Browse

Andrew J. Heymsfield
,
Micael A. Cecchini
,
Andrew Detwiler
,
Ryan Honeyager
, and
Paul Field

Abstract

Measurements from the South Dakota School of Mines and Technology T-28 hail-penetrating aircraft are analyzed using recently developed data processing techniques with the goals of identifying where the large hail is found relative to vertical motion and improving the detection of hail microphysical properties from radar. Hail particle size distributions (PSD) and environmental conditions (temperature, relative humidity, liquid water content, air vertical velocity) were digitally collected by the T28 between 1995 and 2003 and synthesized by Detwiler et al. (2012). The PSD were forward-modeled by Cecchini et al. (2022) to simulate the radar reflectivity of the PSD at multiple radar wavelengths.

The T-28 penetrated temperatures primarily between 0 and −10 °C. The largest hailstones were sampled near the updraft/downdraft interface. Liquid water contents were highest in the updraft cores, whereas total (liquid + frozen) water contents were highest near the updraft/downdraft interface. The fitted properties of the PSD, intercept and slope, are directly related to each other, but do not show any dependence on the region of the hailstorm where sampled. The PSD measurements and the radar reflectivity calculations at multiple radar wavelengths facilitated the development of relationships between the PSD bulk properties—hail kinetic energy and kinetic energy flux—and the radar reflectivity. Rather than using the oft-assumed sphericity and solid ice physical properties, actual measurements of hail properties are used in the analysis. Results from the maximum estimated size of hail (MESH) and vertical integrated liquid water (VIL) algorithms are evaluated based on this analysis.

Restricted access
Peishan Chen
and
Riyu Lu

Abstract

It has been well known that the preceding winter ENSO affects the atmospheric convection over the tropical western North Pacific (WNP) in summer, which has important impacts on Asian climate. However, more than half of the interannual variance in tropical WNP convection cannot be explained by the ENSO. This study separates the WNP convection into two components: independent of and dependent on the preceding winter ENSO, and compares the anomalies associated with these two components. The linear regression results indicate that the independent convection suppression corresponds to significant cyclonic anomalies over East Asia in both the lower and upper troposphere, and correspondingly a southward displacement of upper-tropospheric East Asian westerly jet. By contrast, these circulation anomalies are weakened for the dependent convection suppression, which is more closely related to the lower-tropospheric cyclonic anomalies over the Indian Ocean. Accordingly, the independent and dependent components exert distinct impacts on rainfall and temperature in Asia. Specifically, the independent suppression corresponds to more significantly enhanced rainfall in the subtropical East Asia compared with the dependent one. Moreover, there are colder surface air temperatures in the mid-latitude East Asia for the independent suppression and warmer temperatures in South and Southeast Asia for the dependent suppression. Further analyses suggest that the circulation and climate anomalies for the independent component are mainly contributed by July and August, while those for the dependent component become weak from June to August. These results can be helpful for a better understanding of summer Asian climate variability and predictability.

Restricted access
Adam Majewski
,
Jeffrey R. French
, and
Samuel Haimov

Abstract

High resolution airborne cloud Doppler radars such as the W-Band Wyoming Cloud Radar (WCR) have, since the 1990s, investigated cloud microphysical, kinematic, and precipitation structures down to 30-m resolution. These measurements revolutionized our understanding of fine-scale cloud structure and the scales at which cloud processes occur. Airborne cloud Doppler radars may also resolve cloud turbulent eddy structure directly at 10-meter scales. To date, cloud turbulence has been examined as variances (Schwartz et al. 2019) and dissipation rates (Strauss et al. 2015) at coarser resolution than individual pulse volumes. The present work advances the potential of near-vertical pulse pair Doppler spectrum width as a metric for turbulent air motion. Doppler spectrum width has long been used to investigate turbulent motions from ground-based remote sensors. However, complexities of airborne Doppler radar and spectral broadening resulting from platform and hydrometeor motions have limited airborne radar spectrum width measurements to qualitative interpretation only. Here we present the first quantitative validation of spectrum width from an airborne cloud radar. Echoes with signal-to-noise ratio greater than 10 dB yield spectrum width values that strongly correlate with retrieved mean Doppler variance for a range of non-convective cloud conditions. Further, Doppler spectrum width within turbulent regions of cloud also shows good agreement with in-situ eddy dissipation rate (EDR) and gust probe variance. However, the use of pulse pair estimated spectrum width as a metric for turbulent air motion intensity is only suitable for turbulent air motions more energetic than the magnitude of spectral broadening, estimated to be < 0.4 m s−1 for the WCR in these cases.

Restricted access
Benjamin A. Hodges
,
Laurent Grare
,
Benjamin Greenwood
,
Kayli Matsuyoshi
,
Nick Pizzo
,
Nicholas M. Statom
,
J. Thomas Farrar
, and
Luc Lenain

Abstract

The development of autonomous surface vehicles, such as the Boeing Liquid Robotics Wave Glider, has revolutionized our ability to collect surface ocean–lower atmosphere observations, a crucial step toward developing better physical understanding of upper-ocean and air–sea interaction processes. However, due to the wave-following nature of these vehicles, they experience rapid shifting, rolling, and pitching under the action of surface waves, making motion compensation of observations of ocean currents particularly challenging. We present an evaluation of the accuracy of Wave Glider–based ADCP measurements by comparing them with coincident and collocated observations collected from a bottom-mounted ADCP over the course of a week-long experiment. A novel motion compensation method, tailored to wave-following surface vehicles, is presented and compared with standard approaches. We show that the use of an additional position and attitude sensor (GPS/IMU) significantly improves the accuracy of the observed currents.

Open access
Ning Shi
,
Samuel Ekwacu
,
Shiyi Fu
,
Jian Song
, and
Shaoying Xing

Abstract

The frequent occurrence of extreme cold waves under climate change has attracted widespread attention. Based on the Japanese 55-year Reanalysis daily dataset from 1958 to 2021, we use a newly developed dynamic metric, the local finite-amplitude wave activity (LWA), to explore the precursory signals, outburst conditions, and key dynamic features of extreme cold waves over eastern China from the perspective of synoptic climatology. The statistical results show that approximately 40% of extreme cold waves have the following features. First, the formation of significant positive LWA anomalies over the Balkhash–Baikal region is an evident precursory signal, which is accompanied by significant cold surface air temperature anomalies that accumulate over mid- and high-latitude Eurasia. Second, the appearance of extreme positive LWA anomalies over the region east of Lake Baikal (ELB) is necessary for subsequent outbursts of extreme cold waves. These extreme positive LWA anomalies indicate the meridionally enhanced planetary trough over East Asia and advection of the accumulated cold air masses southeastward to eastern China. Third, the evident positive change in the LWA anomalies over the ELB is mainly attributable to the convergence of the zonal LWA flux due to the zonal wind in the eddy-free state and Stokes drift flux over the eastern area of the ELB and the convergence of the meridional eddy heat flux over the western area. This study demonstrates that the LWA could be used as a simple and feasible metric for monitoring and forecasting extreme cold waves.

Significance Statement

Enhanced waviness in circulation usually occurs before and during the outburst of extreme cold waves over eastern China. With a state-of-the-art diagnostic tool, the local finite-amplitude wave activity (LWA), the present study reveals both precursory signals and outburst conditions of these extreme cold events from the perspective of synoptic climatology. This study not only deepens our understanding of the dynamic process for extreme cold events over eastern China but also offers a method for monitoring and forecasting those extreme events. Our work also provides a method for studying other extreme climate events that are closely related to large-amplitude circulation waviness over the middle and high latitudes.

Restricted access
Bailing Li
and
Matthew Rodell

Abstract

Severe floods and droughts, including their back-to-back occurrences (weather whiplash), have been increasing in frequency and severity around the world. Improved understanding of systematic changes in hydrological extremes is essential for preparation and adaptation. In this study, we identified and quantified extreme wet and dry events globally by applying a clustering algorithm to terrestrial water storage (TWS) data from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (FO). The most intense events, ranked using an intensity metric, often reflect impacts of large-scale oceanic oscillations such as the EL Niño Southern Oscillation and consequences of climate change. Severity of both wet and dry events, represented by standardized TWS anomalies, increased significantly in most cases, likely associated with intensification of wet and dry weather regimes in a warmer world, and consequently, exhibited strongest correlation with global temperature. In the Dry climate, the number of wet events decreased while the number of dry events increased significantly, suggesting a drying trend that may be attributed to climate variability and possible increases in irrigation and reliance on groundwater. In the Continental climate where temperature has risen faster than global average, dry events increased significantly. Characteristics of extreme events often showed strong correlations with global temperature, especially when averaged over all climates. These results suggest changes in hydrological extremes and underscore the importance of quantifying total water storage changes when studying hydrological extremes. Extending the GRACE/FO record, which spans 2002-present, is essential to continuously tracking changes in TWS and hydrological extremes.

Restricted access
Andrea Hay
,
Christopher Watson
,
Benoit Legresy
,
Matt King
, and
Jack Beardsley

Abstract

While satellite altimeters have revolutionized ocean science, validation measurements in high wave environments are rare. Using geodetic Global Navigation Satellite System (GNSS) data collected from the Southern Ocean Flux Station (SOFS; −47°S, 142°E) since 2019, as part of the Southern Ocean Time Series (SOTS), we present a validation of satellite missions in this energetic region. Here we show that high rate GNSS observations at SOFS can successfully measure waves in the extreme conditions of the Southern Ocean and obtain robust measurements in all wave regimes [significant wave height (SWH) ranging from 1.5 to 12.6 m]. We find good agreement between the in situ and nadir altimetry SWH (RMSE = 0.16 m, mean bias = 0.04 m, and n = 60). Directional comparisons with the Chinese–French Ocean Satellite (CFOSAT) Surface Waves Investigation and Monitoring (SWIM) instrument also show good agreement, with dominant directions having an RMSE of 9.1° (n = 22), and correlation coefficients between the directional spectra ranging between 0.57 and 0.79. Initial sea level anomaly (SLA) estimates capture eddies propagating through the region. Comparisons show good agreement with daily gridded SLA products (RMSE = 0.03 m, and n = 205), with scope for future improvement. These results demonstrate the utility of high rate geodetic GNSS observations on moored surface platforms in highly energetic regions of the ocean. Such observations are important to maximize the geophysical interpretation from altimeter missions. In particular, the ability to provide collocated directional wave observations and SLA estimates will be useful for the validation of the recently launched Surface Water and Ocean Topography (SWOT) mission where understanding the interactions between sea state and sea surface height poses a major challenge.

Open access
Kevin T. Gray
and
Jeffrey W. Frame

Abstract

Streamwise vorticity currents (SVCs) have been hypothesized to enhance low-level mesocyclones within supercell thunderstorms and perhaps increase the likelihood of tornadogenesis. Recent observational studies have confirmed the existence of SVCs in supercells and numerical simulations have allowed for further investigation of SVCs. A suite of 19 idealized supercell simulations with varying midlevel shear orientations is analyzed to determine how SVC formation and characteristics may differ between storms. In our simulations, SVCs develop on the cold side of left-flank convergence boundaries and their updraft-relative positions are partially dependent on downdraft location. The magnitude, duration, and mean depth of SVCs do not differ significantly between simulations or between SVCs that precede tornado-like vortices (TLVs) and those that do not. Trajectories initialized within SVCs reveal two primary airstreams, one that flows through an SVC for the majority of its length, and another that originates in the modified inflow in the forward flank and then merges with the SVC. Vorticity budgets calculated along trajectories reveal that the first airstream exhibits significantly greater maximum streamwise vorticity magnitudes than the second airstream. The vorticity budgets also indicate that stretching of horizontal streamwise vorticity is the dominant contributor to the large values of streamwise vorticity within the SVCs. TLV formation does not require the development of an SVC beforehand; 44% of TLVs in the simulations are preceded by SVCs. When an SVC occurs, it is followed by a TLV 53% of the time, indicating not all SVCs lead to TLV formation.

Restricted access
Clemens Spensberger
,
Camille Li
, and
Thomas Spengler

Abstract

The distinction between eddy-driven and subtropical jets is conceptually important and well-founded based on different driving mechanisms and dominant types of variability. This climatological perspective may be augmented by considering instantaneous maxima in the wind field and linking these to the time-mean jets. Inspired by EOF and cluster analyses to explore the variability in jet occurrences, we propose a straightforward framework that naturally distinguishes subtropical from eddy-driven jets in instantaneous data. We document that for most ocean basins, there is a clear bimodality in instantaneous jet occurrences in potential temperature–wind speed space. The two types of jets in this phase space align well with the conceptual expectations for subtropical and eddy-driven jets regarding their vertical structure as well as their regional occurrence. Interestingly, the bimodality in phase space is most pronounced in the western North Pacific during winter. The climatological jet in this region is typically regarded as “merged”, resulting from a mixture of thermal driving and eddy driving. Our results clarify that the strongest instantaneous jets in this region are classified as subtropical, with eddy-driven jets occurring in close proximity to the climatological mean jet, though weaker and slightly more poleward. We also show that the regions of climatological transition from predominantly subtropical to predominantly eddy-driven jets are just downstream of the strongest climatological jets.

Restricted access
Kai Kornhuber
and
Gabriele Messori

Abstract

Wintertime extremes such as cold spells and heavy precipitation can have severe socioeconomic impacts, disrupting critical infrastructures and affecting human well-being. Here, we relate the occurrence of local and concurrent cold or wet wintertime extremes in North America and Europe to a recurrent, quasi-hemispheric wave-4 Rossby wave pattern. We identify this pattern as a fundamental mode of the Northern Hemisphere (NH) winter circulation, since wave 4 exhibits phase-locking behavior. Thus, the associated atmospheric circulation and surface anomalies reoccur over the same locations when the pattern’s wave amplitude is high. The wave pattern is most pronounced over the pan-Atlantic region, and increases the probability of extreme cold or wet events by up to 300% in certain areas of North America and Europe, as well as favoring their concurrence at different locations. High-amplitude wave-4 events have increased significantly in frequency over the past four decades (1979–2021), although no clear evidence is found relating this to modes or patterns of climate variability. The identified wave pattern may provide pathways for early prediction of local and concurrent cold or wet wintertime extremes in North America and Europe.

Open access