Browse

You are looking at 1 - 10 of 119,770 items for

  • Refine by Access: All Content x
Clear All
E. Adam Paxton, Matthew Chantry, Milan Klöwer, Leo Saffin, and Tim Palmer

Abstract

Motivated by recent advances in operational weather forecasting, we study the efficacy of low-precision arithmetic for climate simulations. We develop a framework to measure rounding error in a climate model, which provides a stress test for a low-precision version of the model, and we apply our method to a variety of models including the Lorenz system, a shallow water approximation for flow over a ridge, and a coarse-resolution spectral global atmospheric model with simplified parameterizations (SPEEDY). Although double precision [52 significant bits (sbits)] is standard across operational climate models, in our experiments we find that single precision (23 sbits) is more than enough and that as low as half precision (10 sbits) is often sufficient. For example, SPEEDY can be run with 12 sbits across the code with negligible rounding error, and with 10 sbits if minor errors are accepted, amounting to less than 0.1 mm (6 h)−1 for average gridpoint precipitation, for example. Our test is based on the Wasserstein metric and this provides stringent nonparametric bounds on rounding error accounting for annual means as well as extreme weather events. In addition, by testing models using both round-to-nearest (RN) and stochastic rounding (SR) we find that SR can mitigate rounding error across a range of applications, and thus our results also provide some evidence that SR could be relevant to next-generation climate models. Further research is needed to test if our results can be generalized to higher resolutions and alternative numerical schemes. However, the results open a promising avenue toward the use of low-precision hardware for improved climate modeling.

Significance Statement

Weather and climate models provide vital information for decision-making, and will become ever more important in the future with a changed climate and more extreme weather. A central limitation to improved models are computational resources, which is why some weather forecasters have recently shifted from conventional 64-bit to more efficient 32-bit computations, which can provide equally accurate forecasts. Climate models, however, still compute in 64 bits, and adapting to lower precision requires a detailed analysis of rounding errors. We develop methods to quantify rounding error in a climate model, and find similar precision acceptable across weather and climate models, with even 16 bits often sufficient for an accurate climate. This opens a promising avenue for computational efficiency gains in climate modeling.

Open access
Satoru Okajima, Hisashi Nakamura, and Yohai Kaspi

Abstract

Storm-track activity over the North Pacific (NP) climatologically exhibits a clear minimum in midwinter, when the westerly jet speed sharply maximizes. This counterintuitive phenomenon, referred to as the “midwinter minimum (MWM),” has been investigated from various perspectives, but the mechanisms are still to be unrevealed. Toward better understanding of this phenomenon, the present study delineates the detailed seasonal evolution of climatological-mean Eulerian statistics and energetics of migratory eddies along the NP storm track over 60 years. As a comprehensive investigation of the mechanisms for the MWM, this study has revealed that the net eddy conversion/generation rate normalized by the eddy total energy, which is independent of eddy amplitude, is indeed reduced in midwinter. The reduction from early winter occurs mainly due to the decreased effectiveness of the baroclinic energy conversion through seasonally weakened temperature fluctuations and the resultant poleward eddy heat flux. The reduced net normalized conversion/generation rate in midwinter is also found to arise in part from the seasonally enhanced kinetic energy conversion from eddies into the strongly diffluent Pacific jet around its exit. The seasonality of the net energy influx also contributes especially to the spring recovery of the net normalized conversion/generation rate. The midwinter reduction in the normalized rates of both the net energy conversion/generation and baroclinic energy conversion was more pronounced in the period before the late 1980s, during which the MWM of the storm-track activity was climatologically more prominent.

Open access
Antoine Hochet, Thierry Huck, Olivier Arzel, Florian Sévellec, and Alain Colin de Verdière

Abstract

One of the proposed mechanisms to explain the multidecadal variability observed in sea surface temperature of the North Atlantic Ocean consists of a large-scale low-frequency internal mode spontaneously developing because of the large-scale baroclinic instability of the time-mean circulation. Even though this mode has been extensively studied in terms of the buoyancy variance budget, its energetic properties remain poorly known. Here we perform the full mechanical energy budget including available potential energy (APE) and kinetic energy (KE) of this internal mode and decompose the budget into three frequency bands: mean, low frequency (LF) associated with the large-scale mode, and high frequency (HF) associated with mesoscale eddy turbulence. This decomposition allows us to diagnose the energy fluxes between the different reservoirs and to understand the sources and sinks. Because of the large scale of the mode, most of its energy is contained in the APE. In our configuration, the only source of LF APE is the transfer from mean APE to LF APE that is attributed to the large-scale baroclinic instability. In return the sinks of LF APE are the parameterized diffusion, the flux toward HF APE, and, to a much lesser extent, the flux toward LF KE. The presence of an additional wind stress component weakens multidecadal oscillations and modifies the energy fluxes between the different energy reservoirs. The KE transfer appears to only have a minor influence on the multidecadal mode relative to the other energy sources involving APE, in all experiments. These results highlight the utility of the full APE–KE budget.

Restricted access
Alex O. Gonzalez, Indrani Ganguly, Marie C. McGraw, and James G. Larson

Abstract

The latitudinal location of the east Pacific Ocean intertropical convergence zone (ITCZ) changes on time scales of days to weeks during boreal spring. This study focuses on tropical near-surface dynamics in the days leading up to the two most frequent types of ITCZ events, nITCZ (Northern Hemisphere) and dITCZ (double). There is a rapid daily evolution of dynamical features on top of a slower, weekly evolution that occurs leading up to and after nITCZ and dITCZ events. Zonally elongated bands of anomalous cross-equatorial flow and off-equatorial convergence rapidly intensify and peak 1 day before or the day of these ITCZ events, followed 1 or 2 days later by a peak in near-equatorial zonal wind anomalies. In addition, there is a wide region north of the southeast Pacific subtropical high where anomalous northwesterlies strengthen prior to nITCZ events and southeasterlies strengthen before dITCZ events. Anomalous zonal and meridional near-surface momentum budgets reveal that the terms associated with Ekman balance are of first-order importance preceding nITCZ events, but that the meridional momentum advective terms are just as important before dITCZ events. Variations in cross-equatorial flow are promoted by the meridional pressure gradient force (PGF) prior to nITCZ events and the meridional advection of meridional momentum in addition to the meridional PGF before dITCZ events. Meanwhile, variations in near-equatorial easterlies are driven by the zonal PGF and the Coriolis force preceding nITCZ events and the zonal PGF, the Coriolis force, and the meridional advection of zonal momentum before dITCZ events.

Open access
M. Kathleen Brennan and Gregory J. Hakim

Abstract

Arctic sea ice decline in recent decades has been dramatic; however, few long-term records of Arctic sea ice exist to put such a decline in context. Here we employ an ensemble Kalman filter data assimilation approach to reconstruct Arctic sea ice concentration over the last two millennia by assimilating temperature-sensitive proxy records with ensembles drawn from last millennium climate model simulations. We first test the efficacy of this method using pseudoproxy experiments. Results show good agreement between the target and reconstructed total Arctic sea ice extent (R 2 value and coefficient of efficiency values of 0.51 and 0.47 for perfect model experiments and 0.43 and 0.43 for imperfect model experiments). Imperfect model experiments indicate that the reconstructions inherit some bias from the model prior. We assimilate 487 temperature-sensitive proxy records with two climate model simulations to produce two gridded reconstructions of Arctic sea ice over the last two millennia. These reconstructions show good agreement with satellite observations between 1979 and 1999 CE for total Arctic sea ice extent with an R 2 value and coefficient of efficiency of about 0.60 and 0.50, respectively, for both models. Regional quantities derived from these reconstructions show encouraging similarities with independent reconstructions and sea ice sensitive proxy records from the Barents Sea, Baffin Bay, and East Greenland Sea. The reconstructions show a positive trend in Arctic sea ice extent between around 750 and 1820 CE, and increases during years with large volcanic eruptions that persist for about 5 years. Trend analysis of total Arctic sea ice extent reveals that for time periods longer than 30 years, the satellite era decline in total Arctic sea ice extent is unprecedented over the last millennium.

Significance Statement

Areal coverage of Arctic sea ice is a critical aspect of the climate system that has been changing rapidly in recent decades. Prior to the advent of satellite observations, sparse observations of Arctic sea ice make it difficult to put the current changes in context. Here we reconstruct annual averages of Arctic sea ice coverage for the last two millennia by combining temperature-sensitive proxy records (i.e., ice cores, tree rings, and corals) with climate model simulations using a statistical technique called data assimilation. We find large interannual changes in Arctic sea ice coverage prior to 1850 that are associated with volcanic eruptions, with a steady rise in Arctic sea ice coverage between 750 and 1820 CE. The satellite-period loss of sea ice has no analog during the last millennium.

Restricted access
Marie C. McGraw, Eduardo Blanchard-Wrigglesworth, Robin P. Clancy, and Cecilia M. Bitz

Abstract

The predictability of sea ice during extreme sea ice loss events on subseasonal (daily to weekly) time scales is explored in dynamical forecast models. These extreme sea ice loss events (defined as the 5th percentile of the 5-day change in sea ice extent) exhibit substantial regional and seasonal variability; in the central Arctic Ocean basin, most subseasonal rapid ice loss occurs in the summer, but in the marginal seas rapid sea ice loss occurs year-round. Dynamical forecast models are largely able to capture the seasonality of these extreme sea ice loss events. In most regions in the summertime, sea ice forecast skill is lower on extreme sea ice loss days than on nonextreme days, despite evidence that links these extreme events to large-scale atmospheric patterns; in the wintertime, the difference between extreme and nonextreme days is less pronounced. In a damped anomaly forecast benchmark estimate, the forecast error remains high following extreme sea ice loss events and does not return to typical error levels for many weeks; this signal is less robust in the dynamical forecast models but still present. Overall, these results suggest that sea ice forecast skill is generally lower during and after extreme sea ice loss events and also that, while dynamical forecast models are capable of simulating extreme sea ice loss events with similar characteristics to what we observe, forecast skill from dynamical models is limited by biases in mean state and variability and errors in the initialization.

Significance Statement

We studied weather model forecasts of changes in Arctic sea ice extent on day-to-day time scales in different regions and seasons. We were especially interested in extreme sea ice loss days, or days in which sea ice melts very quickly or is reduced due to diverging forces such as winds, ocean currents, and waves. We find that forecast models generally capture the observed timing of extreme sea ice loss days. We also find that forecasts of sea ice extent are worse on extreme sea ice loss days compared to typical days, and that forecast errors remain elevated following extreme sea ice loss events.

Restricted access
Tianbao Zhao and Aiguo Dai

Abstract

Drought is projected to become more severe and widespread as global warming continues in the twenty-first century, but hydroclimatic changes and their drivers are not well examined in the latest projections from phase 6 of the Coupled Model Intercomparison Project (CMIP6). Here, precipitation (P), evapotranspiration (E), soil moisture (SM), and runoff (R) from 25 CMIP6 models, together with self-calibrated Palmer drought severity index with Penman–Monteith potential evapotranspiration (scPDSIpm), are analyzed to quantify hydroclimatic and drought changes in the twenty-first century and the underlying causes. Results confirm consistent drying in these hydroclimatic metrics across most of the Americas (including the Amazon), Europe and the Mediterranean region, southern Africa, and Australia, although the drying magnitude differs, with the drying being more severe and widespread in surface SM than in total SM. Global drought frequency based on surface SM and scPDSIpm increases by ∼25%–100% (50%–200%) under the SSP2-4.5 (SSP5-8.5) scenario in the twenty-first century together with large increases in drought duration and areas, which result from a decrease in the mean and flattening of the probability distribution functions of SM and scPDSIpm, while the R-based drought changes are relatively small. Changes in both P and E contribute to the SM change, whereas scPDSIpm decreases result from ubiquitous PET increases and P decreases over subtropical areas. The R changes are determined primarily by P changes, while the PET change explains most of the E increase. Intermodel spreads in surface SM and R changes are large, leading to large uncertainties in the drought projections.

SIGNIFICANCE STATEMENT

Drought may become more severe and widespread under greenhouse gas (GHG)-induced global warming in the twenty-first century based on model projections. However, there are still large uncertainties in projected future drought changes, especially regarding the extent to which drought changes depend on drought indices and the future emissions scenarios analyzed. The latest projections from CMIP6 models reaffirm the widespread drying and increases in agricultural drought by up to 200% over most of the Americas (including the Amazon), Europe and the Mediterranean region, southern Africa, Southeast Asia, and Australia under moderate-to-high emissions scenarios in the twenty-first century, despite large uncertainties in individual projections partly due to internal variability. Ubiquitous increases in atmospheric demand for moisture under rising temperatures and precipitation decreases over many subtropical regions are the main driver of the projected drying and drought increases.

Restricted access
Alexander Khain, M. Pinsky, and A. Korolev

Abstract

The process of glaciation in mixed-phase stratiform clouds was investigated by a novel Lagrangian–Eulerian model (LEM) in which thousands of adjoining Lagrangian parcels moved within a turbulent-like velocity field with statistical parameters typical of the Arctic boundary layer. We used detailed bin microphysics to describe the condensation/evaporation processes in each parcel, in which droplets, aerosols, and ice particles were described using size distributions of 500 mass bins. The model also calculated aerosol mass inside droplets and ice particles. Gravitational sedimentation of droplets and ice particles was also accounted for. Assuming that droplet freezing is the primary source of ice particles, the Arctic clouds observed in Indirect and Semi-Direct Aerosol Campaign (ISDAC) were successfully simulated. The model showed that at a low ice particle concentration typical of ISDAC, large vortices (eddies) led to a quasi-stationary regime, in which mixed-phase St existed for a long time. The large eddies controlled the water partitioning in the mixed-phase clouds. Droplets formed and grew in updrafts, typically reaching the cloud top, and evaporated in downdrafts. Ice particles grew in updrafts and downdrafts. The Wegener–Bergeron–Findeisen (WBF) mechanism was efficient in downdrafts and some parts of updrafts, depending on ice concentration and vertical velocity. At low ice concentrations, the effect of ice on the phase partitioning was negligible. In this regime, liquid droplets were found near the cloud top, whereas ice particles precipitated through the cloud base. When ice concentration exceeded about 10 L−1, the WBF mechanism led to glaciation of almost the entire cloud, with the exception of narrow cloud regions associated with strong updrafts. At ice particle concentrations of a few tens per liter, the oscillatory regime took place due to the ice–liquid interaction. The microphysical structure of mixed-phase St forms as a combined effect of cloud dynamics (large eddies) and the WBF mechanism.

Restricted access
Raphaël Rousseau-Rizzi, Timothy M. Merlis, and Nadir Jeevanjee

Abstract

Tropical cyclone (TC) potential intensity (PI) theory has a well-known form, consistent with a Carnot cycle interpretation of TC energetics, which relates PI to mean environmental conditions: the difference between surface and TC outflow temperatures and the air–sea enthalpy disequilibrium. PI has also been defined as a difference in convective available potential energy (CAPE) between two parcels, and quantitative assessments of future changes make use of a numerical algorithm based on this definition. Here, an analysis shows the conditions under which these Carnot and CAPE-based PI definitions are equivalent. There are multiple conditions, not previously enumerated, which in particular reveal a role for irreversible entropy production from surface evaporation. This mathematical analysis is verified by numerical calculations of PI’s sensitivity to large changes in surface-air relative humidity. To gain physical insight into the connection between the CAPE and Carnot formulations of PI, we use a recently developed analytic theory for CAPE to derive, starting from the CAPE-based definition, a new approximate formula for PI that nearly recovers the previous Carnot PI formula. The derivation shows that the difference in undilute buoyancies of saturated and environmental parcels that determines CAPE PI can in fact be expressed as a difference in the parcels’ surface moist static energy, providing a physical link between the Carnot and CAPE formulations of PI. This combination of analysis and physical interpretation builds confidence in previous numerical CAPE-based PI calculations that use climate model projections of the future tropical environment.

Restricted access
Hiroaki Ueda, Masaya Kuramochi, Koutarou Takaya, Yuhei Takaya, Saki Asano, and Shuhei Maeda

Abstract

Upper-tropospheric anticyclones (UTACs) emerge throughout the seasons with changing location and intensity. Here, the formation mechanisms of these UTACs, especially in the Asian–Australian–western Pacific sector, were investigated based on the diagnosis of the vorticity equation as well as the contribution of the planetary waves. During June–July–August (JJA), a vigorous UTAC corresponding to the South Asian high (SAH) forms over South Asia, to the south of the Tibetan Plateau, where intense heating associated with the Asian summer monsoon rainfall and the resultant baroclinic Rossby response are the important physical processes. Meanwhile, the produced anticyclonic vorticity is farther transported by the interhemispheric divergent wind toward the Southern Hemisphere (SH), creating the SH UTAC centered over the Maritime Continent. During December–January–February (DJF), two zonally elongated UTACs reside on each side of the equator (∼10° poleward), mainly over the Maritime Continent–western Pacific sector. Upon a closer look at the NH winter, we observed that the northern parts of UTAC cannot be explained by this vorticity balance alone. Diagnosis of the wave activity flux indicated that planetary waves emanating from the cold Eurasian continent converges around the northern parts of the UTAC with its peak in the NH winter, which weakens the subtropical jet, thus generating UTAC. Configuration of the SH summer (DJF) UTAC bears resemblance with that of SAH. These results suggest that the creation of anticyclonic vorticity and its interhemispheric transportation as well as the propagation of planetary wave are the selectively important agents for the genesis of seasonally varying UTACs.

Significance Statement

Recent studies have provided evidence that the South Asian high (formerly Tibetan high) is not a purely thermally driven system only maintained over the elevated Tibetan Plateau. This study aims to understand the physical processes responsible for the genesis of the upper-tropospheric anticyclone, especially in the Asian–Australian–western Pacific sector, throughout the season. During summer in the Northern Hemisphere, deep heating caused by South Asian monsoon rainfall plays a crucial role in the genesis of the South Asian high. The wintertime anticyclone emerging over the subtropical western North Pacific is caused via remote influences anchored with tropical convection and the cold Eurasian continent in which atmospheric teleconnections are important. These findings provide new avenues for research on tropical–extratropical interactions with respect to the formation and variability of important climate phenomena.

Open access