sufficiently steep, and the lower-level meridional shear is strong. These experiments reveal two different regimes of convection-coupled monsoon depression growth: one in which convection is driven by MSE advection and one in which it is driven by surface heat fluxes and quasi-geostrophic forcing for ascent. Both regimes require sufficiently strong meridional shear to achieve initial growth by barotropic instability.

Restricted access