Browse

You are looking at 1 - 10 of 11 items for :

  • Monthly Weather Review x
  • Ontario Winter Lake-effect Systems (OWLeS) x
  • All content x
Clear All
Karen A. Kosiba, Joshua Wurman, Kevin Knupp, Kyle Pennington, and Paul Robinson

Abstract

During the Ontario Winter Lake-effect Systems (OWLeS) field campaign, 12 long-lake-axis-parallel (LLAP) snowband events were sampled. Misovortices occurred in 11 of these events, with characteristic diameters of ~800 m, differential velocities of ~11 m s−1, and spacing between vortices of ~3 km. A detailed observational analysis of one such snowband provided further insight on the processes governing misovortex genesis and evolution, adding to the growing body of knowledge of these intense snowband features. On 15–16 December 2013, a misovortex-producing snowband was exceptionally well sampled by ground-based OWLeS instrumentation, which allowed for integrated finescale dual-Doppler and surface thermodynamic analyses. Similar to other studies, horizontal shearing instability (HSI), coupled with stretching, was shown to be the primary genesis mechanism. The HSI location was influenced by snowband-generated boundaries and location of the Arctic front relative to the band. Surface temperature observations, available for the first time, indicated that the misovortices formed along a baroclinic zone. Enhanced mixing, higher radar reflectivity, and increased precipitation rate accompanied the vortices. As the snowband came ashore, OWLeS participants indicated an increase in snowfall and white out conditions with the passage of the snowband. A sharp, small-scale pressure drop, coupled with winds of ~16 m s−1, marked the passage of a misovortex and may be typical of snowband misovortices.

Open access
Peter G. Veals, W. James Steenburgh, and Leah S. Campbell

Abstract

The factors affecting the inland and orographic enhancement of lake-effect precipitation are poorly understood, yet critical for operational forecasting. Here we use nine cool seasons (16 November–15 April) of radar data from the Montague/Ft. Drum, New York (KTYX), WSR-88D, the North American Regional Reanalysis (NARR), and observations from the Ontario Winter Lake-effect Systems (OWLeS) field campaign to examine variations in lake-effect precipitation enhancement east of Lake Ontario and over the Tug Hill Plateau (hereafter Tug Hill). Key factors affecting the inland and orographic enhancement in this region include the strength of the incident boundary layer flow, the intensity of the lake-induced convective available potential energy (LCAPE), and the mode of the lake-effect system. Stronger flow favors higher precipitation rates, a precipitation maximum displaced farther downwind, and greater inland and orographic enhancement. The effects of LCAPE depend upon the strength of the flow. During periods of weak flow, higher LCAPE favors lower precipitation rates, a maximum closer to the shoreline, and lesser inland and orographic enhancement. During periods of strong flow, higher LCAPE favors higher precipitation rates, a maximum displaced farther downwind, and greater inland and orographic enhancement. Banded (nonbanded) modes favor higher (lower) precipitation rates, lesser (greater) inland and orographic enhancement, and a maximum closer to the shoreline (over Tug Hill). These results, for both manually measured and radar-estimated precipitation, are robust when many lake-effect events are considered, but substantial variability exists during individual events.

Full access
Jake P. Mulholland, Jeffrey Frame, Stephen W. Nesbitt, Scott M. Steiger, Karen A. Kosiba, and Joshua Wurman

Abstract

Recent lake-effect snow field projects in the eastern Great Lakes region have revealed the presence of misovortices with diameters between 40 and 4000 m along cyclonic horizontal shear zones within long-lake-axis-parallel bands. One particular band in which an abundance of misovortices developed occurred on 7 January 2014. The leading hypothesis for lake-effect misovortexgenesis is the release of horizontal shearing instability (HSI). An analysis of three-dimensional dual-Doppler wind syntheses reveals that two criteria for HSI are satisfied along the horizontal shear zone, strongly suggesting that HSI was the likely cause of the misovortices in this case. Furthermore, the general lack of anticyclonic–cyclonic vortex couplets throughout the event reveal that tilting of horizontal vorticity into the vertical is of less importance compared to the release of HSI and subsequent strengthening via vortex stretching. A WRF simulation depicts misovortices along the horizontal shear zone within the simulated band. The simulated vortices display remarkable similarities to the observed vortices in terms of intensity, depth, spacing, and size. The simulated vortices persist over the eastern end of the lake; however, once the vortices move inland, they quickly dissipate. HSI criteria are also calculated from the WRF simulation and are satisfied along the shear zone. Competing hypotheses of misovortexgenesis are presented, with results indicating that the release of HSI is the likely mechanism of vortex formation.

Full access
Philip T. Bergmaier, Bart Geerts, Leah S. Campbell, and W. James Steenburgh

Abstract

Intense lake-effect snowfall results from a long-lake-axis-parallel (LLAP) precipitation band that often forms when the flow is parallel to the long axis of an elongated body of water, such as Lake Ontario. The intensity and persistence of the localized precipitation along the downwind shore and farther inland suggests the presence of a secondary circulation that helps organize such a band, and maintain it for some time as the circulation is advected inland. Unique airborne vertical-plane dual-Doppler radar data are used here to document this secondary circulation in a deep, well-organized LLAP band observed during intensive observing period (IOP) 2b of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. The circulation, centered on a convective updraft, intensified toward the downwind shore and only gradually weakened inland. The question arises as to what sustains such a circulation in the vertical plane across the LLAP band. WRF Model simulations indicate that the primary LLAP band and other convergence zones observed over Lake Ontario during this IOP were initiated by relatively shallow airmass boundaries, resulting from a thermal contrast (i.e., land-breeze front) and differential surface roughness across the southern shoreline. Airborne radar data near the downwind shore of the lake indicate that the secondary circulation was much deeper than these shallow boundaries and was sustained primarily by rather symmetric solenoidal forcing, enhanced by latent heat release within the updraft region.

Full access
Leah S. Campbell and W. James Steenburgh

Abstract

Lake-effect storms frequently produce a pronounced precipitation maximum over the Tug Hill Plateau (hereafter Tug Hill), which rises 500 m above Lake Ontario’s eastern shore. Here Weather Research and Forecasting Model simulations are used to examine the mechanisms responsible for the Tug Hill precipitation maximum observed during IOP2b of the Ontario Winter Lake-effect Systems (OWLeS) field program. A key contributor was a land-breeze front that formed along Lake Ontario’s southeastern shoreline and extended inland and northeastward across Tug Hill, cutting obliquely across the lake-effect system. Localized ascent along this boundary contributed to an inland precipitation maximum even in simulations in which Tug Hill was removed. The presence of Tug Hill intensified and broadened the ascent region, increasing parameterized depositional and accretional hydrometeor growth, and reducing sublimational losses. The inland extension of the land-breeze front and its contribution to precipitation enhancement appear to be unidentified previously and may be important in other lake-effect storms over Tug Hill.

Full access
W. James Steenburgh and Leah S. Campbell

Abstract

Long-lake-axis-parallel (LLAP) lake-effect precipitation systems that form when the flow is parallel to the long axis of an elongated body of water frequently produce intense, highly localized snowfall. Conceptual models of these LLAP systems typically emphasize the role of thermally forced land breezes from the flanking shorelines, with low-level convergence and ascent centered near the lake axis. In reality, other factors such as shoreline geometry and differential surface roughness can strongly influence LLAP systems. Here a WRF Model simulation is used to examine the mesoscale forcing of lake-effect precipitation over Lake Ontario during IOP2b of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. In the simulation, the large-scale flow, shoreline geometry, and differential surface heating and roughness contribute to the development of three major airmass boundaries. The first is a land-breeze front that forms along a bulge in the south shoreline between St. Catharines, Ontario, Canada, and Thirty Mile Point, New York; extends downstream over eastern Lake Ontario; and plays a primary role in the LLAP system development. The second is a land-breeze front that forms along the southeast shoreline near Oswego, New York; extends downstream and obliquely across the LLAP system near Tug Hill; and influences inland precipitation processes. The third is a convergence zone that extends downstream from the north shoreline near Point Petre, Ontario, Canada; and contributes to the intermittent development of lake-effect precipitation north of the primary LLAP system. These results highlight the multifaceted nature of LLAP system development over Lake Ontario, especially the contributions of shoreline geometry and mesoscale airmass boundaries.

Full access
Dan Welsh, Bart Geerts, Xiaoqin Jing, Philip T. Bergmaier, Justin R. Minder, W. James Steenburgh, and Leah S. Campbell

Abstract

The distribution of radar-estimated precipitation from lake-effect snowbands over and downwind of Lake Ontario shows more snowfall in downwind areas than over the lake itself. Here, two nonexclusive processes contributing to this are examined: the collapse of convection that lofts hydrometeors over the lake and allows them to settle downwind; and stratiform ascent over land, due to the development of a stable boundary layer, frictional convergence, and terrain, leading to widespread precipitation there. The main data sources for this study are vertical profiles of radar reflectivity and hydrometeor vertical velocity in a well-defined, deep long-lake-axis-parallel band, observed on 11 December 2013 during the Ontario Winter Lake-effect Systems (OWLeS) project. The profiles are derived from an airborne W-band Doppler radar, as well as an array of four K-band radars, an X-band profiling radar, a scanning X-band radar, and a scanning S-band radar.

The presence of convection offshore is evident from deep, strong (up to 10 m s−1) updrafts producing bounded weak-echo regions and locally heavily rimed snow particles. The decrease of the standard deviation, skewness, and peak values of Doppler vertical velocity during the downwind shore crossing is consistent with the convection collapse hypothesis. Consistent with the stratiform ascent hypothesis are (i) an increase in mean vertical velocity over land; and (ii) an increasing abundance of large snowflakes at low levels and over land, due to depositional growth and aggregation, evident from flight-level and surface particle size distribution data, and from differences in reflectivity values from S-, X-, K-, and W-band radars at nearly the same time and location.

Full access
Philip T. Bergmaier and Bart Geerts

Abstract

The vast majority of lake-effect snow research throughout the years has focused on the North American Great Lakes since they are often associated with strong lake-effect events that produce heavy downstream snowfall. This study investigates a lake-effect snow event that instead occurred over two smaller lakes, the New York Finger Lakes, which are just O(5) km wide and O(50) km long. A pair of well-defined snowbands that formed over Seneca and Cayuga Lakes, the two largest of the Finger Lakes, were sampled from above by a vertically pointing Doppler radar and lidar on board the University of Wyoming King Air (UWKA). With typical widths matching the widths of the lakes, and depths of less than 1000 m, the long-lake-axis-parallel bands were actually quite intense for their size. For example, updrafts of 2–3 m s−1 or greater within the band cores were common, and reflectivity occasionally exceeded 5 dBZ. Airborne dual-Doppler data show that both bands were sometimes accompanied by a well-defined thermally driven secondary circulation. Lidar data reveal that the Cayuga Lake band contained significantly more liquid water than the band over Seneca Lake, which was composed mainly of ice. Dissipating lake-effect ice clouds, carried downstream from Lake Ontario toward Seneca Lake, likely seeded the emerging convection over Seneca Lake, resulting in an accelerated depletion of liquid in the Seneca Lake band via more efficient snow growth.

Full access
Leah S. Campbell, W. James Steenburgh, Peter G. Veals, Theodore W. Letcher, and Justin R. Minder

Abstract

Improved understanding of the influence of orography on lake-effect storms is crucial for weather forecasting in many lake-effect regions. The Tug Hill Plateau of northern New York (hereafter Tug Hill), rising 500 m above eastern Lake Ontario, experiences some of the most intense snowstorms in the world. Herein the authors investigate the enhancement of lake-effect snowfall over Tug Hill during IOP2b of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. During the 24-h study period, total liquid precipitation equivalent along the axis of maximum precipitation increased from 33.5 mm at a lowland (145 m MSL) site to 62.5 mm at an upland (385 m MSL) site, the latter yielding 101.5 cm of snow. However, the ratio of upland to lowland precipitation, or orographic ratio, varied with the mode of lake-effect precipitation. Strongly organized long-lake-axis parallel bands, some of which formed in association with the approach or passage of upper-level short-wave troughs, produced the highest precipitation rates but the smallest orographic ratios. Within these bands, radar echoes were deepest and strongest over Lake Ontario and the coastal lowlands and decreased in depth and median intensity over Tug Hill. In contrast, nonbanded broad-coverage periods exhibited the smallest precipitation rates and the largest orographic ratios, the latter reflecting an increase in the coverage and frequency of radar echoes over Tug Hill. These findings should aid operational forecasts and, given the predominance of broad-coverage lake-effect periods during the cool season, help explain the climatological snowfall maximum found over the Tug Hill Plateau.

Full access
Justin R. Minder, Theodore W. Letcher, Leah S. Campbell, Peter G. Veals, and W. James Steenburgh

Abstract

A pronounced snowfall maximum occurs about 30 km downwind of Lake Ontario over the 600-m-high Tug Hill Plateau (hereafter Tug Hill), a region where lake-effect convection is affected by mesoscale forcing associated with landfall and orographic uplift. Profiling radar data from the Ontario Winter Lake-effect Systems field campaign are used to characterize the inland evolution of lake-effect convection that produces the Tug Hill snowfall maximum. Four K-band profiling Micro Rain Radars (MRRs) were aligned in a transect from the Ontario coast onto Tug Hill. Additional observations were provided by an X-band profiling radar (XPR). Analysis is presented of a major lake-effect storm that produced 6.4-cm liquid precipitation equivalent (LPE) snowfall over Tug Hill. This event exhibited strong inland enhancement, with LPE increasing by a factor of 1.9 over 15-km horizontal distance. MRR profiles reveal that this enhancement was not due to increases in the depth or intensity of lake-effect convection. With increasing inland distance, echoes transitioned from a convective toward a stratiform morphology, becoming less intense, more uniform, more frequent, and less turbulent. An inland increase in echo frequency (possibly orographically forced) contributes somewhat to snowfall enhancement. The XPR observations reproduce the basic vertical structure seen by the MRRs while also revealing a suppression of snowfall below 600 m AGL upwind of Tug Hill, possibly associated with subcloud sublimation or hydrometeor advection. Statistics from 29 events demonstrate that the above-described inland evolution of convection is common for lake-effect storms east of Lake Ontario.

Full access