Browse

You are looking at 1 - 10 of 18 items for :

  • Ocean Turbulence x
  • Refine by Access: All Content x
Clear All
Xia Liu, Mu Mu, and Qiang Wang

Abstract

Based on the Regional Ocean Modeling System (ROMS) and the conditional nonlinear optimal perturbation (CNOP) method, we explore the nonlinear optimal triggering perturbation of the Kuroshio large meander (LM) and its evolution, and reveal the role of nonlinear physical processes in the formation of the LM path. The results show that the large amplitudes of the perturbations are mainly located in the upper 2000 m in the southeastern area of Kyushu (29°–32°N, 131°–134°E), where the eastward propagation of the cold anomaly is vital to the formation of the LM path. By analyzing the depth-integrated vorticity equation of the perturbation, we find that linear advection, namely, the interaction between the perturbation and the reference field, tends to move the cyclonic eddy induced by the optimal triggering perturbation eastward, while the nonlinear advection associated with the interaction of perturbations tends to move the cyclonic eddy westward. The opposing effects of the nonlinear advection and the linear advection slow the eastward movement of the cyclonic eddy so that the eddy has a chance to effectively develop, eventually leading to the formation of the Kuroshio LM path.

Open access
Navid C. Constantinou

Abstract

Eddy saturation refers to a regime in which the total volume transport of an oceanic current is insensitive to the wind stress strength. Baroclinicity is currently believed to be the key to the development of an eddy-saturated state. In this paper, it is shown that eddy saturation can also occur in a purely barotropic flow over topography, without baroclinicity. Thus, eddy saturation is a fundamental property of barotropic dynamics above topography. It is demonstrated that the main factor controlling the appearance or not of eddy-saturated states in the barotropic setting is the structure of geostrophic contours, that is, the contours of f/H (the ratio of the Coriolis parameter to the ocean’s depth). Eddy-saturated states occur when the geostrophic contours are open, that is, when the geostrophic contours span the whole zonal extent of the domain. This minimal requirement for eddy-saturated states is demonstrated using numerical integrations of a single-layer quasigeostrophic flow over two different topographies characterized by either open or closed geostrophic contours with parameter values loosely inspired by the Southern Ocean. In this setting, transient eddies are produced through a barotropic–topographic instability that occurs because of the interaction of the large-scale zonal flow with the topography. By studying this barotropic–topographic instability insight is gained on how eddy-saturated states are established.

Full access
Masoud Jalali, Vamsi K. Chalamalla, and Sutanu Sarkar

Abstract

Evidence in support of overturn-based methods, often used to infer turbulent dissipation rate from density profiles, is typically from regions with weaker turbulence than that at rough-topography hotspots. The present work uses direct numerical simulations (DNS) of an idealized problem of sloping topography as well as high-resolution large-eddy simulation (LES) of turbulent flow at more realistic topography in order to investigate the accuracy of overturn-based methods in sites with internal wave breaking. Two methods are assessed: Thorpe sorting, where the overturn length L T is based on local distortion of measured density from the background, and inversion sorting, where the inversion length scale L I measures the statically unstable local region. The overturn boundaries are different between the two methods. Thorpe sorting leads to an order of magnitude overestimate of the turbulent dissipation in the DNS during large convective overturn events when inversion sorting is more accurate. The LES of steep, realistic topography leads to a similar conclusion of a substantial overestimate of dissipation by Thorpe sorting. Energy arguments explain the better performance of inversion sorting in convectively driven turbulence and the better performance of Thorpe sorting in shear-driven turbulence.

Full access
Catherine A. Vreugdenhil, Andrew McC. Hogg, Ross W. Griffiths, and Graham O. Hughes

Abstract

The relative roles of advective processes and mixing on the temporal adjustment of the meridional overturning circulation are examined, in particular the effects of mixing in either the abyssal or upper ocean. Laboratory experiments with convectively driven overturning and imposed stirring rates show that the circulation adjusts toward an equilibrium state on time scales governed by mixing in the upper boundary layer region but independent of the mixing rate in the bulk of the interior. The equilibrium state of the stratification is dependent only on the rate of mixing in the boundary layer. An idealized high-resolution ocean model shows adjustment (of a two-cell circulation) dominated primarily by the advective ventilation time scale, consistent with a view of the circulation determined by water mass transformation occurring primarily near the surface. Both the experiments and the model results indicate that adjustments of the circulation are controlled by surface buoyancy uptake (or rejection) and that the nonequilibrium circulation is dominated by advective processes, especially if the average abyssal ocean diffusivity is less than 3 × 10−5 m2 s−1.

Full access
Nicolas Grisouard and Leif N. Thomas

Abstract

Inertial waves propagating upward in a geostrophically balanced front experience critical reflections against the ocean surface. Such reflections naturally create oscillations with small vertical scales, and viscous friction becomes a dominant process. Here, friction modifies the polarization relations of internal waves and allows energy from the balanced front to be exchanged with the ageostrophic motions and eventually dissipated. In addition, while in the well-known inviscid case internal waves propagate on only two characteristics, this study demonstrates using an analytical model that strong viscous effects introduce additional oscillatory modes that can exchange energy with the front. Moreover, during a linear, near-critical reflection, the superposition of several of these oscillations induces an even stronger energy exchange with the front. When the Richardson number based on the frontal thermal wind shear is O(1), the rate of energy exchange peaks at wave frequencies that are near inertial and is comparable in magnitude to the energy flux of the incident, upward-propagating waves. Two-dimensional, linear numerical experiments confirm this finding. The analytical model also demonstrates that this process is qualitatively insensitive to the actual value of the viscosity or the form of the boundary condition at the surface. In fully nonlinear experiments, the authors recover these qualitative conclusions. However, nonlinear wave–wave interactions and turbulence in particular, strongly modify the amount of energy that is exchanged with the front. In practice, such nonlinear effects are only active when the incident waves have frequencies higher than the Coriolis frequency, since these configurations are conducive to near-resonant triad interactions between incident and reflected waves.

Full access
Sean Haney, Baylor Fox-Kemper, Keith Julien, and Adrean Webb

Abstract

Here, the effects of surface waves on submesoscale instabilities are studied through analytical and linear analyses as well as nonlinear large-eddy simulations of the wave-averaged Boussinesq equations. The wave averaging yields a surface-intensified current (Stokes drift) that advects momentum, adds to the total Coriolis force, and induces a Stokes shear force. The Stokes–Coriolis force alters the geostrophically balanced flow by reducing the burden on the Eulerian–Coriolis force to prop up the front, thereby potentially inciting an anti-Stokes Eulerian shear, while maintaining the Lagrangian (Eulerian plus Stokes) shear. Since the Lagrangian shear is maintained, the Charney–Stern–Pedlosky criteria for quasigeostrophic (QG) baroclinic instability are unchanged with the appropriate Lagrangian interpretation of the shear and QG potential vorticity. While the Stokes drift does not directly affect vorticity, the anti-Stokes Eulerian shear contributes to the Ertel potential vorticity (PV). When the Stokes shear and geostrophic shear are aligned (antialigned), the PV is more (less) cyclonic. If the Stokes-modified PV is anticyclonic, the flow is unstable to symmetric instabilities (SI). Stokes drift also weakly impacts SI through the Stokes shear force. When the Stokes and Eulerian shears are the same (opposite) sign, the Stokes shear force does positive (negative) work on the flow associated with SI. Stokes drift also allows SI to extract more potential energy from the front, providing an indirect mechanism for Stokes-induced restratification.

Full access
Takeyoshi Nagai, Amit Tandon, Eric Kunze, and Amala Mahadevan

Abstract

While near-inertial waves are known to be generated by atmospheric storms, recent observations in the Kuroshio Front find intense near-inertial internal-wave shear along sloping isopycnals, even during calm weather. Recent literature suggests that spontaneous generation of near-inertial waves by frontal instabilities could represent a major sink for the subinertial quasigeostrophic circulation. An unforced three-dimensional 1-km-resolution model, initialized with the observed cross-Kuroshio structure, is used to explore this mechanism. After several weeks, the model exhibits growth of 10–100-km-scale frontal meanders, accompanied by O(10) mW m−2 spontaneous generation of near-inertial waves associated with readjustment of submesoscale fronts forced out of balance by mesoscale confluent flows. These waves have properties resembling those in the observations. However, they are reabsorbed into the model Kuroshio Front with no more than 15% dissipating or radiating away. Thus, spontaneous generation of near-inertial waves represents a redistribution of quasigeostrophic energy rather than a significant sink.

Full access
Vamsi K. Chalamalla and Sutanu Sarkar

Abstract

Direct numerical simulation (DNS) and large-eddy simulation (LES) are employed to study the mixing brought about by convective overturns in a stratified, oscillatory bottom layer underneath internal tides. The phasing of turbulence, the onset and breakdown of convective overturns, and the pathway to irreversible mixing are quantified. Mixing efficiency shows a systematic dependence on tidal phase, and during the breakdown of large convective overturns it is approximately 0.6, a value that is substantially larger than the commonly assumed value of 0.2 used for calculating scalar mixing from the turbulent dissipation rate. Diapycnal diffusivity is calculated using the irreversible diapycnal flux and, for tall overturns of O(50) m, the diffusivity is found to be almost 1000 times higher than the molecular diffusivity. The Thorpe (overturn) length scale is often used as a proxy for the Ozmidov length scale and thus infers the turbulent dissipation rate from overturns. The accuracy of overturn-based estimates of the dissipation rate is assessed for this flow. The Ozmidov length scale L O and Thorpe length scale L T are found to behave differently during a tidal cycle: L T decreases during the convective instability, while L O increases; there is a significant phase lag between the maxima of L T and L O; and finally L T is not linearly related to L O. Thus, the Thorpe-inferred dissipation rates are quite different from the actual values. Interestingly, the ratio of their cycle-averaged values is found to be O(1), a result explained on the basis of available potential energy.

Full access
Katherine McCaffrey, Baylor Fox-Kemper, and Gael Forget

Abstract

The Argo profiling float network has repeatedly sampled much of the World Ocean. This study uses Argo temperature and salinity data to form the tracer structure function of ocean variability at the macroscale (10–1000 km, mesoscale and above). Here, second-order temperature and salinity structure functions over horizontal separations are calculated along either pressure or potential density surfaces, which allows analysis of both active and passive tracer structure functions. Using Argo data, a map of global variance is created from the climatological average and each datum. When turbulence is homogeneous, the structure function slope from Argo can be related to the wavenumber spectrum slope in ocean temperature or salinity variability. This first application of structure function techniques to Argo data gives physically meaningful results based on bootstrapped confidence intervals, showing geographical dependence of the structure functions with slopes near ⅔ on average, independent of depth.

Full access
Juan A. Saenz, Rémi Tailleux, Edward D. Butler, Graham O. Hughes, and Kevin I. C. Oliver

Abstract

The study of the mechanical energy budget of the oceans using the Lorenz available potential energy (APE) theory is based on knowledge of the adiabatically rearranged Lorenz reference state of minimum potential energy. The compressible and nonlinear character of the equation of state for seawater has been thought to cause the reference state to be ill defined, casting doubt on the usefulness of APE theory for investigating ocean energetics under realistic conditions. Using a method based on the volume frequency distribution of parcels as a function of temperature and salinity in the context of the seawater Boussinesq approximation, which is illustrated using climatological data, the authors show that compressibility effects are in fact minor. The reference state can be regarded as a well-defined one-dimensional function of depth, which forms a surface in temperature, salinity, and density space between the surface and the bottom of the ocean. For a very small proportion of water masses, this surface can be multivalued and water parcels can have up to two statically stable levels in the reference density profile, of which the shallowest is energetically more accessible. Classifying parcels from the surface to the bottom gives a different reference density profile than classifying in the opposite direction. However, this difference is negligible. This study shows that the reference state obtained by standard sorting methods is equivalent to, though computationally more expensive than, the volume frequency distribution approach. The approach that is presented can be applied systematically and in a computationally efficient manner to investigate the APE budget of the ocean circulation using models or climatological data.

Open access