Browse

You are looking at 1 - 10 of 4,133 items for :

  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All
Martin Schön
,
Vasileios Savvakis
,
Maria Kezoudi
,
Andreas Platis
, and
Jens Bange

Abstract

Atmospheric aerosols affect human health and influence atmospheric and biological processes. Dust can be transported long distances in the atmosphere, and the mechanisms that influence dust transport are not fully understood. To improve the database for numerical models that simulate dust transport, measurements are needed that cover both the vertical distribution of the dust and its size distribution. In addition to measurements with crewed aircraft, uncrewed aircraft systems (UASs) provide a particularly suitable platform for this purpose. In this paper, we present a payload for the small fixed-wing UAS of the type Multiple-Purpose Airborne Sensor Carrier 3 (MASC-3) for aerosol particle measurements that is based on the optical particle counter (OPC) OPC-N3 (Alphasense, United Kingdom), modified by the addition of a dryer and a passive aspiration system (OPC-Pod). Based on field tests with a reference instrument in Mannheim, Germany, wind tunnel tests, and a comparison measurement with the UAS-mounted aerosol particle measurement Universal Cloud and Aerosol Sounding System (UCASS) during a dust event over Cyprus, we show that the OPC-Pod can measure particle number concentrations in the range of 0.66–31 μm as well as particle size distributions. The agreement of the OPC-Pod with UCASS is good. Both instruments resolve a vertical profile of the Saharan dust event, with a prominent dust layer between 1500 and 2800 m MSL, with particle number concentrations up to 35 cm−3 for particles between 0.66 and 31 μm.

Restricted access
Larry W. O’Neill
,
Dudley B. Chelton
,
Ernesto Rodríguez
,
Roger Samelson
, and
Alexander Wineteer

Abstract

We propose a method to reconstruct sea surface height anomalies (SSHA) from vector surface currents and winds. This analysis is motivated by the proposed satellite ODYSEA, which is a Doppler scatterometer that measures coincident surface vector winds and currents. If it is feasible to estimate SSHA from these measurements, then ODYSEA could provide collocated fields of SSHA, currents, and winds over a projected wide swath of ∼1700 km. The reconstruction also yields estimates of the low-frequency surface geostrophic, Ekman, irrotational, and nondivergent current components and a framework for separation of balanced and unbalanced motions. The reconstruction is based on a steady-state surface momentum budget including the Ekman drift, Coriolis acceleration, and horizontal advection. The horizontal SSHA gradient is obtained as a residual of these terms, and the unknown SSHA is solved for using a Helmholtz–Hodge decomposition given an imposed SSHA boundary condition. We develop the reconstruction using surface currents, winds, and SSHA off the U.S. West Coast from a 43-day coupled ROMS–WRF simulation. We also consider how simulated ODYSEA measurement and sampling errors and boundary condition uncertainties impact reconstruction accuracy. We find that temporal smoothing of the currents for periods of 150 h is necessary to mitigate large reconstruction errors associated with unbalanced near-inertial motions. For the most realistic case of projected ODYSEA measurement noise and temporal sampling, the reconstructed SSHA fields have an RMS error of 2.1 cm and a model skill (squared correlation) of 0.958 with 150-h resolution. We conclude that an accurate SSHA reconstruction is feasible using information measured by ODYSEA and external SSHA boundary conditions.

Restricted access
Yibo Zhang
,
Chunzheng Kong
,
Zizhou Liu
,
Bingtian Li
, and
Xianqing Lv

Abstract

Satellite remote sensing can monitor sea level changes at temporal and spatial scales, plays an important role in the study of tides, and is widely used in numerical tidal models. However, these tidal models are usually computationally expensive. The equidistant nodes orthogonal polynomial fitting (ENOPF) method may overcome that drawback. This study evaluates the accuracy of the ENOPF method in fitting the major tidal constituents in the region near the Ryukyu Islands, where the water depth on either side of the islands varies significantly. The results show that the ENOPF method can accurately fit the major tidal constituents in the presence of complex topography. Furthermore, this approach can also be used to generate reasonable cotidal charts and provide valuable tidal information for hydrodynamic model simulations in the East China Sea. For the high-resolution hydrodynamic model of the East China Sea in particular, reasonable open boundary conditions can be provided by the ENOPF method.

Restricted access
Katrina S. Virts
,
Timothy J. Lang
,
Dennis E. Buechler
, and
Phillip M. Bitzer

Abstract

Identical Lightning Imaging Sensors (LIS) aboard the Tropical Rainfall Measuring Mission satellite (TRMM LIS, 1998–2015) and International Space Station (ISS LIS, 2017–23) have provided over two decades of lightning observations over the global tropics, with ISS LIS extending coverage into the midlatitudes. Quantifying the detection performance of both LIS sensors is a necessary step toward generating a combined LIS climatological record and accurately combining LIS data with lightning detections from other sensors and networks. We compare lightning observations from both LIS sensors with reference sources including the Geostationary Lightning Mapper (GLM) and ground-based Earth Networks Total Lightning Network (ENTLN), Earth Networks Global Lightning Network (ENGLN), National Lightning Detection Network (NLDN), and Global Lightning Dataset (GLD360). Instead of a relative detection efficiency (DE) approach that assumes the perfect performance of the reference sensor, we employ a Bayesian approach to estimate the upper limit of the absolute DE (ADE) of each system being analyzed. The results of this analysis illustrate the geographical pattern of ADE as well as its diurnal cycle and yearly evolution. Reference network ADE increased by ∼15%–30% during the TRMM era, leading to a decline in TRMM LIS ADE. ISS LIS flash ADE has been relatively consistent at 61%–65%, about 4%–5% lower than TRMM LIS at the end of its lifetime.

Open access
Igor R. Ivić

Abstract

The two main metrics for the performance evaluation of radar-variable estimators are the bias and standard deviation (SD) of estimates. Depending on the estimator properties, the bias may increase as the signal-to-noise ratio (SNR) decreases. The standard deviation, however, always rises as the SNR becomes smaller. For instance, if estimates are computed from 16 samples (typically used for WSR-88D surveillance scans) using a rectangular data window and the maximum unambiguous velocity is ∼9 m s−1, the standard deviation of reflectivity estimates increases 1.6 times as the SNR drops from 20 to 2 dB. But for estimates of differential reflectivity, differential phase, and copolar correlation coefficient, SDs increase ∼6.7, ∼6, and ∼54 times, respectively. Hence, this effect impacts the polarimetric variables substantially more than the spectral moments. Additionally, the polarimetric variable SD is also sensitive to the correlation between signals in horizontal and vertical channels leading to reduced data quality in the regions where the correlation coefficient is low. Such increases in the variability of estimates are observable in the fields of dual polarization variables as an increased spatial inhomogeneity (or noisiness) in the areas where radar echoes exhibit low-to-moderate SNRs and/or decreased correlation coefficient. These effects can obscure the visual identification of weather features as well as adversely impact algorithms. Herein, a novel method that applies variable smoothing in the range where the smoothing intensity depends on the SDs of estimates is presented. It applies little or no range averaging in the regions where data SDs are deemed adequate while using more aggressive smoothing in areas where data appear noisy.

Significance Statement

The noisiness in the fields of polarimetric variables is an issue that has plagued dual-polarization weather radars since their inception. This is because standard deviations of polarimetric variable estimates increase significantly more with the reduction in SNR than those of spectral moment estimates. A typical mitigation approach that indiscriminately averages a fixed number of estimates in the range may lead to unnecessary loss of range resolution in regions where data appearance is satisfactory. Further, such an approach can be inadequate in regions with a high variability of estimates leading to insufficient enhancement of weather feature visibility. In this study, a method that mitigates these issues is proposed.

Restricted access
Ning Yang
,
Debin Su
,
Luyao Sun
, and
Tao Wang

Abstract

Atmospheric ducting is a highly refractive propagation condition that frequently occurs at sea and significantly impacts radar and communication equipment. This paper analyzes the spatiotemporal distribution of lower atmospheric ducts (LAD) in the South China Sea (SCS) and the variation of their occurrence rate with the monsoon by using reanalysis data from the ECMWF from 1980 to 2022. Additionally, the study discusses the relationship between ducting occurrences and atmospheric and oceanic conditions. The results indicate that wind dynamics in the SCS significantly impact ducting incidents. During the high-incidence period of LAD, humidity-gradient-constructed ducts are the primary mechanism. Before the onset of the monsoon, the mountains in the western part of Luzon Island obstruct the easterly wind, resulting in high temperatures and strong evaporation along the western coast of the mountains. Meanwhile, low temperatures and humidity prevail in the eastern part of the mountains, and they lead to a stratified atmosphere characterized by dry and cold upper layers and warm and humid lower layers in the western part of Luzon Island, which causes a distinct decrease in humidity with height. After the onset of the monsoon, the air from the Indochina Peninsula to the ocean is dry and cold, but the high-altitude area blocks it. This weakens the horizontal mobility of the low-level humid atmosphere over the sea, resulting in atmospheric stratification in the eastern coastal area of the Indochina Peninsula. This stratification leads to dry and cold upper layers and warm and humid lower layers.

Significance Statement

Atmospheric ducting is a superrefractive propagation condition that frequently occurs at sea and has a significant impact on radar and communication equipment and is related to large-scale or medium- and small-scale atmospheric stratification. The distribution of land and sea around the South China Sea (SCS) and the monsoon are important factors affecting the existence of atmospheric ducts in this region. Many scholars have studied the mechanism of atmospheric ducts in local areas based on observation data (or reanalysis data). The literature on the atmospheric ducts in the SCS mainly focuses on the spatial and temporal statistical distribution of seasons, months, and days, and gives the spatial and temporal distribution characteristics of the region within the statistical time, emphasizing the important influence of the monsoon on the duct, but there is no relevant research on the reasons for the existence of the specific relationship and its temporal and spatial distribution characteristics. The manuscript analyzes the temporal and spatial distribution of lower atmospheric ducts in the SCS and the variation of their occurrence rate with the monsoon, quantifies the contributions of temperature, humidity, and air pressure to the ducting occurrence, meanwhile discussing the ducting occurrence relation with atmospheric and oceanic conditions. In the end, we demonstrate that the development of high-incidence areas for SCS ducts prior to and following the onset of monsoon season is connected to factors such as wind patterns, seawater evaporation, and topography. Furthermore, unstable vertical transport of water vapor in both the atmosphere and oceanic conditions plays a crucial role in facilitating the creation of humidity-type ducts.

Restricted access
Susan L. Belak
,
Robin L. Tanamachi
,
Matthew L. Asel
,
Grant Dennany
,
Abhiram Gnanasambandam
,
Stephen J. Frasier
, and
Francesc Rocadenbosch

Abstract

This study describes a novel combination of methods to remove spurious spectral peaks, or “spurs,” from Doppler spectra produced by a vertically pointing, S-band radar. The University of Massachusetts S-band frequency-modulated, continuous-wave radar (UMass FMCW) was deployed to monitor the growth of the CBL over northern Alabama during the VORTEX–Southeast field campaign in 2016. The Doppler spectra contained spurs caused by high-voltage switching power supplies in the traveling wave tube amplifier. In the original data-processing scheme for this radar, a median filtering method was used to eliminate most of the spurs, but the largest ones persisted, which significantly degraded the quality of derived radar moments (e.g., reflectivity, Doppler velocity, and spectrum width) and hindered further analysis of these data (e.g., hydrometeor classification and boundary layer height tracking). Our technique for removing the spurs consists of three steps: (i) a Laplacian filter identifies and masks peaks in the spectra that are characteristic of the spurs in shape and amplitude, (ii) an in-painting method then fills in the masked area based on surrounding data, and (iii) the moments data (e.g., reflectivity, Doppler velocity, and spectrum width) are then recomputed using a coherent power technique. This combination of techniques was more effective than the median filter at removing the largest spurs from the Doppler spectra and preserved more of the underlying Doppler spectral structure of the scatterers. Performance of both the median-filter and the in-painting methods is assessed through statistical analysis of the spectral power differences. Downstream products, such as boundary layer height detection, are more easily derived from the recomputed moments.

Significance Statement

This manuscript describes a novel combination of image and signal processing techniques used to recover meteorological observations from corrupted Doppler radar spectra. This successful recovery of meteorologically significant information illustrates the importance of retaining Doppler spectra when practical. In seeking solutions to data quality issues, the atmospheric science community should remain cognizant of promising techniques offered by other disciplines. We present this data rescue study as an example to the meteorological community.

Restricted access
Taylor D. Swaim
,
Emalee Hough
,
Zachary Yap
,
Jamey D. Jacob
,
Siddharth Krishnamoorthy
,
Daniel C. Bowman
,
Léo Martire
,
Attila Komjathy
, and
Brian R. Elbing

Abstract

Heliotropes are passive solar hot-air balloons that are capable of achieving nearly level flight within the lower stratosphere for several hours. These inexpensive flight platforms enable stratospheric sensing with high cadence enabled by the low cost to manufacture, but their performance has not yet been assessed systematically. During July–September of 2021, 29 heliotropes were successfully launched from Oklahoma and achieved float altitude as part of the Balloon-based Acoustic Seismology Study (BASS). All of the heliotrope envelopes were nearly identical with only minor variations to the flight line throughout the campaign. Flight data collected during this campaign comprise a large sample to characterize the typical heliotrope flight behavior during launch, ascent, float, and descent. Each flight stage is characterized, dependence on various parameters is quantified, and a discussion of nominal and anomalous flights is provided.

Restricted access
Elizabeth M. Berg
,
Louis J. Urtecho
,
Siddharth Krishnamoorthy
,
Elizabeth A. Silber
,
Andrew Sparks
, and
Daniel C. Bowman

Abstract

Heating of the surficial layer of the atmosphere often generates convective vortices, known as “dust devils” when they entrain visible debris. Convective vortices are common on both Earth and Mars, where they affect the climate via dust loading, contribute to wind erosion, impact the efficiency of photovoltaic systems, and potentially result in injury and property damage. However, long-duration terrestrial convective vortex activity records are rare. We have developed a high-precision and high-recall method to extract convective vortex signatures from infrasound microbarometer data streams. The techniques utilizes a wavelet-based detector to capture potential events and then a template matching system to extract the duration of the vortex. Since permanent and temporary infrasound sensors networks are present throughout the globe (many with open data), our method unlocks a vast new convective vortex dataset without requiring the deployment of specialized instrumentation.

Significance Statement

Convective vortices, or “dust devils,” contribute to regional dust loading in Earth’s atmosphere. However, long-duration convective vortex activity records are rare. We came up with a way to autonomously detect the pressure signatures left by convective vortices striking low-frequency sound, or “infrasound,” sensors. Since permanent infrasound stations have been active for decades, our method has the potential to add orders-of-magnitude more events than previously catalogued.

Open access
Je-Yuan Hsu

Abstract

A new rotating axes method (RAM) is developed to improve the vertical resolution of the horizontal current velocity measurements u at EM-APEX floats. Unlike the traditional harmonic fitting method (HFM), which yields u averaged in 50-s intervals, RAM decodes and interprets 1-Hz measurements of horizontal seawater velocity u ˜ , and averages u ˜ in 12-s windows for removing wind waves with a typical peak frequency ∼ 0.12 Hz. Estimates of u from RAM agree with those from HFM but with a higher vertical resolution of ∼1.5 m, 4 times better than HFM. Note that extracting float signals due to seawater motion needs to assume slow-varying voltage offset ΔΦoffset. The typical variations of estimated ΔΦoffset do not affect the results of u significantly. Estimates of u are excluded when ΔΦoffset fluctuates strongly in time and scatter significantly. RAM is applied to float measurements taken near Mien-Hua Canyon, Taiwan. Composite vertical shear spectra Ψ computed using u from RAM exhibit a spectral slope of −1, as expected for the saturated internal waves in the vertical fine-scale range. The RAM provides EM-APEX float’s horizontal velocity measurements into fine vertical scales and will help improve our understanding of energy cascade from internal wave breaking and shear instability into turbulence mixing.

Restricted access