Browse

You are looking at 1 - 10 of 121,575 items for

  • Refine by Access: All Content x
Clear All
A. Bodas-Salcedo
,
J. M. Gregory
,
D. M. H. Sexton
, and
C. P. Morice

Abstract

We develop a statistical method to assess CMIP6 simulations of large-scale surface temperature change during the historical period (1850-2014), considering all timescales, allowing for the different unforced variability of each model and the observations, observational uncertainty, and applicable to ensembles of any size. The generality of this method, and the fact that it incorporates information about the unforced variability, makes it a useful model assessment tool. We apply this method to the historical simulations of the CMIP6 multi-model ensemble. We use three indices which measure different aspects of large-scale surface-air temperature change: global-mean, hemispheric gradient, and a recently-developed index that captures the sea-surface temperature (SST) pattern in the tropics (SST#; Fueglistaler and Silvers, 2021). We use the following observations: HadCRUT5 for the first two indices, and AMIPII and ERSSTv5 for SST#. In each case, we test the hypothesis that the model's forced response is compatible with the observations, accounting for unforced variability in both models and observations as well as measurement uncertainty. This hypothesis is accepted more often (75% of the models) for the hemispheric gradient than for the global mean, for which half of the models fail the test. The tropical SST pattern is poorly simulated in all models. Given that the tropical SST pattern can strongly modulate the relationship between energy imbalance and global-mean surface temperature anomalies on annual to decadal time scales (short-term feedback parameter), we suggest this should be a focus area for future improvements due to its potential implications for the global-mean temperature evolution in decadal time scales.

Restricted access
G Chagnaud
,
G Panthou
,
T Vischel
, and
T Lebel

Abstract

Rainfall in the Sahel is extremely variable on daily to multi-decadal timescales, challenging climate models to realistically simulate its past and future evolution and questioning their relevance for defining suitable climate change adaptation strategies. Improving confidence in climate models may be achieved by i) evaluating their capacity for reproducing observed climatic evolution and ii) attributing these evolution. Moreover, there is a need to consider relevant climatic indicators, from an end-user point of view. Fully-coupled (CMIP6-AOGCM) models with idealized detection and attribution forcings (DAMIP) as well as atmosphere-only simulations (AMIP) are used to investigate the respective roles of external forcing factors and internal climate variability.

We show that CMIP6 models contain signs of the intensification of the rainfall regime as detected over the past 35 years from a regional daily observations network. Both the increase in intensity and occurrence of wet days, as well as that of extreme daily rainfall, are remarkably well reproduced by historical simulations incorporating anthropogenic forcing factors, aerosols contributing the largest share of this trend. Though more strongly affected by model structure uncertainty, the greenhouse gases forcing also displays noticeably robust features. Models are shown to fail at simulating realistic dry extreme evolution.

These findings give incentive for further investigating the underlying physical mechanisms that drive the sahelian rainfall regime evolution at regional to sub-regional scales. Furthermore, future hydro-climatic trajectories in the Sahel should be explored, though particular caution is required as to which rainfall indicator to consider.

Restricted access
Peng Wang
,
James C. McWilliams
,
Dongxiao Wang
, and
Daling Li Yi

Abstract

Upwelling brings deep, cold, and nutrient-rich water to the euphotic zone, enhancing biological primary productivity. Coastal upwelling is affected by various factors, such as winds, topography, and tides. However, it remains unclear how the upwelling is affected by surface waves, particularly the Stokes drift and its related forces, that is, conservative wave effects. Here using a coupled wave–circulation model, we examined how conservative wave effects impact the wind-driven coastal upwelling system over an idealized continental shelf. We showed that conservative wave effects reduce upwelling but enhance downwelling; consequently, the amount of deep cold water brought up to the surface by upwelling is reduced with waves, leading to a weaker upwelling front than that without waves. Conservative wave effects also change the potential vorticity (PV) fluxes across the sea surface/bottom and alter the thickness of surface/bottom negative-PV layers. In addition, conservative wave effects modify the turbulent thermal wind (TTW) associated with the upwelling front, forming a Stokes–TTW balance. Further, we studied sensitivities of the upwelling and downwelling magnitudes to four parameters: wave height, wind stress, shelf slope, and wave incident angle. We combined these parameters into a single nondimensional number that can indicate when conservative wave effects need to be included in the upwelling and downwelling.

Significance Statement

Upwelling is important to the marine ecosystem because it enhances biological primary productivity by bringing nutrient-rich water to the euphotic zone from depths. However, it remains unclear how the upwelling is affected by ubiquitous surface waves. Here using numerical simulations, we showed that Stokes drift and its related forces due to surface waves reduce upwelling but enhance downwelling. It implies that there could be a substantial bias in the estimation of upwelling and downwelling if surface waves are not considered. Further, we proposed a nondimensional number to indicate when surface waves need to be considered in the upwelling and downwelling.

Open access
Hans Burchard
,
Karsten Bolding
,
Xaver Lange
, and
Alexander Osadchiev

Abstract

For Arctic estuaries that are characterized by landfast sea ice cover during the winter season, processes generating estuarine circulation and residual stratification have not yet been investigated, although some of the largest estuaries in the world belong to this class. Landfast sea ice provides a no-slip surface boundary condition in addition to the bottom boundary, such that frictional effects are expected to be increased. For this study of estuarine circulation and residual stratification under landfast sea ice, first, a simple linear analytical model is used. To include tidally varying scenarios, a water-column model is applied with a second-moment turbulence closure to juxtapose free-surface and ice-covered estuaries. Well-mixed and strongly stratified tidally periodic scenarios are analyzed by means of a decomposition of estuarine circulation into contributions from gravitational circulation, eddy viscosity–shear covariance (ESCO), surface stress, and river runoff. A new method is developed to also decompose tidal residual salinity anomaly profiles. Estuarine circulation intensity and tidally residual potential energy anomaly are studied for a parameter space spanned by the Simpson number and the unsteadiness number. These are the major results of this study that will support future scenario studies in Arctic estuaries under conditions of accelerated warming: (i) residual surface drag under ice opposes estuarine circulation; (ii) residual differential advection under ice destabilizes the near-surface flow; (iii) reversal of ESCO during strong stratification does not occur under landfast sea ice; (iv) tidal pumping (s-ESCO) contributes dominantly to residual stratification also with sea ice cover.

Significance Statement

Our work gives a first qualitative and quantitative understanding of how landfast sea ice cover on tidal estuaries impacts on the generation of estuarine circulation and residual stratification. Along the Arctic coasts, where some of the world’s largest estuaries are located, these processes play a significant role for the economy and ecology by means of transports of sediments, nutrients and pollutants. Due to Arctic amplification, the conditions for ice-covered estuaries are strongly changing in a way that the ice-covered periods may be shorter in the future. Our results intend to motivate field observations and realistic model studies to allow for better predicting the consequences of these changes.

Open access
David J. Wiersema
,
Katherine A. Lundquist
,
Jeffrey D. Mirocha
, and
Fotini Katopodes Chow

Abstract

This paper evaluates the representation of turbulence and its effect on transport and dispersion within multiscale and microscale-only simulations in an urban environment. These simulations, run using the Weather Research and Forecasting Model with the addition of an immersed boundary method, predict transport and mixing during a controlled tracer release from the Joint Urban 2003 field campaign in Oklahoma City, Oklahoma. This work extends the results of a recent study through analysis of turbulence kinetic energy and turbulence spectra and their role in accurately simulating wind speed, direction, and tracer concentration. The significance and role of surface heat fluxes and use of the cell perturbation method in the numerical simulation setup are also examined. Our previous study detailed the model development necessary for our multiscale simulations, examined model skill at predicting wind speeds and tracer concentrations, and demonstrated that dynamic downscaling from mesoscale to microscale through a sequence of nested simulations can improve predictions of transport and dispersion relative to a microscale-only simulation forced by idealized meteorology. Here, predictions are compared with observations to assess qualitative agreement and statistical model skill at predicting wind speed, wind direction, tracer concentration, and turbulent kinetic energy at locations throughout the city. We also investigate the scale distribution of turbulence and the associated impact on model skill, particularly for predictions of transport and dispersion. Our results show that downscaled large-scale turbulence, which is unique to the multiscale simulations, significantly improves predictions of tracer concentrations in this complex urban environment.

Significance Statement

Simulations of atmospheric transport and mixing in urban environments have many applications, including pollution modeling for urban planning or informing emergency response following a hazardous release. These applications include phenomena with spatial scales spanning from millimeters to kilometers. Most simulations resolve flow only within the urban area of interest, omitting larger scales of turbulence and regional influences. This study examines a method that resolves both the small and large-scale flow features. We evaluate simulation accuracy by comparing predictions with observations from an experiment involving the release of a tracer gas in Oklahoma City, Oklahoma, with emphasis on correctly modeling turbulent fluctuations. Our results demonstrate the importance of resolving large-scale flow features when predicting transport and dispersion in urban environments.

Open access
Zhenyu You
and
Yi Deng

Abstract

Mesoscale convective systems (MCSs) play a key role in regulating variability in the U.S. water and energy cycle. Here a hierarchical dissection of the multiscale forcing of springtime MCSs is carried out through a two-step classification process. Hierarchical clustering is first applied to spatiotemporally evolving upper-tropospheric height fields to reveal large-scale forcing patterns of MCSs. Five distinct forcing patterns (clusters) are identified with three being “remotely forced” and two associated with “local growth.” The upper-level troughs associated with these forcing patterns create broad envelopes downstream within which large-scale ascent and MCS genesis tend to occur. Further classification of MCSs based on MCS track locations reveals that local dynamic and thermodynamic forcing determines the precise locations of MCS genesis in the envelope created by large-scale forcing. Specifically, MCSs often occur near surface fronts in warm sectors of surface low pressure systems and are accompanied by low-level kinematic and moisture convergence driven by low-level jets (LLJs). Nearly 50% of spring MCSs are associated with potential instability realized through frontal lifting, and the highest probability of MCS genesis is seen with an environmental CAPE of ∼1400 J kg−1 and CIN of ∼150 J kg−1. The positive trend of the U.S. MCS genesis frequency observed in recent decades is found to be driven by the cluster of MCSs forced at large scale by the Pacific storm track. Regression analysis further suggests that the growing phase of the Pacific decadal oscillation (PDO) modulates the associated MCS large-scale forcing and is ultimately responsible for the positive MCS trend.

Significance Statement

The purpose of this study is to provide a systematic classification of multiscale forcing factors triggering mesoscale convective system development over the United States. These storms are very active in spring and often lead to intense rainfall and other weather hazards such as lightning, hail, and tornadoes. They play a key role in the U.S. hydrological cycle and have been occurring more frequently over the past several decades. Our study reveals the detailed characteristics of atmospheric forcing leading to these storms. Such information lays theoretical grounds for designing prediction schemes of warm season severe weather and provides guidance for model development to improve climate models’ simulation and long-term projection of these storms.

Restricted access
Patrick Murphy
and
Clifford Mass

Abstract

This paper examines the relationship between daily carbon emissions for California’s savanna and forest wildfires and regional meteorology over the past 18 years. For each fuel type, the associated weather (daily maximum wind, daily vapor pressure deficient (VPD), and 30-day-prior VPD) is determined for all fire days, the first day of each fire, and the day of maximum emissions of each fire at each fire location. Carbon emissions, used as a marker of wildfire existence and growth, for both savanna and forest wildfires are found to vary greatly with regional meteorology, with the relationship between emissions and meteorology varying with the amount of emissions, fire location, and fuel type. Weak emissions are associated with climatologically typical dryness and wind. For moderate emissions, increasing emissions are associated with higher VPD from increased warming and only display a weak relationship with wind speed. High emissions, which encompass ~85% of the total emissions but only ~4% of the fire days, are associated with strong winds and large VPDs. Using spatial meteorological composites for California subregions, we find that weak-to-moderate emissions are associated with modestly warmer-than-normal temperatures and light winds across the domain. In contrast, high emissions are associated with strong winds and substantial temperature anomalies, with colder than normal temperatures east of the Sierra Nevada and warmer than normal conditions over the coastal zone and the interior of California.

Restricted access
Peng Ji
,
Xing Yuan
,
Chunxiang Shi
,
Lipeng Jiang
,
Guoqing Wang
, and
Kun Yang

Abstract

With the improvement of meteorological forcings and surface parameters, high-resolution land surface modeling is expected to provide locally relevant information. Yet, its added value over the state-of-the-art global reanalysis products requires long-term evaluations over large areas, given uneven climate warming and significant land cover change. Here, the Conjunctive Surface-Subsurface Process version 2 (CSSPv2) model, with a reasonable representation of runoff generation, subgrid soil moisture variability and urban dynamics, is calibrated and used to perform a 6-km resolution simulation over China during 1979-2017. Evaluations against observations at thousands of stations and several satellite-based products show that the CSSPv2 has 67%, 29%, and 15% lower simulation errors for snow depth, evapotranspiration (ET), and surface and root-zone soil moisture, respectively, than nine global products. The median Kling-Gupta efficiency of the streamflow for 83 river basins is 0.66 after bulk calibrations, which is 0.38 higher than that of global datasets. The CSSPv2 also accurately simulates urban heat islands (UHIs) and the patterns and magnitudes of long-term snow depth, ET and soil moisture trends. However, the global products do not detect UHIs and overestimate the trends (or show opposite trends) of snow depth and ET. Sensitivity experiments with coarse-resolution forcings and surface parameters reveal that advanced model physics and high-resolution surface parameters are vital for improved simulations of snow depth, ET, soil moisture and UHIs, whereas high-resolution meteorological forcings are critical for modeling long-term trends. Our research emphasizes the substantial added value of long-term high-resolution land surface modeling to present global products at continental scales.

Restricted access
Youtong Zheng
and
Yi Ming

Abstract

Interpreting behaviors of low-level clouds (LLCs) in a climate model is often not straightforward. This is particularly so over polar oceans where frozen and unfrozen surfaces coexist, with horizontal winds streaming across them, shaping LLCs. To add clarity to this interpretation issue, we conduct budget analyses of LLCs using a global atmosphere model with a fully prognostic cloud scheme. After substantiating the model’s skill in reproducing observed LLCs, we use the modeled budgets of cloud fraction and water content to elucidate physics governing changes of LLCs across sea ice edges. Contrasting LLC regimes between open water and sea ice are found. LLCs over sea ice are primarily maintained by large-scale condensation: intermittent intrusions of maritime humid air and surface radiative cooling jointly sustain high relative humidity near the surface, forming extensive but tenuous stratus. This contrasts with the LLCs over open water where the convection and boundary layer condensation sustain the LLCs on top of deeper boundary layers. Such contrasting LLC regimes are influenced by the direction of horizontal advection. During on-ice flow, large-scale condensation dominates the regions, both open water and sea ice regions, forming clouds throughout the lowest several kilometers of the troposphere. During off-ice flow, as cold air masses travel over the open water, the cloud layer lifts and becomes denser, driven by increased surface fluxes that generate LLCs through boundary layer condensation and convective detrainment. These results hold in all seasons except summer when the atmosphere–surface decoupling substantially reduces the footprints of surface type changes.

Open access
Xueli Yin
,
Dongliang Yuan
,
Xiang Li
,
Zheng Wang
,
Yao Li
,
Corry Corvianawatie
,
Adhitya Kusuma Wardana
,
Dewi Surinati
,
Adi Purwandana
,
Mochamad Furqon Azis Ismail
,
Asep Sandra Budiman
,
Ahmad Bayhaqi
,
Praditya Avianto
,
Edi Kusmanto
,
Priyadi Dwi Santoso
,
Dirhamsyah
, and
Zainal Arifin

Abstract

The mean circulation and volume budgets in the upper 1200 m of the Maluku Sea are studied using multiyear current meter measurements of four moorings in the Maluku Channel and of one synchronous mooring in the Lifamatola Passage. The measurements show that the mean current in the depth range of 60–450 m is northward toward the Pacific Ocean with a mean transport of 2.07–2.60 Sv (1 Sv ≡ 106 m3 s−1). In the depth range of 450–1200 m, a mean western boundary current (WBC) flows southward through the western Maluku Sea and connects with the southward flow in the Lifamatola Passage. The mean currents in the central-eastern Maluku Channel are found to flow northward at this depth range, suggesting an anticlockwise western intensified gyre circulation in the middle layer of the Maluku Sea. Budget analyses suggest that the mean transport of the intermediate WBC is 1.83–2.25 Sv, which is balanced by three transports: 1) 0.62–0.93 Sv southward transport into the Seram–Banda Seas through the Lifamatola Passage, 2) 0.97–1.01 Sv returning to the western Pacific Ocean through the central-eastern Maluku Channel, and 3) a residual transport surplus, suggested to upwell to the upper layer joining the northward transport into the Pacific Ocean. The dynamics of the intermediate gyre circulation are explained by the potential vorticity (PV) integral constraint of a semienclosed basin.

Significance Statement

The Indonesian Throughflow plays an important role in the global ocean circulation and climate variations. Existing studies of the Indonesian Throughflow have focused on the upper thermocline currents. Here we identify, using mooring observations, an intermediate western boundary current with the core at 800–1000-m depth in the Maluku Sea, transporting intermediate waters from the Pacific into the Seram–Banda Seas through the Lifamatola Passage. Potential vorticity balance suggests an anticlockwise gyre circulation in the intermediate Maluku Sea, which is evidenced by the mooring and model data. Transport estimates suggest northward countercurrent in the upper Maluku Sea toward the Pacific, supplied by the Lifamatola Passage transport and upwelling from the intermediate layer in the Maluku Sea. Our results suggest the importance of the intermediate Indonesian Throughflow in global ocean circulation and overturn. More extensive investigations of the Indo-Pacific intermediate ocean circulation should be conducted to improve our understanding of global ocean overturn and heat and CO2 storages.

Restricted access