Browse

Georgios A. Efstathiou

Abstract

A scale-dependent dynamic Smagorinsky model is implemented in the Met Office/NERC Cloud (MONC) model using two averaging flavors, along Lagrangian pathlines and local moving averages. The dynamic approaches were compared against the conventional Smagorinsky–Lilly scheme in simulating the diurnal cycle of shallow cumulus convection. The simulations spanned from the LES to the near-gray-zone and gray-zone resolutions and revealed the adaptability of the dynamic model across the scales and different stability regimes. The dynamic model can produce a scale- and stability-dependent profile of the subfilter turbulence length scale across the chosen resolution range. At gray-zone resolutions the adaptive length scales can better represent the early precloud boundary layer leading to temperature and moisture profiles closer to the LES compared to the standard Smagorinsky. As a result, the initialization and general representation of the cloud field in the dynamic model is in good agreement with the LES. In contrast, the standard Smagorinsky produces a less well-mixed boundary layer, which fails to ventilate moisture from the boundary layer, resulting in the delayed spinup of the cloud layer. Moreover, strong downgradient diffusion controls the turbulent transport of scalars in the cloud layer. However, the dynamic approaches rely on the resolved field to account for nonlocal transports, leading to overenergetic structures when the boundary layer is fully developed and the Lagrangian model is used. Introducing the local averaging version of the model or adopting a new Lagrangian time scale provides stronger dissipation without significantly affecting model behavior.

Open access
Takuro Matsuta
and
Yukio Masumoto

Abstract

Recent studies suggest that the eddy kinetic energy is localized in the lee of significant topographic features in the Antarctic Circumpolar Current (ACC). Here we explore the importance of the local dynamics quantitatively using the outputs from the realistic ocean general circulation model hindcast with the aid of the modified Lorentz energy cycle. Results confirm the importance of energy transfer among reservoirs in the downstream region of standing meanders, showing that the major five standing meanders are responsible for more than 70% of the kinetic energy transfer to eddies and dissipation over the Antarctic Circumpolar Current region. The eddy kinetic energy is generated in the upper 3000-m depth downstream of the standing meanders and transported due to the vertical energy redistribution governed by the vertical pressure flux toward the deeper layer where the eddy energy is dissipated. Moreover, we also calculate the work done by the Ekman transport to confirm that the wind energy input works as the dominant energy source for the baroclinic energy pathway. The advantage of this quantity against the vertical mean density flux is that it is independent of the reference states defined arbitrarily. It is shown that the westerlies can supply sufficient energy locally to initiate baroclinic instability in the Indian and Pacific sectors of the ACC, whereas the nonlocal process is important in the Atlantic sector. Our results suggest that the five narrow regions associated with significant topography play key roles in the energy balance of the ACC region.

Significance Statement

The purpose of this study is to understand the eddy–mean flow interactions in the Antarctic Circumpolar Current from the energetic viewpoint. Our results show that the five narrow regions called “hotspots” in our study are responsible for the energy transfer from the mean flow to eddies. It is also found that the hotspots are important for the energy sink in the Southern Ocean. These findings suggest that the five hotspots are likely to play key roles in the responses of the Antarctic Circumpolar Current to the changes in westerlies in these decades.

Restricted access
Gunnar Voet
,
Matthew H. Alford
,
Jesse M. Cusack
,
Larry J. Pratt
,
James B. Girton
,
Glenn S. Carter
,
Jody M. Klymak
,
Shuwen Tan
, and
Andreas M. Thurnherr

Abstract

The energy and momentum balance of an abyssal overflow across a major sill in the Samoan Passage is estimated from two highly resolved towed sections, set 16 months apart, and results from a two-dimensional numerical simulation. Driven by the density anomaly across the sill, the flow is relatively steady. The system gains energy from divergence of horizontal pressure work O ( 5 ) kW m 1 and flux of available potential energy O ( 2 ) kW m 1 . Approximately half of these gains are transferred into kinetic energy while the other half is lost to turbulent dissipation, bottom drag, and divergence in vertical pressure work. Small-scale internal waves emanating downstream of the sill within the overflow layer radiate O ( 1 ) kW m 1 upward but dissipate most of their energy within the dense overflow layer and at its upper interface. The strongly sheared and highly stratified upper interface acts as a critical layer inhibiting any appreciable upward radiation of energy via topographically generated lee waves. Form drag of O ( 2 ) N m 2 , estimated from the pressure drop across the sill, is consistent with energy lost to dissipation and internal wave fluxes. The topographic drag removes momentum from the mean flow, slowing it down and feeding a countercurrent aloft. The processes discussed in this study combine to convert about one-third of the energy released from the cross-sill density difference into turbulent mixing within the overflow and at its upper interface. The observed and modeled vertical momentum flux divergence sustains gradients in shear and stratification, thereby maintaining an efficient route for abyssal water mass transformation downstream of this Samoan Passage sill.

Restricted access
Xiaojiang Zhang
,
Xiaodong Huang
,
Yunchao Yang
,
Wei Zhao
,
Huizan Wang
,
Chunxin Yuan
, and
Jiwei Tian

Abstract

The high-resolution mooring observations reported here reveal a cascade process from internal solitary waves (ISWs) to turbulent mixing via high-frequency internal waves near the maximum local buoyancy frequency (near-N waves) in the deep water of the northern South China Sea (SCS). Riding on the parent ISW, near-N waves with a peak frequency of 20 cph emerged at the trough of the ISW and extended to the rear face of the ISW. Most of the near-N waves occurred around the thermocline, where the isothermal displacements induced by the near-N waves were largest with an amplitude of 12 m. The energy of near-N waves was 5% of that of the parent ISW, and instability investigations showed that due to the strong shear, Ri in the region of strong near-N waves was less than 1/4, suggesting that the near-N waves were unstable and might dissipate rapidly. Simulations based on the Korteweg–de Vries (KdV)–Burgers equation reproduced the formation of observed near-N waves due to the energy cascade from ISWs. Our observational results demonstrate a new energy cascade route from ISWs to turbulence in the deep water, deepening the understanding of the energy dissipation process of ISWs and their roles in the enhanced mixing in the northern SCS.

Open access
James N. Moum
,
Daniel L. Rudnick
,
Emily L. Shroyer
,
Kenneth G. Hughes
,
Benjamin D. Reineman
,
Kyle Grindley
,
Jeffrey T. Sherman
,
Pavan Vutukur
,
Craig Van Appledorn
,
Kerry Latham
,
Aurélie J. Moulin
, and
T. M. Shaun Johnston

Abstract

A new autonomous turbulence profiling float has been designed, built, and tested in field trials off Oregon. Flippin’ χSOLO (FχS) employs a SOLO-II buoyancy engine that not only changes but also shifts ballast to move the center of mass to positions on either side of the center of buoyancy, thus causing FχS to flip. FχS is outfitted with a full suite of turbulence sensors—two shear probes, two fast thermistors, and pitot tube, as well as a pressure sensor and three-axis linear accelerometers. FχS descends and ascends with turbulence sensors leading, thereby permitting measurement through the sea surface. The turbulence sensors are housed antipodal from communication antennas so as to eliminate flow disturbance. By flipping at the sea surface, antennas are exposed for communications. The mission of FχS is to provide intensive profiling measurements of the upper ocean from 240 m and through the sea surface, particularly during periods of extreme surface forcing. While surfaced, accelerometers provide estimates of wave height spectra and significant wave height. From 3.5 day field trials, here we evaluate (i) the statistics from two FχS units and our established shipboard profiler, Chameleon, and (ii) FχS-based wave statistics by comparison to a nearby NOAA wave buoy.

Significance Statement

The oceanographic fleet of Argo autonomous profilers yields important data that define the state of the ocean’s interior. Continued deployments over time define the evolution of the ocean’s interior. A significant next step will be to include turbulence measurements on these profilers, leading to estimates of thermodynamic mixing rates that predict future states of the ocean’s interior. An autonomous turbulence profiler that employs the buoyancy engine, mission logic, and remote communication of one particular Argo float is described herein. The Flippin’ χSOLO is an upper-ocean profiler tasked with rapid and continuous profiling of the upper ocean during weather conditions that preclude shipboard profiling and that includes the upper 10 m that is missed by shipboard turbulence profilers.

Restricted access
David W. Pierce
,
Daniel R. Cayan
,
Daniel R. Feldman
, and
Mark D. Risser

Abstract

A new set of CMIP6 data downscaled using the localized constructed analogs (LOCA) statistical method has been produced, covering central Mexico through southern Canada at 6-km resolution. Output from 27 CMIP6 Earth system models is included, with up to 10 ensemble members per model and 3 SSPs (245, 370, and 585). Improvements from the previous CMIP5 downscaled data result in higher daily precipitation extremes, which have significant societal and economic implications. The improvements are accomplished by using a precipitation training dataset that better represents daily extremes and by implementing an ensemble bias correction that allows a more realistic representation of extreme high daily precipitation values in models with numerous ensemble members. Over southern Canada and the CONUS exclusive of Arizona (AZ) and New Mexico (NM), seasonal increases in daily precipitation extremes are largest in winter (∼25% in SSP370). Over Mexico, AZ, and NM, seasonal increases are largest in autumn (∼15%). Summer is the outlier season, with low model agreement except in New England and little changes in 5-yr return values, but substantial increases in the CONUS and Canada in the 500-yr return value. One-in-100-yr historical daily precipitation events become substantially more frequent in the future, as often as once in 30–40 years in the southeastern United States and Pacific Northwest by the end of the century under SSP 370. Impacts of the higher precipitation extremes in the LOCA version 2 downscaled CMIP6 product relative to the LOCA downscaled CMIP5 product, even for similar anthropogenic emissions, may need to be considered by end-users.

Restricted access
Free access
Reuben Demirdjian
,
James D. Doyle
,
Peter M. Finocchio
, and
Carolyn A. Reynolds

Abstract

The influence of the surface latent and surface sensible heat flux on the development and interaction of an idealized extratropical cyclone (termed “primary”) with an upstream cyclone (termed “upstream”) using the Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) is analyzed. The primary cyclone develops from an initial perturbation to a baroclinically unstable jet stream, while the upstream cyclone results from Rossby wave dispersion at the surface where a bottom-up style development occurs. The intensity of the upstream cyclone is strongly enhanced by surface latent heat fluxes and, to a lesser degree, by surface sensible heat fluxes. Forward trajectories initiated from the postfrontal sector of the primary cyclone travel south of the upstream anticyclone and feed into the atmospheric river and warm conveyor belt region of the upstream cyclone. Substantial moistening of this airstream is a result of upward surface latent heat flux present in both the primary cyclone’s postfrontal sector and along the southern flank of the anticyclone. Backward trajectories initiated from the same region show that these air parcels originate from a broad area north of both the anticyclone and the primary cyclone in the lower troposphere. The airstream identified represents a new pathway through which dry, descending air that is preconditioned through surface moistening enhances the development of an upstream cyclone through diabatically generated potential vorticity.

Restricted access
Masafumi Hirose
,
Keita Okada
,
Kohei Kawaguchi
, and
Nobuhiro Takahashi

Abstract

This study investigated the effects of interfering signals on high-altitude precipitation extraction from spaceborne precipitation radar data. Data analyses were performed on the products of the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR) and the Global Precipitation Measurement Core Observatory Dual-frequency Precipitation Radar (GPM DPR) to clarify the effects of removing radio interferences and mirror images, particularly focusing on deep precipitation detection. The TRMM PR acquired precipitation data up to an altitude of approximately 20 km and occasionally captured interferences from artificial radio transmissions in specific areas. Artifacts could be distinguished as isolated profiles exhibiting almost constant radar reflectivity. The number of interferences affecting the TRMM PR gradually increased during the operation period of 1998–2013. A filter was introduced to separate the observed profiles into deep storms that reach the upper observation altitude and contamination caused by radio interference. The former frequently appeared over the Sahel area, where the observation upper limits are lowest. The removal of the latter, radio interference, improved the detection accuracy of the mean precipitation at high altitudes and considerably influenced specific low-precipitation areas such as the Middle East. This spatial feature-based filter allowed us to evaluate the results of screening based on noise limits that are implemented in standard algorithms. The GPM DPR Ku-band radar product contained other unwanted echoes due to the mirror images appearing as second-trip echoes contaminating the high-altitude statistics. Such second-trip echoes constitute a major portion of the echoes observed near the highest altitudes of deep storms.

Restricted access
Yandong Lang
,
Geoffrey J. Stanley
, and
Trevor J. McDougall

Abstract

An existing approximately neutral surface, the ω surface, minimizes the neutrality error and hence also exhibits very small fictitious dianeutral diffusivity Df that arises when lateral diffusion is applied along the surface, in nonneutral directions. However, there is also a spurious dianeutral advection that arises when lateral advection is applied nonneutrally along the surface; equivalently, lateral advection applied along the neutral tangent planes creates a vertical velocity e sp through the ω surface. Mathematically, e sp = us, where u is the lateral velocity and s is the slope error of the surface. We find that e sp produces a leading-order term in the evolution equations of temperature and salinity, being similar in magnitude to the influence of cabbeling and thermobaricity. We introduce a new method to form an approximately neutral surface, called an ω u · s surface, that minimizes e sp by adjusting its depth so that the slope error is nearly perpendicular to the lateral velocity. The e sp on a surface cannot be reduced to zero when closed streamlines contain nonzero neutral helicity. While e sp on the ω u · s surface is over 100 times smaller than that on the ω surface, the fictitious dianeutral diffusivity on the ω u · s surface is larger, nearly equal to the canonical 10−5 m2 s−1 background diffusivity. Thus, we also develop a method to minimize a combination of e sp and Df , yielding the ω u · s + s 2 surface, which is recommended for inverse models since it has low Df and it significantly decreases e sp through the surface, which otherwise would be a leading term that cannot be ignored in the conservation equations.

Restricted access