Browse

You are looking at 1 - 10 of 121,065 items for

  • Refine by Access: All Content x
Clear All
Yaodi Zhao and De-Zheng Sun

Abstract

An interesting aspect of the El Niño–Southern Oscillation (ENSO) phenomenon is the asymmetry between its two phases. This paper evaluates the simulations of this property of ENSO by the Coupled Model Intercomparison Project phase 6 (CMIP6) models. Both the surface and subsurface signals of ENSO are examined for this purpose. The results show that the models still underestimate ENSO asymmetry as shown in the SST field, but do a better job in the subsurface. A much weaker negative feedback from the net surface heat flux during La Niña in the models is identified as a factor causing the degradation of the ENSO asymmetry at the surface. The simulated asymmetry in the subsurface is still weaker than the observations owing to a weaker dynamic coupling between the atmosphere and ocean. Consistent with the finding of a weaker dynamic coupling strength, the precipitation response to the SST changes is also found to be weaker in the models. The results underscore that a more objective assessment of the simulation of ENSO by climate models may have to involve the examination of the subsurface signals. Future improvements in simulating ENSO will likely require a better simulation of the surface heat flux feedback from the atmosphere as well as the dynamical coupling strength between the atmosphere and ocean.

Significance Statement

The ENSO phenomenon affects weather and climate worldwide. An interesting aspect of this phenomenon is the asymmetry between its two phases. Previous studies have reported a weaker asymmetry in the simulations by climate models. But these studies have focused on the ENSO asymmetry at the surface. Here by examining the ENSO asymmetry at the surface and the subsurface, we have found that ENSO asymmetry is better simulated in the subsurface than at the surface. We have also identified factors that are responsible for the degradation of the ENSO asymmetry at the surface as well as the remaining weakness in the subsurface, pointing out specific pathways to take to further improve ENSO simulations by coupled climate models.

Restricted access
Ning Wei, Jianyang Xia, Jian Zhou, Lifen Jiang, Erqian Cui, Jiaye Ping, and Yiqi Luo

Abstract

The spatial and temporal variations in terrestrial carbon storage play a pivotal role in regulating future climate change. However, Earth system models (ESMs), which have coupled the terrestrial biosphere and atmosphere, show great uncertainty in simulating the global land carbon storage. Here, based on multiple global datasets and a traceability analysis, we diagnosed the uncertainty source of terrestrial carbon storage in 22 ESMs that participated in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The modeled global terrestrial carbon storage has converged among ESMs from CMIP5 (1936.9 ± 739.3 PgC) to CMIP6 (1774.4 ± 439.0 PgC) but is persistently lower than the observation-based estimates (2285 ± 669 PgC). By further decomposing terrestrial carbon storage into net primary production (NPP) and ecosystem carbon residence time (τE), we found that the decreased intermodel spread in land carbon storage primarily resulted from more accurate simulations on NPP among ESMs from CMIP5 to CMIP6. The persistent underestimation of land carbon storage was caused by the biased τE. In CMIP5 and CMIP6, the modeled τE was far shorter than the observation-based estimates. The potential reasons for the biased τE could be the lack of or incomplete representation of nutrient limitation, vertical soil biogeochemistry, and the permafrost carbon cycle. Moreover, the modeled τE became the key driver for the intermodel spread in global land carbon storage in CMIP6. Overall, our study indicates that CMIP6 models have greatly improved the terrestrial carbon cycle, with a decreased model spread in global terrestrial carbon storage and less uncertain productivity. However, more efforts are needed to understand and reduce the persistent data–model disagreement on carbon storage and residence time in the terrestrial biosphere.

Restricted access
Frank J. Pavia, C. Spencer Jones, and Sophia K. Hines

Abstract

Understanding the contribution of ocean circulation to glacial–interglacial climate change is a major focus of paleoceanography. Specifically, many have tried to determine whether the volumes and depths of Antarctic- and North Atlantic–sourced waters in the deep ocean changed at the Last Glacial Maximum (LGM; ∼22–18 kyr BP) when atmospheric pCO2 concentrations were 100 ppm lower than the preindustrial. Measurements of sedimentary geochemical proxies are the primary way that these deep ocean structural changes have been reconstructed. However, the main proxies used to reconstruct LGM Atlantic water mass geometry provide conflicting results as to whether North Atlantic–sourced waters shoaled during the LGM. Despite this, a number of idealized modeling studies have been advanced to describe the physical processes resulting in shoaled North Atlantic waters. This paper aims to critically assess the approaches used to determine LGM Atlantic circulation geometry and lay out best practices for future work. We first compile existing proxy data and paleoclimate model output to deduce the processes responsible for setting the ocean distributions of geochemical proxies in the LGM Atlantic Ocean. We highlight how small-scale mixing processes in the ocean interior can decouple tracer distributions from the large-scale circulation, complicating the straightforward interpretation of geochemical tracers as proxies for water mass structure. Finally, we outline promising paths toward ascertaining the LGM circulation structure more clearly and deeply.

Restricted access
Chongyang Zhang, Jiankai Zhang, Mian Xu, Siyi Zhao, and Xufan Xia

Abstract

Impacts of stratospheric polar vortex shift on the wintertime East Asian trough (EAT) on intraseasonal time scales are investigated using a reanalysis dataset and a climate model. The result based on composite analysis shows that the shift of the stratospheric polar vortex toward eastern Siberia (ES-shift event) is associated with higher geopotential height at 500 hPa than normal over East Asia, corresponding to the weakened EAT. Furthermore, the simulated EAT is also weakened when nudging the stratospheric state toward that during the ES-shift events. This study further found that there is no significant difference in the stratospheric polar vortex intensity between the ES-shift events and nonshift events, implying that the polar vortex strength change may have little influence on the possible connection between the polar vortex shift and the EAT change. The underlying mechanisms are listed as follows: First, the positive potential vorticity (PV) anomalies in the lower stratosphere associated with ES-shift events could explain approximately 40% of the local westerly anomalies in the upper troposphere to the north of East Asia via PV conservation, leading to the rise of the geopotential height over East Asia and the weakening of the EAT. Second, the shift of stratospheric polar vortex could modulate the synoptic-scale Rossby wave activity in the upper troposphere, favorable for the southward propagation of synoptic-scale waves and divergence of extended Eliassen-Palm flux in the upper troposphere. Finally, the transient wave feedback could enhance the tropospheric westerly anomalies in the north of East Asia and induce positive height anomalies to its south, further weakening the EAT. Our results revealed that the stratospheric polar vortex shift leads the EAT intensity variation by around 2–5 days, implying that the stratospheric polar vortex shift could be applicable to the prediction of the EAT intensity.

Restricted access
Eugene Wahl, Eduardo Zorita, and Andrew Hoell

Abstract

We present an offline paleo-data assimilation methodology that formally combines the analog assimilation method (AA) and the Kalman filter (KF), utilizing the KF as a postprocessor of the AA output. This methodology can be applied to reconstruct climate fields that are spatially separated from proxy-based reconstructions by using the spatial covariability generated by a climate model. Our method is applied to a set of spatially resolved and spatially consistent climate reconstructions of several variables reflecting different seasons, incorporating the application of methodological variants that have undergone rigorous testing in terms of both improving statistical methodology and physical interpretation. This contrasts with applications primarily based on transfer relationships of annual means of local, single variable or bivariate, climate model priors into paleo proxy states. The gains from adding the KF postprocessor are modest in our test case of reconstructing sea level pressure (SLP) geopotential height fields in the northeast Pacific, utilizing paleoclimatic temperature and moisture reconstructions in western North America. Notably, SLP reconstruction skill is enhanced in the oceanic region south of Alaska that is strongly associated with wet winters in western North America. The results suggest that the AA method is approaching optimality in this test case, driven by the quality of the paleoreconstruction information used to drive the AA process, along with the realism of the climate model employed, to which the KF postprocessing step is added. The derived reconstructions are then used for evaluation of the relationship between winter SLP and precipitation in California over the past ∼450 years.

Restricted access
Daniel Argüeso, A. Di Luca, N. C. Jourdain, R. Romero, and V. Homar

Abstract

The Maritime Continent is one of the most challenging regions for atmospheric models. Processes that modulate deep convection are poorly represented in models, which affects their ability to simulate precipitation features accurately. Thus, future projections of precipitation over the region are prone to large uncertainties. One of the key players in modeling tropical precipitation is the convective representation, and hence convection-permitting experiments have contributed to improve aspects of precipitation in models. This improvement creates opportunities to explore the physical processes that govern rainfall in the Maritime Continent, as well as their role in a warming climate. Here, we examine the response to climate change of models with explicit and parameterized convection and how that reflects in precipitation changes. We focus on the intensification of spatial contrasts as precursors of changes in mean and extreme precipitation in the tropical archipelago. Our results show that the broad picture is similar in both model setups, where islands will undergo an increase in mean and extreme precipitation in a warmer climate and the ocean will see less rain. However, the magnitude and spatial structure of such changes, as well as the projection of rainfall percentiles, are different across model experiments. We suggest that while the primary effect of climate change is thermodynamical and it is similarly reproduced by both model configurations, dynamical effects are represented quite differently in explicit and parameterized convection experiments. In this study, we link such differences to horizontal and vertical spatial contrasts and how convective representations translate them into precipitation changes.

Restricted access
Juan Feng and Wen Chen

Abstract

The subseasonal variation of the anomalous western North Pacific anticyclone (WNPAC) has important implications for East Asian summer monsoon variability. How the WNPAC evolves on the subseasonal time scale under the different configurations of tropical North Atlantic (TNA) Ocean and north Indian Ocean (NIO) SST warming is elucidated in this study. The WNPAC forced by individual TNA SST warming shows an obvious subseasonal variation with a stepwise northward movement. In contrast, the WNPAC forced by individual NIO SST warming shows a weak subseasonal variation, being nearly stabilized at around 20°N from June to August and thereby causing long-lasting and intense positive mei-yu–baiu–changma rainfall anomalies. The physical mechanism for the different subseasonal variation of WNPAC is further investigated. The TNA SST warming generates a WNPAC via a Rossby wave–induced divergence/convergence chain response. In this process, the TNA SST warming-induced suppressed convection over the western Pacific moves northward with the northward movement of climatological intertropical convergence zone and summer monsoon region, which generates a northward shift of the WNPAC. However, the NIO SST warming produces a WNPAC via a Kelvin wave–induced suppressed convection over the western Pacific Ocean. This suppressed convection is stabilized at around 20°N because of the Kelvin wave activity scope being limited within 20°N, which finally produces a nearly stationary WNPAC from June to August. In addition, under the simultaneous occurrence of the TNA and NIO SST warming, the subseasonal variation of WNPAC bears a resemblance to that for the individual NIO SST warming condition, where the TNA SST warming fails to exert its impact.

Restricted access
Wenhao Dong and Yi Ming

Abstract

The ratio of snowfall to total precipitation (S/P ratio) is an important metric that is widely used to detect and monitor hydrologic responses to climate change over mountainous areas. Changes in the S/P ratio over time have proved to be reliable indicators of climatic warming. In this study, the seasonality and interannual variability of monthly S/P ratios over High Mountain Asia (HMA) have been examined during the period 1950–2014 based on a three-member ensemble of simulations using the latest GFDL AM4 model. The results show a significant decreasing trend in S/P ratios during the analysis period, which has mainly resulted from reductions in snowfall, with increases in total precipitation playing a secondary role. Significant regime shifts in S/P ratios are detected around the mid-1990s, with rainfall becoming the dominant form of precipitation over HMA after the changepoints. Attribution analysis demonstrates that increases in rainfall during recent decades were primarily caused by a transformation of snowfall to rainfall as temperature warmed. A logistic equation is used to explore the relationship between the S/P ratio and surface temperature, allowing calculation of a threshold temperature at which the S/P ratio equals 50% (i.e., precipitation is equally likely to take the form of rainfall or snowfall). These temperature thresholds are higher over higher elevations. This study provides an extensive evaluation of simulated S/P ratios over the HMA that helps clarify the seasonality and interannual variability of this metric over the past several decades. The results have important socioeconomic and environmental implications, particularly with respect to water management in Asia under climate change.

Open access
Xueying Zhang, Xu Dong, Jing Zeng, Shugui Hou, Paul C. J. P. Smeets, Carleen H. Reijmer, and Yetang Wang

Abstract

MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature measurements in combination with in situ air temperature records from 119 meteorological stations are used to reconstruct a monthly near-surface air temperature product over the Antarctic Ice Sheet (AIS) by means of a neural network model. The product is generated on a regular grid of 0.05° × 0.05°, spanning from 2001 to 2018. Comparison with independent in situ air temperature measurements shows low uncertainty, with a mean bias of 0.09°C, a mean absolute error of 2.23°C, and a correlation coefficient of 97%. Furthermore, the performance of the reconstruction is better than ERA5 (the fifth-generation ECMWF reanalysis model) against in situ measurements. For the 2001–18 period, the MODIS-based near-surface air temperature product yields annual warming in the East Antarctica, but cooling in the Antarctic Peninsula and West Antarctica. However, they are not statistically significant. This product can also be used to investigate the impact of the Southern Hemisphere annual mode (SAM) on year-to-year variability of air temperature. The enhanced positive phase of SAM in recent decades in austral summer has a cooling effect on East and West Antarctica. In addition, the dataset has the potential application for climate model validation and data assimilation due to the independence of the input of a numerical weather prediction model.

Restricted access
Xiaoxuan Zhao, Riyu Lu, Buwen Dong, Xiaowei Hong, Junqi Liu, and Jianqi Sun

Abstract

In this study, we investigate circulation, convection, and sea surface temperature (SST) anomalies associated with interannual variability of the cross-equatorial flow (CEF) intensity over the Maritime Continent (MC) in boreal summer. Observational diagnostics show that strengthened CEF is associated with large-scale circulation anomalies featuring weakened Walker circulation, upper-level northeasterly anomalies across the MC, and lower-level cyclonic anomalies over the tropical western North Pacific (WNP). Further analyses indicate that strengthened CEF is associated with both La Niña–like SST anomalies in the preceding winter and El Niño–like SST anomalies in the simultaneous summer. These relationships between CEF and ENSO are established by two key convection regions: enhanced convection over WNP and depressed convection over the MC. A linear baroclinic model is applied here to further discuss the causality between circulation and convection. Results suggest that both the WNP heating and MC cooling can induce the strengthened CEF. Moreover, the stability of the relationship between CEF and El Niño–Southern Oscillation (ENSO) is also discussed. Results show that the relationship between CEF and SST anomalies in the simultaneous summer is stable and remains significant, whereas that between CEF and SST anomalies in the preceding winter experienced a decadal strengthening around 1997/98 from insignificant to significant. After 1998, the preceding winter ENSO is followed by strong summer SST anomalies in the MC that significantly affect CEF via modulating local convection. However, this ENSO–summer MC SST relationship is weak before 1997, failing to establish the relationship between the preceding ENSO and CEF.

Restricted access