Browse
Abstract
Extratropical transition (ET) can cause high-impact weather in midlatitude regions and therefore constitutes an ongoing threat at the end of a tropical cyclone’s (TC) life cycle. Most of the ET events occur over the ocean, but some TCs recurve and undergo ET along coastal regions; however, the latter category is less investigated. Typhoon Sinlaku (2008), for example, underwent ET along the southern coast of Japan. It was one of the typhoons that occurred during the T-PARC field campaign, providing unprecedented high-resolution observational data. Sinlaku is therefore an excellent case to investigate the impact of a coastal region, and in particular orography, on the evolution of ET. Here, observations from T-PARC are employed to verify high-resolution simulations of Sinlaku. In addition, a sensitivity simulation is performed with the orography of Japan removed. The presence of orography causes blocking of low-level, cool midlatitude air north of Japan. Without this inflow of cool air, ET is delayed. Only once Sinlaku moves away from the orographic barrier does the cool, dry environmental air penetrate equatorward, and ET continues. On a local scale, evaporatively cooled air from below Sinlaku’s asymmetric precipitation field could be advected toward the cyclone center when orography was favorable for it. Changes in the vortex structure, as known from mature TCs interacting with orography, were only minor due to the high translation speed during ET. This study corroborates that orography can impact ET by modulating both the synoptic-scale environmental conditions and the mesoscale cyclone structure during ET.
Abstract
Extratropical transition (ET) can cause high-impact weather in midlatitude regions and therefore constitutes an ongoing threat at the end of a tropical cyclone’s (TC) life cycle. Most of the ET events occur over the ocean, but some TCs recurve and undergo ET along coastal regions; however, the latter category is less investigated. Typhoon Sinlaku (2008), for example, underwent ET along the southern coast of Japan. It was one of the typhoons that occurred during the T-PARC field campaign, providing unprecedented high-resolution observational data. Sinlaku is therefore an excellent case to investigate the impact of a coastal region, and in particular orography, on the evolution of ET. Here, observations from T-PARC are employed to verify high-resolution simulations of Sinlaku. In addition, a sensitivity simulation is performed with the orography of Japan removed. The presence of orography causes blocking of low-level, cool midlatitude air north of Japan. Without this inflow of cool air, ET is delayed. Only once Sinlaku moves away from the orographic barrier does the cool, dry environmental air penetrate equatorward, and ET continues. On a local scale, evaporatively cooled air from below Sinlaku’s asymmetric precipitation field could be advected toward the cyclone center when orography was favorable for it. Changes in the vortex structure, as known from mature TCs interacting with orography, were only minor due to the high translation speed during ET. This study corroborates that orography can impact ET by modulating both the synoptic-scale environmental conditions and the mesoscale cyclone structure during ET.
Abstract
Synoptic-scale error growth near the tropopause is investigated from a process-based perspective. Following previous work, a potential vorticity (PV) error tendency equation is derived and partitioned into individual contributions to yield insight into the processes governing error growth near the tropopause. Importantly, we focus here on the further amplification of preexisting errors and not on the origin of errors. The individual contributions to error growth are quantified in a case study of a 6-day forecast. In this case, localized mesoscale error maxima have formed by forecast day 2. These maxima organize into a wavelike pattern and reach the Rossby wave scale around forecast day 6. Error growth occurs most prominently within the Atlantic and Pacific Rossby wave patterns. In our PV framework, the error growth is dominated by the contribution of upper-level, near-tropopause PV anomalies (near-tropopause dynamics). Significant contributions from upper-tropospheric divergent flow (prominently associated with latent heat release below) and lower-tropospheric anomalies [tropospheric-deep (i.e., baroclinic) interaction] are associated with a misrepresentation of the surface cyclone development in the forecast. These contributions are, in general, of smaller importance to error growth than near-tropopause dynamics. This result indicates that the mesoscale errors generated near the tropopause do not primarily project on differences in the subsequent baroclinic growth, but instead directly project on the tropopause evolution and amplify because of differences in the nonlinear Rossby wave dynamics.
Abstract
Synoptic-scale error growth near the tropopause is investigated from a process-based perspective. Following previous work, a potential vorticity (PV) error tendency equation is derived and partitioned into individual contributions to yield insight into the processes governing error growth near the tropopause. Importantly, we focus here on the further amplification of preexisting errors and not on the origin of errors. The individual contributions to error growth are quantified in a case study of a 6-day forecast. In this case, localized mesoscale error maxima have formed by forecast day 2. These maxima organize into a wavelike pattern and reach the Rossby wave scale around forecast day 6. Error growth occurs most prominently within the Atlantic and Pacific Rossby wave patterns. In our PV framework, the error growth is dominated by the contribution of upper-level, near-tropopause PV anomalies (near-tropopause dynamics). Significant contributions from upper-tropospheric divergent flow (prominently associated with latent heat release below) and lower-tropospheric anomalies [tropospheric-deep (i.e., baroclinic) interaction] are associated with a misrepresentation of the surface cyclone development in the forecast. These contributions are, in general, of smaller importance to error growth than near-tropopause dynamics. This result indicates that the mesoscale errors generated near the tropopause do not primarily project on differences in the subsequent baroclinic growth, but instead directly project on the tropopause evolution and amplify because of differences in the nonlinear Rossby wave dynamics.
Abstract
It has been suggested that upper-tropospheric Rossby wave packets propagating along the midlatitude waveguide may play a role for triggering severe weather. This motivates the search for robust methods to detect and track Rossby wave packets and to diagnose their properties. In the framework of several observed cases, this paper compares different methods that have been proposed for these tasks, with an emphasis on horizontal propagation and on a particular formulation of a wave activity flux previously suggested by Takaya and Nakamura. The utility of this flux is compromised by the semigeostrophic nature of upper-tropospheric Rossby waves, but this problem can partly be overcome by a semigeostrophic coordinate transformation. The wave activity flux allows one to obtain information from a single snapshot about the meridional propagation, in particular propagation from or into polar and subtropical latitudes, as well as about the onset of wave breaking. This helps to clarify the dynamics of individual wave packets in cases where other, more conventional methods provide ambiguous or even misleading information. In some cases, the “true dynamics” of the Rossby wave packet turns out to be more complex than apparent from the more conventional diagnostics, and this may have important implications for the predictability of the wave packet.
Abstract
It has been suggested that upper-tropospheric Rossby wave packets propagating along the midlatitude waveguide may play a role for triggering severe weather. This motivates the search for robust methods to detect and track Rossby wave packets and to diagnose their properties. In the framework of several observed cases, this paper compares different methods that have been proposed for these tasks, with an emphasis on horizontal propagation and on a particular formulation of a wave activity flux previously suggested by Takaya and Nakamura. The utility of this flux is compromised by the semigeostrophic nature of upper-tropospheric Rossby waves, but this problem can partly be overcome by a semigeostrophic coordinate transformation. The wave activity flux allows one to obtain information from a single snapshot about the meridional propagation, in particular propagation from or into polar and subtropical latitudes, as well as about the onset of wave breaking. This helps to clarify the dynamics of individual wave packets in cases where other, more conventional methods provide ambiguous or even misleading information. In some cases, the “true dynamics” of the Rossby wave packet turns out to be more complex than apparent from the more conventional diagnostics, and this may have important implications for the predictability of the wave packet.
Abstract
Tropospheric forcing of planetary wavenumber 2 is examined in the prephase of the major stratospheric sudden warming event in January 2009 (MSSW 2009). Because of a huge increase in Eliassen–Palm fluxes induced mainly by wavenumber 2, easterly angular momentum is transported into the Arctic stratosphere, deposited, and then decelerates the polar night jet. In agreement with earlier studies, the results reveal that the strongest eddy heat fluxes, associated with wavenumber 2, occur at 100 hPa during the prephase of MSSW 2009 in ERA-Interim. In addition, moderate conditions of the cold phase of ENSO (La Niña) contribute to the eddy heat flux anomaly. It is shown that enhanced tropospheric wave forcing over Alaska and Scandinavia is caused by tropical processes in two ways. First, in a climatological sense, La Niña contributes to an enhanced anticyclonic flow over both regions. Second, the Madden–Julian oscillation (MJO) has an indirect influence on the Alaskan ridge by enhancing eddy activity over the North Pacific. This is manifested in an increase in cyclone frequency and associated warm conveyor belt outflow, which contribute to the maintenance and amplification of the Alaskan anticyclone. The Scandinavian ridge is maintained by wave trains emanating from the Alaskan ridge propagating eastward, including an enhanced transport of eddy kinetic energy. The MSSW 2009 is an extraordinary case of how a beneficial phasing of La Niña and MJO conditions together with multiscale interactions enhances tropospheric forcing for wavenumber 2–induced zonal mean eddy heat flux in the lower stratosphere.
Abstract
Tropospheric forcing of planetary wavenumber 2 is examined in the prephase of the major stratospheric sudden warming event in January 2009 (MSSW 2009). Because of a huge increase in Eliassen–Palm fluxes induced mainly by wavenumber 2, easterly angular momentum is transported into the Arctic stratosphere, deposited, and then decelerates the polar night jet. In agreement with earlier studies, the results reveal that the strongest eddy heat fluxes, associated with wavenumber 2, occur at 100 hPa during the prephase of MSSW 2009 in ERA-Interim. In addition, moderate conditions of the cold phase of ENSO (La Niña) contribute to the eddy heat flux anomaly. It is shown that enhanced tropospheric wave forcing over Alaska and Scandinavia is caused by tropical processes in two ways. First, in a climatological sense, La Niña contributes to an enhanced anticyclonic flow over both regions. Second, the Madden–Julian oscillation (MJO) has an indirect influence on the Alaskan ridge by enhancing eddy activity over the North Pacific. This is manifested in an increase in cyclone frequency and associated warm conveyor belt outflow, which contribute to the maintenance and amplification of the Alaskan anticyclone. The Scandinavian ridge is maintained by wave trains emanating from the Alaskan ridge propagating eastward, including an enhanced transport of eddy kinetic energy. The MSSW 2009 is an extraordinary case of how a beneficial phasing of La Niña and MJO conditions together with multiscale interactions enhances tropospheric forcing for wavenumber 2–induced zonal mean eddy heat flux in the lower stratosphere.
Abstract
A tropical cyclone (TC) undergoing extratropical transition (ET) may support the amplification of a Rossby wave train in the downstream midlatitudes. Within the context of downstream baroclinic development, the TC acts as an additional source of eddy kinetic energy (
The present study uses ensemble sensitivity analysis to examine the sensitivity of downstream Rossby wave train amplification to the
Abstract
A tropical cyclone (TC) undergoing extratropical transition (ET) may support the amplification of a Rossby wave train in the downstream midlatitudes. Within the context of downstream baroclinic development, the TC acts as an additional source of eddy kinetic energy (
The present study uses ensemble sensitivity analysis to examine the sensitivity of downstream Rossby wave train amplification to the
Abstract
Recurving tropical cyclones (TCs) undergoing extratropical transition (ET) may substantially modify the large-scale midlatitude flow pattern. This study highlights the role of diabatic outflow in midlatitude flow amplification within the context of a review of the physical and dynamical processes involved in ET. Composite fields of 12 western North Pacific ET cases are used as initial and boundary conditions for high-resolution numerical simulations of the North Pacific–North American sector with and without the TC present. It is demonstrated that a three-stage sequence of diabatic outflow associated with different weather systems is involved in triggering a highly amplified midlatitude flow pattern: 1) preconditioning by a predecessor rain event (PRE), 2) TC–extratropical flow interaction, and 3) downstream flow amplification by a downstream warm conveyor belt (WCB). An ensemble of perturbed simulations demonstrates the robustness of these stages. Beyond earlier studies investigating PREs, recurving TCs, and WCBs individually, here the fact that each impacts the midlatitude flow through a similar sequence of processes surrounding ET is highlighted. Latent heat release in rapidly ascending air leads to a net transport of low-PV air into the upper troposphere. Negative PV advection by the diabatically driven outflow initiates ridge building, accelerates and anchors a midlatitude jet streak, and overall amplifies the upper-level Rossby wave pattern. However, the three weather systems markedly differ in terms of the character of diabatic heating and associated outflow height, with the TC outflow reaching highest and the downstream WCB outflow producing the strongest negative PV anomaly.
Abstract
Recurving tropical cyclones (TCs) undergoing extratropical transition (ET) may substantially modify the large-scale midlatitude flow pattern. This study highlights the role of diabatic outflow in midlatitude flow amplification within the context of a review of the physical and dynamical processes involved in ET. Composite fields of 12 western North Pacific ET cases are used as initial and boundary conditions for high-resolution numerical simulations of the North Pacific–North American sector with and without the TC present. It is demonstrated that a three-stage sequence of diabatic outflow associated with different weather systems is involved in triggering a highly amplified midlatitude flow pattern: 1) preconditioning by a predecessor rain event (PRE), 2) TC–extratropical flow interaction, and 3) downstream flow amplification by a downstream warm conveyor belt (WCB). An ensemble of perturbed simulations demonstrates the robustness of these stages. Beyond earlier studies investigating PREs, recurving TCs, and WCBs individually, here the fact that each impacts the midlatitude flow through a similar sequence of processes surrounding ET is highlighted. Latent heat release in rapidly ascending air leads to a net transport of low-PV air into the upper troposphere. Negative PV advection by the diabatically driven outflow initiates ridge building, accelerates and anchors a midlatitude jet streak, and overall amplifies the upper-level Rossby wave pattern. However, the three weather systems markedly differ in terms of the character of diabatic heating and associated outflow height, with the TC outflow reaching highest and the downstream WCB outflow producing the strongest negative PV anomaly.
Abstract
Many studies have highlighted the importance of recurving tropical cyclones (TCs) in triggering Rossby waves. This study investigates the impact of western North Pacific (WNP), south Indian Ocean, and North Atlantic recurving TCs on the amplitude and frequency of synoptic-scale Rossby wave packets (RWPs) over a 30-yr period. The results indicate a significant increase of RWP frequency downstream of WNP and south Indian Ocean TCs. A statistically significant RWP amplitude anomaly downstream of these TCs suggests that RWPs, which are associated with TCs, are stronger than those that generally occur in midlatitudes. North Atlantic TCs do not seem to be associated with a statistically significant increase in RWP frequency and amplitude downstream.
Processes that contribute to Rossby wave amplification are identified by creating composites for WNP TCs with and without downstream development. Potential vorticity, eddy kinetic energy, and quasigeostrophic forcing diagnostics highlight dynamical mechanisms that contribute to the synergistic interaction between the TC and the midlatitude flow. The existence of an upstream Rossby wave favors a downstream development. Diabatically enhanced upper-level divergent flow that can be attributed to the nonlinear interaction between the TC and the midlatitude flow impedes the eastward propagation of the upstream trough, amplifies the downstream ridge, and intensifies the jet. The amplified midlatitude flow provides upper-level forcing, which helps to maintain the predominantly diabatically driven divergent flow.
Forecast uncertainties that are related to these complex TC–midlatitude flow interactions may spread into downstream regions. A climatological analysis of ensemble reforecast data emphasizes the importance of TC–midlatitude flow interactions and Rossby wave amplification on downstream predictability.
Abstract
Many studies have highlighted the importance of recurving tropical cyclones (TCs) in triggering Rossby waves. This study investigates the impact of western North Pacific (WNP), south Indian Ocean, and North Atlantic recurving TCs on the amplitude and frequency of synoptic-scale Rossby wave packets (RWPs) over a 30-yr period. The results indicate a significant increase of RWP frequency downstream of WNP and south Indian Ocean TCs. A statistically significant RWP amplitude anomaly downstream of these TCs suggests that RWPs, which are associated with TCs, are stronger than those that generally occur in midlatitudes. North Atlantic TCs do not seem to be associated with a statistically significant increase in RWP frequency and amplitude downstream.
Processes that contribute to Rossby wave amplification are identified by creating composites for WNP TCs with and without downstream development. Potential vorticity, eddy kinetic energy, and quasigeostrophic forcing diagnostics highlight dynamical mechanisms that contribute to the synergistic interaction between the TC and the midlatitude flow. The existence of an upstream Rossby wave favors a downstream development. Diabatically enhanced upper-level divergent flow that can be attributed to the nonlinear interaction between the TC and the midlatitude flow impedes the eastward propagation of the upstream trough, amplifies the downstream ridge, and intensifies the jet. The amplified midlatitude flow provides upper-level forcing, which helps to maintain the predominantly diabatically driven divergent flow.
Forecast uncertainties that are related to these complex TC–midlatitude flow interactions may spread into downstream regions. A climatological analysis of ensemble reforecast data emphasizes the importance of TC–midlatitude flow interactions and Rossby wave amplification on downstream predictability.
Abstract
Temporal clustering of extreme precipitation events on subseasonal time scales is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering.
An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. Also used is a modified version of Ripley’s K function, which determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season.
Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upper-level breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.
Abstract
Temporal clustering of extreme precipitation events on subseasonal time scales is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering.
An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. Also used is a modified version of Ripley’s K function, which determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season.
Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upper-level breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.
Abstract
Stochastic parameterizations allow the representation of the small-scale variability of parameterized physical processes. This study investigates whether additional variability introduced by a stochastic convection parameterization leads to improvements in the precipitation forecasts. Forecasts are calculated with two different ensembles: one considering large-scale and convective variability with the stochastic Plant–Craig convection parameterization and one considering only large-scale variability with the standard Tiedtke convection parameterization. The forecast quality of both ensembles is evaluated in comparison with radar observations for two case studies with weak and strong synoptic forcing of convection and measured with neighborhood and probabilistic verification methods. The skill of the ensemble based on the Plant–Craig convection parameterization relative to the ensemble with the Tiedtke parameterization strongly depends on the synoptic situation in which convection occurs. In the weak forcing case, where the convective precipitation is highly intermittent, the ensemble based on the stochastic parameterization is superior, but the scheme produces too much small-scale variability in the strong forcing case. In the future, the degree of stochastic variability could be tuned, and these results show that parameters should be chosen in a regime-dependent manner.
Abstract
Stochastic parameterizations allow the representation of the small-scale variability of parameterized physical processes. This study investigates whether additional variability introduced by a stochastic convection parameterization leads to improvements in the precipitation forecasts. Forecasts are calculated with two different ensembles: one considering large-scale and convective variability with the stochastic Plant–Craig convection parameterization and one considering only large-scale variability with the standard Tiedtke convection parameterization. The forecast quality of both ensembles is evaluated in comparison with radar observations for two case studies with weak and strong synoptic forcing of convection and measured with neighborhood and probabilistic verification methods. The skill of the ensemble based on the Plant–Craig convection parameterization relative to the ensemble with the Tiedtke parameterization strongly depends on the synoptic situation in which convection occurs. In the weak forcing case, where the convective precipitation is highly intermittent, the ensemble based on the stochastic parameterization is superior, but the scheme produces too much small-scale variability in the strong forcing case. In the future, the degree of stochastic variability could be tuned, and these results show that parameters should be chosen in a regime-dependent manner.
Abstract
The growth of small-amplitude, spatially uncorrelated perturbations has been studied in a weather forecast of a 4-day period in the summer of 2007, using a large domain covering Europe and the eastern Atlantic and with explicitly resolved deep convection. The error growth follows the three-stage conceptual model of Zhang et al., with rapid initial growth (e-folding time about 0.5 h) on all scales, relaxing over about 20 h to a slow growth of the large-scale perturbations (e-folding time 12 h). The initial growth was confined to precipitating regions, with a faster growth rate where conditional instability was large. Growth in these regions saturated within 3–10 h, continuing for the longest where the precipitation rate was large. While the initial growth was mainly in the divergent part of the flow, the eventual slow growth on large scales was more in the rotational component.
Spectral decomposition of the disturbance energy showed that the rapid growth in precipitating regions projected onto all Fourier components; however, the amplitude at saturation was too small to initiate the subsequent large-scale growth. Visualization of the disturbance energy showed it to expand outward from the precipitating regions at a speed corresponding to a deep tropospheric gravity wave. These results suggest a physical picture of error growth with a rapidly growing disturbance to the vertical mass transport in precipitating regions that spreads to the radius of deformation while undergoing geostrophic adjustment, eventually creating a balanced perturbation that continues to grow through baroclinic instability.
Abstract
The growth of small-amplitude, spatially uncorrelated perturbations has been studied in a weather forecast of a 4-day period in the summer of 2007, using a large domain covering Europe and the eastern Atlantic and with explicitly resolved deep convection. The error growth follows the three-stage conceptual model of Zhang et al., with rapid initial growth (e-folding time about 0.5 h) on all scales, relaxing over about 20 h to a slow growth of the large-scale perturbations (e-folding time 12 h). The initial growth was confined to precipitating regions, with a faster growth rate where conditional instability was large. Growth in these regions saturated within 3–10 h, continuing for the longest where the precipitation rate was large. While the initial growth was mainly in the divergent part of the flow, the eventual slow growth on large scales was more in the rotational component.
Spectral decomposition of the disturbance energy showed that the rapid growth in precipitating regions projected onto all Fourier components; however, the amplitude at saturation was too small to initiate the subsequent large-scale growth. Visualization of the disturbance energy showed it to expand outward from the precipitating regions at a speed corresponding to a deep tropospheric gravity wave. These results suggest a physical picture of error growth with a rapidly growing disturbance to the vertical mass transport in precipitating regions that spreads to the radius of deformation while undergoing geostrophic adjustment, eventually creating a balanced perturbation that continues to grow through baroclinic instability.