Browse

You are looking at 1 - 10 of 121,790 items for

  • Refine by Access: All Content x
Clear All
Hsiao-Chun Lin
,
Juanzhen Sun
,
Tammy M. Weckwerth
,
Everette Joseph
, and
Junkyung Kay

Abstract

The New York State Mesonet (NYSM) has provided continuous in situ and remote sensing observations near the surface and within the lower troposphere since 2017. The dense observing network can capture the evolution of mesoscale motions with high temporal and spatial resolution. The objective of this study was to investigate whether the assimilation of NYSM observations into numerical weather prediction models could be beneficial for improving model analysis and short-term weather prediction. The study was conducted using a convective event that occurred in New York on 21 June 2021. A line of severe thunderstorms developed, decayed, and then reintensified as it propagated eastward across the state. Several data assimilation (DA) experiments were conducted to investigate the impact of NYSM data using the operational DA system Gridpoint Statistical Interpolation with rapid update cycles. The assimilated datasets included National Centers for Environmental Prediction Automated Data Processing global upper-air and surface observations, NYSM surface observations, Doppler lidar wind retrievals, and microwave radiometer (MWR) thermodynamic retrievals at NYSM profiler sites. In comparison with the control experiment that assimilated only conventional data, the timing and location of the convection reintensification was significantly improved by assimilating NYSM data, especially the Doppler lidar wind data. Our analysis indicated that the improvement could be attributed to improved simulation of the Mohawk–Hudson Convergence. We also found that the MWR DA resulted in degraded forecasts, likely due to large errors in the MWR temperature retrievals. Overall, this case study suggested the positive impact of assimilating NYSM surface and profiler data on forecasting summertime severe weather.

Open access
David P. Rowell
and
Ségolène Berthou

Abstract

Convection-permitting (CP) models promise much in response to the demand for increased localization of future climate information: greater resolution of influential land surface characteristics, improved representation of convective storms, and unprecedented resolution of user-relevant data. In practice, however, it is contended that the benefits of enhanced resolution cannot be fully realized due to the gap between models’ computational and effective resolution. Nevertheless, where surface forcing is strongly heterogeneous, one can argue that usable information may persist close to the grid scale. Here we analyze a 4.5-km resolution CP projection for Africa, asking whether and where fine-scale projection detail is robust at sub-25-km scales, focusing on geolocated rainfall features (rather than Lagrangian motion). Statistically significant detail for seasonal means and daily extremes is most frequent in regions of high topographic variability, most prominently in East Africa throughout the annual cycle, West Africa in the monsoon season, and to a lesser extent over Southern Africa. Lake coastal features have smaller but significant impacts on projection detail, whereas ocean coastlines and urban conurbations have little or no detectable impact. The amplitude of this sub-25-km projection detail can be similar to that of the local climatology in mountainous regions (or around a third near East Africa’s lake shores), so potentially beneficial for improved localization of future climate information. In flatter regions distant from coasts (the majority of Africa), spatial heterogeneity can be explained by chaotic weather variability. Here, the robustness of local climate projection information can be substantially enhanced by spatial aggregation to approximately 25-km scales, especially for daily extremes and equatorial regions.

Significance Statement

Recent substantial increases in the horizontal resolution of climate models bring the potential for both more reliable and more local future climate information. However, the best spatial scale on which to analyze such data for impacts assessments remains unclear. We examine a 4.5-km resolution climate projection for Africa, focusing on seasonal and daily rainfall. Spatially fixed fine-scale projection detail is found to be statistically robust at sub-25-km scales in the most mountainous regions and to a lesser extent along lake coastlines. Elsewhere, the model data may be better aggregated to at least 25-km scales to reduce sampling uncertainties. Such evolving guidance on the circumstances and extent of high-resolution data aggregation will help users gain greater benefit from climate model projections.

Open access
Xinyue Hao
,
Yiquan Jiang
,
Xiu-Qun Yang
,
Xiaohong Liu
,
Yang Zhang
,
Minghuai Wang
,
Yuan Liang
, and
Yong Wang

Abstract

Both South Asia and East Asia are the most polluted regions of the world. Unlike East Asia, the aerosol optical depth (AOD) over South Asia keeps increasing for all recent years, which calls for more attentions. This study investigates the impacts of anthropogenic emissions over South Asia on downstream region climate during spring with Community Earth System Model 2 (CESM2). The model results suggest that South Asian pollutants have significant impacts on East Asian spring climate, and the impacts could be even larger than local emitted aerosols. Two possible dynamical pathways (i.e., the northern and the southern pathways) bridging South Asian aerosol forcing and East Asian climate are proposed, and both ways are associated with the black carbon (BC) induced climate feedbacks surrounding Tibetan Plateau (TP).

The northern pathway is mainly due to the TP warming induced by BC snow darkening effect (SDE), which significantly reduces the surface air temperature (SAT) over northern East Asia. BC induced TP warming increases meridional thermal gradient and accelerates middle latitude jet stream, which favors the cold air activities over northern East Asia. The southern pathway is associated with BC’s “Elevated Heat Pump” hypothesis, which mainly affects the precipitation in southern East Asia. BC from South Asia accumulates near the south slope of TP, induces an abnormal ascending motion near Bay of Bengal. A compensating anomalous sinking motion is then forced in South China, which suppresses the precipitation there. A primary observational analysis is also performed to verify both dynamical pathways.

Restricted access
M. Andrés-Carcasona
,
M. Soria
,
E. García-Melendo
, and
A. Miró

Abstract

Robert’s rising thermal bubble (RRTB) is a benchmark case used to assess atmospheric models. In this paper, RRTB is further studied both using an analytical and a numerical approach, improving to a greater extent the qualitative description found in the literature. The theoretical framework used is that of buoyant thermals and scaling theory that together are able to predict part of the expected behavior of the bubble as it rises and, therefore, can be used to further validate the simulations. For the numerical experiments, we simulate both a two-dimensional and three-dimensional RRTB using a variety of convection schemes under the Boussinesq approximation and with a higher resolution. While the results are in agreement with those presented by previous authors on the same benchmark and also with the theoretical framework established, we add the quantitative measures to validate the underlying physics of the numerical model. Our results also show that, due to its completely chaotic nature when confined in a 2D plane, RRTB becomes a very challenging candidate to be used as a benchmark if only compared in a qualitative way, and when the 3D bubble is simulated, the shape changes significantly.

Restricted access
Chenyue Zhang
,
Ming Xue
,
Kefeng Zhu
, and
Xiaoding Yu

Abstract

A climatology of significant tornadoes [SIGTOR, tornadoes rated (E)F2+ on the (enhanced) Fujita scale] within China and in three subregions, including northern, central, and southern China, is first presented for the period 1980–2016. In total, 129 SIGTOR are recorded in China, with an average of 3.5 per year. The tornado inflow environments of the south-central and southeast regions of the United States (USC and USSE) are compared with those of China and its subregions based on sounding-derived parameters including shear, storm-relative helicity, convective available potential energy (CAPE), lifting condensation level (LCL), etc. Soundings are extracted from the ERA5 reanalysis dataset. The results confirm that the SIGTOR in USSE are characterized by high shear, low CAPE, and low LCL whereas those in USC are characterized by moderate-to-high shear, high CAPE, and high LCL. The thermodynamic conditions of tornadic cases are favorable for China, with moderate-to-high CAPE and low-to-moderate LCL, but their kinematic conditions are much less favorable than in the United States, a fact that is believed to be primarily responsible for the lower tornado frequency and intensity in China. The high CAPE in China is due mostly to high humidity. For three subregions in China, the central China cases account for 60% of total samples, and its environmental features are similar to those of China. The average shear with northern China cases is stronger than that with the other two subregions, and the midlayer is relatively dry. The southern China SIGTOR have the most conducive humidity conditions, but the CAPE and shear there are the lowest. The northern, central, and southern China environments can be considered as representative of midlatitude, subtropical, and tropical regions.

Significance Statement

We document the climatological characteristics of significant tornadoes (SIGTOR) within China and compare the inflow environments of SIGTOR in China and its subregions with those in the U.S. central and southeastern regions. The availability of hourly high-resolution ERA5 data makes the environments based on extracted proximity soundings much more accurate than possible with earlier reanalyses. The environmental characteristics show systematic differences in the tornado environments of different regions of China and the United States and suggest different roles played by thermodynamic and kinematic conditions for tornado formation. Overall, the environmental differences are consistent with the resulting frequency and intensities of SIGTOR. The findings are helpful toward improving tornado forecasting and warning or even understanding of potential impacts of climate change on SIGTOR, especially in China, where such studies are rarer.

Restricted access
José C. Fernández-Alvarez
,
Marta Vázquez
,
Albenis Pérez-Alarcón
,
Raquel Nieto
, and
Luis Gimeno

Abstract

Moisture transport and changes in the source–sink relationship play a vital role in the atmospheric branch of the hydrological cycle. Lagrangian approaches have emerged as the dominant tool to account for estimations of moisture sources and sinks; those that use the FLEXPART model fed by ERA-Interim reanalysis are most commonly used. With the release of the higher spatial resolution ERA5, it is crucial to compare the representation of moisture sources and sinks using the FLEXPART Lagrangian model with different resolutions in the input data, as well as its version for WRF-ARW input data, the FLEXPART-WRF. In this study, we compare this model for 2014 and moisture sources for the Iberian Peninsula and moisture sinks of North Atlantic and Mediterranean. For comparison criteria, we considered FLEXPARTv9.0 outputs forced by ERA-Interim reanalysis as “control” values. It is concluded that FLEXPARTv10.3 forced with ERA5 data at various horizontal resolutions (0.5° and 1°) represents moisture source and sink zones as represented forced by ERA-Interim (1°). In addition, the version fed with the dynamic downscaling WRF-ARW outputs (∼20 km), previously forced with ERA5, also represents these patterns accurately, allowing this tool to be used in future investigations at higher resolutions and for regional domains.

Significance Statement

The FLEXPART dispersion model forced with ERA5 reanalysis data at various resolutions represents moisture source and sink zones compared to when it is forced by ERA-Interim. When the Weather Research and Forecasting Model is used to dynamically downscale ERA5, FLEXPART-WRF can also represent moisture sources and sinks, allowing this tool to be used in future investigations requiring higher resolution and regional domains and on regions with a predominance of complex orography due to its ability to represent local moisture transport.

Restricted access
Samuel E. Muñoz
,
Brynnydd Hamilton
, and
B. Parazin

Abstract

The Mississippi River basin drains nearly one-half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gauge data to document the evolution of floods on the Missouri and Ohio Rivers—the two largest tributaries of the Mississippi River—and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains low-level jet, whereas Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño–Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. We also use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers.

Free access
Elizabeth J. McCabe
and
Jeffrey M. Freedman

Abstract

In a mid-latitude coastal region such as the New York Bight (NYB), the general thermodynamic structure and dynamics of the sea breeze circulation is poorly understood. The NYB sea breeze circulation is often amplified by and coterminous with other regional characteristics and phenomena such as complex coastal topology, a low-level jet (LLJ), and coastal upwelling. While typically considered a summertime phenomenon, the NYB sea breeze circulation occurs year-round.

This study creates a methodology to objectively identify sea breeze days and their associated LLJs from 2010 to 2020. Filtering parameters include surface-based observations of sea level pressure (SLP) gradient and diurnal tendencies, afternoon wind speed and direction tendencies, air temperature gradient, and the dewpoint depression. LLJs associated with the sea breeze circulation typically occur within 150 – 300 m MSL and are identified using a coastal New York State Mesonet (NYSM) profiler site. Along coastal Long Island, there are on average 32 sea breeze days annually, featuring winds consistently backing to the south and strengthening at or around 1800 UTC (1400 EDT). The NYB LLJ is most frequent in the summer months.

Sea breeze days are classified into two categories: Classic and Hybrid. A Classic sea breeze is driven primarily by both cross-shore pressure and temperature gradients, with light background winds; while a Hybrid sea breeze occurs in combination with other larger-scale features, such as frontal systems. Both types of sea breeze are similarly distributed with a maximum frequency during July.

Restricted access
Hirohiko Masunaga

Abstract

Tropical precipitation is climatologically most intense at the heart of the intertropical convergence zone (ITCZ), but this is not always true in instantaneous snapshots. Precipitation is amplified along the ITCZ edge rather than at its center from time to time. In this study, satellite observations of column water vapor, precipitation, and radiation as well as the thermodynamic field from reanalysis data are analyzed to investigate the behavior of ITCZ convection in light of the local atmospheric energy imbalance. The analysis is focused on the eastern Pacific ITCZ, defined as the areas where column water vapor exceeds 50 mm over a specified width (typically 400–600 km) in the domain of 180°–90°W and 20°S–20°N. The events with a precipitation maximum at the southern and northern edges of the ITCZ are each averaged into composite statistics and are contrasted against the reference case with peak precipitation at the ITCZ center. The key findings are as follows. When precipitation peaks at the ITCZ center, suppressed radiative cooling forms a prominent positive peak in the diabatic forcing to the atmosphere, counteracted by an export of moist static energy (MSE) owing to a deep vertical advection and a large horizontal export of MSE. When convection develops at the ITCZ edges, to the contrary, a positive peak of the diabatic forcing is only barely present. An import of MSE owing to a shallow ascent on the ITCZ edges presumably allows an edge intensification to occur despite the weak diabatic forcing.

Restricted access
Erik Crosman
,
Aaron M. Ward
,
Stephen W. Bieda III
,
T. Todd Lindley
,
Mike Gittinger
,
Sandip Pal
, and
Hemanth Vepuri

Abstract

While numerous collaborations exist between the atmospheric sciences research community and the US National Weather Service (NWS), collaborative research field studies between undergraduate (UG) students at universities and the NWS are less common. The SCORCHER (Summertime Canyon Observations and Research to Characterize Heat Extreme Regimes) study was an UG student-driven research field campaign conducted in Palo Duro Canyon State Park, Texas, USA, during the Summer of 2021. The SCORCHER campaign was mainly aimed at improving our basic scientific understanding of extreme heat, public safety and forecasting applications, and creating an empowering UG educational field research experience. This “in-box” article highlights the collaborative study design, execution, and lessons learned.

Full access