Browse

You are looking at 1 - 10 of 18,114 items for :

  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All
Joël Stein
and
Fabien Stoop

Abstract

A procedure for evaluating the quality of probabilistic forecasts of binary events has been developed. This is based on a two-step procedure: pooling of forecasts on the one hand and observations on the other hand, on all the points of a neighborhood in order to obtain frequencies at the neighborhood length scale and then to calculate the Brier divergence for these neighborhood frequencies. This score allows the comparison of a probabilistic forecast and observations at the neighborhood length scale, and therefore, the rewarding of event forecasts shifted from the location of the observed event by a distance smaller than the neighborhood size. A new decomposition of this score generalizes that of the Brier score and allows the separation of the generalized resolution, reliability, and uncertainty terms. The neighborhood Brier divergence skill score (BDnSS) measures the performance of the probabilistic forecast against the sample climatology. BDnSS and its decomposition have been used for idealized and real cases in order to show the utility of neighborhoods when comparing at different scales the performances of ensemble forecasts between themselves or with deterministic forecasts or of deterministic forecasts between themselves.

Significance Statement

A pooling of forecasts on the one hand and observations on the other hand, on all the points of a neighborhood, is performed in order to obtain frequencies at the neighborhood scale. The Brier divergence is then calculated for these neighborhood frequencies to compare a probabilistic forecast and observations at the neighborhood scale. A new decomposition of this score generalizes that of the Brier score and allows the separation of the generalized resolution, reliability, and uncertainty terms. This uncertainty term is used to define the neighborhood Brier divergence skill score which is an alternative to the popular fractions skill score, with a more appropriate denominator.

Open access
Shawn S. Murdzek
,
Yvette P. Richardson
, and
Paul M. Markowski

Abstract

Previous work found that cold pools in ordinary convection are more sensitive to the microphysics scheme when the lifting condensation level (LCL) is higher owing to a greater evaporation potential, which magnifies microphysical uncertainties. In the current study, we explore whether the same reasoning can be applied to supercellular cold pools. To do this, four perturbed-microphysics ensembles are run, with each using an environment with a different LCL. Similar to ordinary convection, the sensitivity of supercellular cold pools to the microphysics increases with higher LCLs, though the physical reasoning for this increase in sensitivity differs from a previous study. Using buoyancy budgets along parcel trajectories that terminate in the cold pool, we find that negative buoyancy generated by microphysical cooling is partially countered by a decrease in environmental potential temperatures as the parcel descends. This partial erosion of negative buoyancy as parcels descend is most pronounced in the low-LCL storms, which have steeper vertical profiles of environmental potential temperature in the lower atmosphere. When this erosion is accounted for, the strength of the strongest cold pools in the low-LCL ensemble is reduced, resulting in a narrower distribution of cold pool strengths. This narrower distribution is indicative of reduced sensitivity to the microphysics. These results suggest that supercell behavior and supercell hazards (e.g., tornadoes) may be more predictable in low-LCL environments.

Significance Statement

Thunderstorms typically produce “pools” of cold air beneath them owing in part to the evaporation of rain and melting of ice produced by the storm. Past work has found that in computer simulations of thunderstorms, the cold pools that form beneath thunderstorms are sensitive to how rain and ice are modeled in the simulation. In this study, we show that in the strongest thunderstorms that are capable of producing tornadoes, this sensitivity is reduced when the humidity in the lowest few kilometers above the surface is increased. Exploring why the sensitivity is reduced when the humidity increases provides a deeper understanding of the relationship between humidity and cold pool strength, which is important for severe storm forecasting.

Restricted access
Jingnan Wang
,
Xiaodong Wang
,
Jiping Guan
,
Lifeng Zhang
,
Tao Chang
, and
Wei Yu

Abstract

The forecast uncertainty, particularly for precipitation, serves as a crucial indicator of the reliability of deterministic forecasts. Traditionally, forecast uncertainty is estimated by ensemble forecasting, which is computationally expensive since the forecast model is run multiple times with perturbations. Recently, deep learning methods have been explored to learn the statistical properties of ensemble prediction systems due to their low computational costs. However, accurately and effectively capturing the uncertainty information in precipitation forecasts remains challenging. In this study, we present a novel spatiotemporal transformer network (ST-TransNet) as an alternative approach to estimate uncertainty with ensemble spread and probabilistic forecasts, by learning from historical ensemble forecasts. ST-TransNet features a hierarchical structure for extracting multiscale features and incorporates a spatiotemporal transformer module with window-based attention to capture correlations in both spatial and temporal dimensions. Additionally, window-based attention can not only extract local precipitation patterns but also reduce computational costs. The proposed ST-TransNet is evaluated on the TIGGE ensemble forecast dataset and Global Precipitation Measurement (GPM) precipitation products. Results show that ST-TransNet outperforms both traditional and deep learning methods across various metrics. Case studies further demonstrate its ability to generate reasonable and accurate spread and probability forecasts from a single deterministic precipitation forecast. It demonstrates the capacity and efficiency of neural networks in estimating precipitation forecast uncertainty.

Open access
Kelsey Malloy
and
Michael K. Tippett

Abstract

Tornado outbreaks—when multiple tornadoes occur within a short period of time—are rare yet impactful events. Here we developed a two-part stochastic tornado outbreak index for the contiguous United States (CONUS). The first component produces a probability map for outbreak tornado occurrence based on spatially resolved values of convective precipitation, storm relative helicity (SRH), and convective available potential energy. The second part of the index provides a probability distribution for the total number of tornadoes given the outbreak tornado probability map. Together these two components allow stochastic simulation of location and number of tornadoes that is consistent with environmental conditions. Storm report data from the Storm Prediction Center for the 1979–2021 period are used to train the model and evaluate its performance. In the first component, the probability of an outbreak-level tornado is most sensitive to SRH changes. In the second component, the total number of CONUS tornadoes depends on the sum and gridpoint maximum of the probability map. Overall, the tornado outbreak index represents the climatology, seasonal cycle, and interannual variability of tornado outbreak activity well, particularly over regions and seasons when tornado outbreaks occur most often. We found that El Niño–Southern Oscillation (ENSO) modulates the tornado outbreak index such that La Niña is associated with enhanced U.S. tornado outbreak activity over the Ohio River Valley and Tennessee River Valley regions during January–March, similar to the behavior seen in storm report data. We also found an upward trend in U.S. tornado outbreak activity during winter and spring for the 1979–2021 period using both observations and the index.

Significance Statement

Tornado outbreaks are when multiple tornadoes happen in a short time span. Because of the rare, sporadic nature of tornadoes, it can be challenging to use observational tornado reports directly to assess how climate affects tornado and tornado outbreak activity. Here, we developed a statistical model that produces a U.S. map of the likelihood that an outbreak-level tornado would occur based on environmental conditions. In addition, using that likelihood map, the model predicts a range of how many tornadoes could occur in these events. We found that “storm relative helicity” (a proxy for potential rotation in a storm’s updraft) is especially important for predicting outbreak tornado likelihood, and the sum and maximum value of the likelihood map is important for predicting total numbers for an event. Overall, this model can represent the typical behavior and fluctuations in tornado outbreak activity well. Both the tornado outbreak model and observations agree that the state of sea surface temperature in the tropical Pacific (El Niño–Southern Oscillation) is linked to tornado outbreak activity over the Ohio River Valley and Tennessee River Valley in winter through early spring and that there are upward trends in tornado outbreak activity.

Restricted access
Satoru Yoshida
,
Tetsu Sakai
,
Tomohiro Nagai
,
Yasutaka Ikuta
,
Teruyuki Kato
,
Koichi Shiraishi
,
Ryohei Kato
, and
Hiromu Seko

Abstract

We conducted field observations using two water vapor Raman lidars (RLs) in Kyushu, Japan, to clarify the characteristics of a moist low-level jet (MLLJ), which plays a fundamental role in the formation and maintenance of mesoscale convective systems (MCSs). The two RLs observed the inside and outside of an MLLJ, providing moisture to an MCS with local heavy precipitation on 9 July 2021. Our observations revealed that the MLLJ contained large amounts of moisture below the convective mixing layer height of 1.6 km. The large amount of moisture in the MLLJ might be intensified by low-level convergences and/or water vapor buoyancy facilitated by strong horizontal wind. We conducted four data assimilation experiments: CNTL that assimilated Japan Meteorological Agency operational observation data and three other experiments that ingested the lidar-derived vertical moisture profiles as well as the operational observation data. The experiments assimilating lidar-derived vertical moisture profiles caused intensification and southwestward extensions of the low-level convergence zone, resulting in local heavy precipitation at lower latitudes in experiments assimilating lidar-derived moisture profiles than in CNTL. All three experiments ingesting vertical moisture profiles generally produced better 9-h precipitation forecasts than CNTL, implying that the assimilation of vertical moisture profiles could be well suited for numerical weather prediction of local heavy precipitation. Moreover, the experiment assimilating both of the two RL sites’ data reproduced better forecast fields than experiments assimilating a single RL site’s data, implying that data assimilation of vertical moisture profiles at multiple RL sites enables us to improve initial conditions compared to a single RL site.

Significance Statement

Moist low-level jets (MLLJs) are moisture-rich airflows in the low-level atmosphere that play an important role in developing mesoscale convective systems and local heavy rainfall. To better understand the mechanisms affecting the development of local heavy rainfall events and to improve our ability to forecast them, studying the moisture structures in MLLJs is important. We succeeded in observing an MLLJ in western Japan using water vapor Raman lidars (RLs), which obtained vertical moisture profiles, and revealed details of vertical moisture structures in the MLLJ. We also performed data assimilation experiments to examine the impact of assimilating vertical moisture profiles observed by the RLs. The results showed that the assimilation of the moisture data improved the forecasting of local heavy rainfall.

Restricted access
Joshua Chun Kwang Lee
,
Javier Amezcua
, and
Ross Noel Bannister

Abstract

Two aspects of ensemble localization for data assimilation are explored using the simplified nonhydrostatic ABC model in a tropical setting. The first aspect (i) is the ability to prescribe different localization length scales for different variables (variable-dependent localization). The second aspect (ii) is the ability to control (i.e., to knock out by localization) multivariate error covariances (selective multivariate localization). These aspects are explored in order to shed light on the cross-covariances that are important in the tropics and to help determine the most appropriate localization configuration for a tropical ensemble–variational (EnVar) data assimilation system. Two localization schemes are implemented within the EnVar framework to achieve (i) and (ii). One is called the isolated variable-dependent localization (IVDL) scheme and the other is called the symmetric variable-dependent localization (SVDL) scheme. Multicycle observation system simulation experiments are conducted using IVDL or SVDL mainly with a 100-member ensemble, although other ensemble sizes are studied (between 10 and 1000 members). The results reveal that selective multivariate localization can reduce the cycle-averaged root-mean-square error (RMSE) in the experiments when cross-covariances associated with hydrostatic balance are retained and when zonal wind/mass error cross-covariances are knocked out. When variable-dependent horizontal and vertical localization are incrementally introduced, the cycle-averaged RMSE is further reduced. Overall, the best performing experiment using both variable-dependent and selective multivariate localization leads to a 3%–4% reduction in cycle-averaged RMSE compared to the traditional EnVar experiment. These results may inform the possible improvements to existing tropical numerical weather prediction systems that use EnVar data assimilation.

Open access
Haiqin Chen
,
Jidong Gao
,
Tao Sun
,
Yaodeng Chen
,
Yunheng Wang
, and
Jacob T. Carlin

Abstract

The differential reflectivity (Z DR) column is a notable polarimetric signature related to updrafts in deep moist convection. In this study, pseudo–water vapor (qυ ) observations are retrieved from observed Z DR columns under the assumption that humidity is saturated within the convection where Z DR columns are detected, and are then assimilated within the 3DVar framework. The impacts of assimilating pseudo-qυ observations from Z DR columns on short-term severe weather prediction are first evaluated for a squall-line case. Radar data analysis indicates that the Z DR columns are mainly located on the inflow side of the high-reflectivity region. Assimilation of the pseudo-qυ observations leads to an enhancement of qυ within the convection, while concurrently reducing humidity in no-rain areas. Sensitivity experiments indicate that a tuned smaller observation error and a shorter horizontal decorrelation scale are optimal for a better assimilation of pseudo-qυ from Z DR columns, resulting in more stable rain rates during short-term forecasts. Additionally, a 15-min cycling assimilation frequency yields the best performance, providing the most accurate reflectivity forecast in terms of both location and intensity. Analysis of thermodynamic fields reveal that assimilating Z DR columns provides more favorable initial conditions for sustaining convection, including sustainable moisture condition, a strong cold pool, and divergent winds near the surface, consequently enhancing reflectivity and precipitation. With the optimal configuration determined from the sensitivity tests, a quantitative evaluation further demonstrates that assimilating the pseudo-qυ observations from Z DR columns using the 3DVar method can improve the 0–3-h reflectivity and accumulated precipitation predictions of convective storms.

Restricted access
Paolo Giani
and
Paola Crippa

Abstract

We present a new ensemble of 36 numerical experiments aimed at comprehensively gauging the sensitivity of nested large-eddy simulations (LES) driven by large-scale dynamics. Specifically, we explore 36 multiscale configurations of the Weather Research and Forecasting (WRF) Model to simulate the boundary layer flow over the complex topography at the Perdigão field site, with five nested domains discretized at horizontal resolutions ranging from 11.25 km to 30 m. Each ensemble member has a unique combination of the following input factors: (i) large-scale initial and boundary conditions, (ii) subgrid turbulence modeling in the gray zone of turbulence, (iii) subgrid-scale (SGS) models in LES, and (iv) topography and land-cover datasets. We probe their relative importance for LES calculations of velocity, temperature, and moisture fields. Variance decomposition analysis unravels large sensitivities to topography and land-use datasets and very weak sensitivity to the LES SGS model. Discrepancies within ensemble members can be as large as 2.5 m s−1 for the time-averaged near-surface wind speed on the ridge and as large as 10 m s−1 without time averaging. At specific time points, a large fraction of this sensitivity can be explained by the different turbulence models in the gray zone domains. We implement a horizontal momentum and moisture budget routine in WRF to further elucidate the mechanisms behind the observed sensitivity, paving the way for an increased understanding of the tangible effects of the gray zone of turbulence problem.

Significance Statement

Several science and engineering applications, including wind turbine siting and operations, weather prediction, and downscaling of climate projections, call for high-resolution numerical simulations of the lowest part of the atmosphere. Recent studies have highlighted that such high-resolution simulations, coupled with large-scale models, are challenging and require several important assumptions. With a new set of numerical experiments, we evaluate and compare the significance of different assumptions and outstanding challenges in multiscale modeling (i.e., coupling large-scale models and high-resolution atmospheric simulations). The ultimate goal of this analysis is to put each individual assumption into the wider perspective of a realistic problem and quantify its relative importance compared to other important modeling choices.

Restricted access
Ingo Richter
,
Jayanthi V. Ratnam
,
Patrick Martineau
,
Pascal Oettli
,
Takeshi Doi
,
Tomomichi Ogata
,
Takahito Kataoka
, and
François Counillon

Abstract

Seasonal prediction systems are subject to systematic errors, including those introduced during the initialization procedure, that may degrade the forecast skill. Here we use a novel statistical postprocessing correction scheme that is based on canonical correlation analysis (CCA) to relate errors in ocean temperature arising during initialization with errors in the predicted sea surface temperature fields at 1–12-month lead time. In addition, the scheme uses CCA of simultaneous SST fields from the prediction and corresponding observations to correct pattern errors. Finally, simple scaling is used to mitigate systematic location and phasing errors as a function of lead time and calendar month. Applying this scheme to an ensemble of seven seasonal prediction models suggests that moderate improvement of prediction skill is achievable in the tropical Atlantic and, to a lesser extent, in the tropical Pacific and Indian Ocean. The scheme possesses several adjustable parameters, including the number of CCA modes retained, and the regions of the left and right CCA patterns. These parameters are selected using a simple tuning procedure based on the average of four skill metrics. The results of the present study indicate that errors in ocean temperature fields due to imperfect initialization and SST variability errors can have a sizable negative impact on SST prediction skill. Further development of prediction systems may be able to remedy these impacts to some extent.

Significance Statement

The prediction of year-to-year climate variability patterns, such as El Niño, offers potential benefits to society by aiding mitigation and adaptation efforts. Current prediction systems, however, may still have substantial room for improvement due to systematic model errors and due to imperfect initialization of the oceanic state at the start of predictions. Here we develop a statistical correction scheme to improve prediction skill after forecasts have been completed. The scheme shows some moderate success in improving the skill for predicting El Niño and similar climate patterns in seven prediction systems. Our results not only indicate a potential for improving prediction skill after the fact but also point to the importance of improving the way prediction systems are initialized.

Restricted access
Yasutaka Ikuta
and
Udai Shimada

Abstract

A few high-wind observations have been obtained from satellites over the ocean around tropical cyclones (TCs), but the impact of data assimilation of such observations over the sea on forecasting has not been clear. The spaceborne synthetic aperture radar (SAR) provides high-resolution and wide-area ocean surface wind speed data around the center of a TC. In this study, the impact of data assimilation of the ocean surface wind speed of SAR (OWSAR) on regional model forecasts was investigated. The assimilated data were estimated from SAR on board Sentinel-1 and RADARSAT-2. The bias of OWSAR depends on wind speed, the observation error variance depends on wind speed and incidence angle, and the spatial observation error correlation depends on the incidence angle. The observed OWSAR is screened using the variational quality control method with the Huber norm. In the case of Typhoon Hagibis (2019), OWSAR assimilation modified the TC low-level inflow, which also modified the TC upper-level outflow. The propagation of this OWSAR assimilation effect from the surface to the upper troposphere was given by a four-dimensional variational method that searches for the optimal solution within strong constraints on the time evolution of the forecast model. Statistical validation confirmed that errors in the TC intensity forecast decreased over lead times of 15 h, but this was not statistically significant. The validation using wind profiler observations showed that OWSAR assimilation significantly improved the accuracy of wind speed predictions from the middle to the upper level of the troposphere.

Significance Statement

The purpose of this study was to demonstrate the impact of the assimilation of ocean surface wind speed by synthetic aperture radar (SAR) on regional model predictions. In the case of tropical cyclones, ocean surface wind speed assimilation modified inflows in the lower layer and outflows in the upper layer. The results indicate that the SAR assimilation improves the accuracy of wind speed forecasts in the middle to upper troposphere.

Restricted access