Cloud System Evolution over the Trades (CSET)
Description:
The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. An overview paper for the collection is “Cloud System Evolution in the Trades (CSET): Following the Evolution of Boundary Layer Cloud Systems with the NSF–NCAR GV” (https://doi.org/10.1175/BAMS-D-17-0180.1).
Collection organizers:
Paquita Zuidema, University of Miami
Bruce Albrecht, University of Miami
Chris Bretherton, University of Washington
Robert Wood, University of Washington
Virendra Ghate, Argonne National Laboratory
Cloud System Evolution over the Trades (CSET)
Abstract
Precipitation is a key process within the shallow cloud life cycle. The Cloud System Evolution in the Trades (CSET) campaign included the first deployment of a 94-GHz Doppler radar and 532-nm lidar. Despite a larger sampling volume, initial mean radar/lidar-retrieved rain rates based on the upward-pointing remote sensor datasets are systematically less than those measured by in situ precipitation probes in the cumulus regime. Subsequent retrieval improvements produce rain rates that compare better to in situ values but still underestimate them. Retrieved shallow cumulus drop sizes can remain too small and too few, with an overestimated shape parameter narrowing the raindrop size distribution too much. Three potential causes for the discrepancy are explored: the gamma functional fit to the drop size distribution, attenuation by rain and cloud water, and an underaccounting of Mie dampening of the reflectivity. A truncated exponential fit may represent the drop sizes below a showering cumulus cloud more realistically, although further work would be needed to fully evaluate the impact of a different drop size representation upon the retrieval. The rain attenuation is within the measurement uncertainty of the radar. Mie dampening of the reflectivity is shown to be significant, in contrast to previous stratocumulus campaigns with lighter rain rates, and may be difficult to constrain well with the remote measurements. An alternative approach combines an a priori determination of the drop size distribution width based on the in situ data with the mean radar Doppler velocity and reflectivity. This can produce realistic retrievals, although a more comprehensive assessment is needed to better characterize the retrieval errors.
Abstract
Precipitation is a key process within the shallow cloud life cycle. The Cloud System Evolution in the Trades (CSET) campaign included the first deployment of a 94-GHz Doppler radar and 532-nm lidar. Despite a larger sampling volume, initial mean radar/lidar-retrieved rain rates based on the upward-pointing remote sensor datasets are systematically less than those measured by in situ precipitation probes in the cumulus regime. Subsequent retrieval improvements produce rain rates that compare better to in situ values but still underestimate them. Retrieved shallow cumulus drop sizes can remain too small and too few, with an overestimated shape parameter narrowing the raindrop size distribution too much. Three potential causes for the discrepancy are explored: the gamma functional fit to the drop size distribution, attenuation by rain and cloud water, and an underaccounting of Mie dampening of the reflectivity. A truncated exponential fit may represent the drop sizes below a showering cumulus cloud more realistically, although further work would be needed to fully evaluate the impact of a different drop size representation upon the retrieval. The rain attenuation is within the measurement uncertainty of the radar. Mie dampening of the reflectivity is shown to be significant, in contrast to previous stratocumulus campaigns with lighter rain rates, and may be difficult to constrain well with the remote measurements. An alternative approach combines an a priori determination of the drop size distribution width based on the in situ data with the mean radar Doppler velocity and reflectivity. This can produce realistic retrievals, although a more comprehensive assessment is needed to better characterize the retrieval errors.
Abstract
The goal of this study is to challenge a large-eddy simulation model with a range of observations from a modern field campaign and to develop case studies useful to other modelers. The 2015 Cloud System Evolution in the Trades (CSET) field campaign provided a wealth of in situ and remote sensing observations of subtropical cloud transitions in the summertime northeast Pacific. Two Lagrangian case studies based on these observations are used to validate the thermodynamic, radiative, and microphysical properties of large-eddy simulations (LES) of the stratocumulus to cumulus transition. The two cases contrast a relatively fast cloud transition in a clean, initially well-mixed boundary layer versus a slower transition in an initially decoupled boundary layer with higher aerosol concentrations and stronger mean subsidence. For each case, simulations of two neighboring trajectories sample mesoscale variability and the coherence of the transition in adjacent air masses. In both cases, LES broadly reproduce satellite and aircraft observations of the transition. Simulations of the first case match observations more closely than for the second case, where simulations underestimate cloud cover early in the simulations and overestimate cloud top height later. For the first case, simulated cloud fraction and liquid water path increase if a larger cloud droplet number concentration is prescribed. In the second case, precipitation onset and inversion cloud breakup occur earlier when the LES domain is chosen to be large enough to support strong mesoscale organization.
Abstract
The goal of this study is to challenge a large-eddy simulation model with a range of observations from a modern field campaign and to develop case studies useful to other modelers. The 2015 Cloud System Evolution in the Trades (CSET) field campaign provided a wealth of in situ and remote sensing observations of subtropical cloud transitions in the summertime northeast Pacific. Two Lagrangian case studies based on these observations are used to validate the thermodynamic, radiative, and microphysical properties of large-eddy simulations (LES) of the stratocumulus to cumulus transition. The two cases contrast a relatively fast cloud transition in a clean, initially well-mixed boundary layer versus a slower transition in an initially decoupled boundary layer with higher aerosol concentrations and stronger mean subsidence. For each case, simulations of two neighboring trajectories sample mesoscale variability and the coherence of the transition in adjacent air masses. In both cases, LES broadly reproduce satellite and aircraft observations of the transition. Simulations of the first case match observations more closely than for the second case, where simulations underestimate cloud cover early in the simulations and overestimate cloud top height later. For the first case, simulated cloud fraction and liquid water path increase if a larger cloud droplet number concentration is prescribed. In the second case, precipitation onset and inversion cloud breakup occur earlier when the LES domain is chosen to be large enough to support strong mesoscale organization.
Abstract
This paper describes a technique for estimating the liquid water content (LWC) and a characteristic particle diameter in stratocumulus clouds using radar and lidar observations. The uncertainty in LWC estimate from radar and lidar measurements is significantly reduced once the characteristic particle diameter is known. The technique is independent of the drop size distribution. It is applicable for a broad range of W-band reflectivity Z between −30 and 0 dBZ and all values of lidar backscatter β observations. No partitioning of cloud or drizzle is required on the basis of an arbitrary threshold of Z as in prior studies. A method for estimating droplet diameter and LWC was derived from the electromagnetic simulations of radar and lidar observations. In situ stratocumulus cloud and drizzle probe spectra were input to the electromagnetic simulation. The retrieved droplet diameter and LWC were validated using in situ measurements from the southeastern Pacific Ocean. The retrieval method was applied to radar and lidar measurements from the northeastern Pacific. Uncertainty in the retrieved droplet diameter and LWC that are due to the measurement errors in radar and lidar backscatter measurements are 7% and 14%, respectively. The retrieved LWC was validated using the concurrent G-band radiometer estimates of the liquid water path.
Abstract
This paper describes a technique for estimating the liquid water content (LWC) and a characteristic particle diameter in stratocumulus clouds using radar and lidar observations. The uncertainty in LWC estimate from radar and lidar measurements is significantly reduced once the characteristic particle diameter is known. The technique is independent of the drop size distribution. It is applicable for a broad range of W-band reflectivity Z between −30 and 0 dBZ and all values of lidar backscatter β observations. No partitioning of cloud or drizzle is required on the basis of an arbitrary threshold of Z as in prior studies. A method for estimating droplet diameter and LWC was derived from the electromagnetic simulations of radar and lidar observations. In situ stratocumulus cloud and drizzle probe spectra were input to the electromagnetic simulation. The retrieved droplet diameter and LWC were validated using in situ measurements from the southeastern Pacific Ocean. The retrieval method was applied to radar and lidar measurements from the northeastern Pacific. Uncertainty in the retrieved droplet diameter and LWC that are due to the measurement errors in radar and lidar backscatter measurements are 7% and 14%, respectively. The retrieved LWC was validated using the concurrent G-band radiometer estimates of the liquid water path.
Abstract
Three genuine stratocumulus-to-cumulus transitions sampled during the Cloud System Evolution over the Trades (CSET) campaign are documented. The focus is on Lagrangian evolution of in situ precipitation, thought to exceed radar/lidar retrieved values because of Mie scattering. Two of the three initial stratocumulus cases are pristine [cloud droplet number concentrations (N d ) of ~22 cm−3] but occupied boundary layers of different depths, while the third is polluted (N d ~ 225 cm−3). Hourly satellite-derived cloud fraction along Lagrangian trajectories indicate that more quickly deepening boundary layers tend to transition faster, into more intense but more occasional precipitation. These transitions begin either in the morning or late afternoon, suggesting that preceding night processes can precondition or delay the inevitable transition. The precipitation shifts toward larger drop sizes throughout the transition as the boundary layers deepen, with aerosol concentrations only diminishing in two of the three cases. Ultraclean (N d < 1 cm−3) cumulus clouds evolved from pristine stratocumulus cloud with unusually high precipitation rates occupying a shallow, well-mixed boundary layer. Results from a simple one-dimensional evaporation model and from radar/lidar retrievals suggest subcloud evaporation likely increases throughout the transition. This, coupled with larger drop sizes capable of lowering the latent cooling profile, facilitates the transition to more surface-driven convection. The coassociation between boundary layer depth and precipitation does not provide definitive conclusions on the isolated effect of precipitation on the pace of the transition. Differences between the initial conditions of the three examples provide opportunities for further modeling studies.
Abstract
Three genuine stratocumulus-to-cumulus transitions sampled during the Cloud System Evolution over the Trades (CSET) campaign are documented. The focus is on Lagrangian evolution of in situ precipitation, thought to exceed radar/lidar retrieved values because of Mie scattering. Two of the three initial stratocumulus cases are pristine [cloud droplet number concentrations (N d ) of ~22 cm−3] but occupied boundary layers of different depths, while the third is polluted (N d ~ 225 cm−3). Hourly satellite-derived cloud fraction along Lagrangian trajectories indicate that more quickly deepening boundary layers tend to transition faster, into more intense but more occasional precipitation. These transitions begin either in the morning or late afternoon, suggesting that preceding night processes can precondition or delay the inevitable transition. The precipitation shifts toward larger drop sizes throughout the transition as the boundary layers deepen, with aerosol concentrations only diminishing in two of the three cases. Ultraclean (N d < 1 cm−3) cumulus clouds evolved from pristine stratocumulus cloud with unusually high precipitation rates occupying a shallow, well-mixed boundary layer. Results from a simple one-dimensional evaporation model and from radar/lidar retrievals suggest subcloud evaporation likely increases throughout the transition. This, coupled with larger drop sizes capable of lowering the latent cooling profile, facilitates the transition to more surface-driven convection. The coassociation between boundary layer depth and precipitation does not provide definitive conclusions on the isolated effect of precipitation on the pace of the transition. Differences between the initial conditions of the three examples provide opportunities for further modeling studies.
Abstract
Flight data from the Cloud System Evolution over the Trades (CSET) campaign over the Pacific stratocumulus-to-cumulus transition are organized into 18 Lagrangian cases suitable for study and future modeling, made possible by the use of a track-and-resample flight strategy. Analysis of these cases shows that 2-day Lagrangian coherence of long-lived species (CO and O3) is high (r = 0.93 and 0.73, respectively), but that of subcloud aerosol, MBL depth, and cloud properties is limited. Although they span a wide range in meteorological conditions, most sampled air masses show a clear transition when considering 2-day changes in cloudiness (−31% averaged over all cases), MBL depth (+560 m), estimated inversion strength (EIS; −2.2 K), and decoupling, agreeing with previous satellite studies and theory. Changes in precipitation and droplet number were less consistent. The aircraft-based analysis is augmented by geostationary satellite retrievals and reanalysis data along Lagrangian trajectories between aircraft sampling times, documenting the evolution of cloud fraction, cloud droplet number concentration, EIS, and MBL depth. An expanded trajectory set spanning the summer of 2015 is used to show that the CSET-sampled air masses were representative of the season, with respect to EIS and cloud fraction. Two Lagrangian case studies attractive for future modeling are presented with aircraft and satellite data. The first features a clear Sc–Cu transition involving MBL deepening and decoupling with decreasing cloud fraction, and the second undergoes a much slower cloud evolution despite a greater initial depth and decoupling state. Potential causes for the differences in evolution are explored, including free-tropospheric humidity, subsidence, surface fluxes, and microphysics.
Abstract
Flight data from the Cloud System Evolution over the Trades (CSET) campaign over the Pacific stratocumulus-to-cumulus transition are organized into 18 Lagrangian cases suitable for study and future modeling, made possible by the use of a track-and-resample flight strategy. Analysis of these cases shows that 2-day Lagrangian coherence of long-lived species (CO and O3) is high (r = 0.93 and 0.73, respectively), but that of subcloud aerosol, MBL depth, and cloud properties is limited. Although they span a wide range in meteorological conditions, most sampled air masses show a clear transition when considering 2-day changes in cloudiness (−31% averaged over all cases), MBL depth (+560 m), estimated inversion strength (EIS; −2.2 K), and decoupling, agreeing with previous satellite studies and theory. Changes in precipitation and droplet number were less consistent. The aircraft-based analysis is augmented by geostationary satellite retrievals and reanalysis data along Lagrangian trajectories between aircraft sampling times, documenting the evolution of cloud fraction, cloud droplet number concentration, EIS, and MBL depth. An expanded trajectory set spanning the summer of 2015 is used to show that the CSET-sampled air masses were representative of the season, with respect to EIS and cloud fraction. Two Lagrangian case studies attractive for future modeling are presented with aircraft and satellite data. The first features a clear Sc–Cu transition involving MBL deepening and decoupling with decreasing cloud fraction, and the second undergoes a much slower cloud evolution despite a greater initial depth and decoupling state. Potential causes for the differences in evolution are explored, including free-tropospheric humidity, subsidence, surface fluxes, and microphysics.
Abstract
During the Cloud System Evolution in the Trades (CSET) field study, 14 research flights of the National Science Foundation G-V sampled the stratocumulus–cumulus transition between Northern California and Hawaii and its synoptic variability. The G-V made vertically resolved measurements of turbulence, cloud microphysics, aerosol characteristics, and trace gases. It also carried dropsondes and a vertically pointing W-band radar and lidar. This paper summarizes these observations with the goals of fostering novel comparisons with theory, models and reanalyses, and satellite-derived products. A longitude–height binning and compositing strategy mitigates limitations of sparse sampling and spatiotemporal variability. Typically, a 1-km-deep decoupled stratocumulus-capped boundary layer near California evolved into 2-km-deep precipitating cumulus clusters surrounded by patches of thin stratus that dissipated toward Hawaii. Low cloud cover was correlated with estimated inversion strength more than with cloud droplet number, even though the thickest clouds were generally precipitating and ultraclean layers indicative of aerosol–cloud–precipitation interaction were common west of 140°W. Accumulation-mode aerosol concentration correlated well with collocated cloud droplet number concentration and was typically largest near the surface. Aitken mode aerosol concentration was typically larger in the free troposphere. Wildfire smoke produced spikes of aerosol and trace gases on some flights. CSET data are compared with space–time collocated output from MERRA-2 reanalysis and from the CAM6 climate model run with winds and temperature nudged toward this reanalysis. The reanalysis compares better with the observed relative humidity than does nudged CAM6. Both vertically diffuse the stratocumulus cloud layer versus observations. MERRA-2 slightly underestimates in situ carbon monoxide measurements and underestimates ozone depletion within the boundary layer.
Abstract
During the Cloud System Evolution in the Trades (CSET) field study, 14 research flights of the National Science Foundation G-V sampled the stratocumulus–cumulus transition between Northern California and Hawaii and its synoptic variability. The G-V made vertically resolved measurements of turbulence, cloud microphysics, aerosol characteristics, and trace gases. It also carried dropsondes and a vertically pointing W-band radar and lidar. This paper summarizes these observations with the goals of fostering novel comparisons with theory, models and reanalyses, and satellite-derived products. A longitude–height binning and compositing strategy mitigates limitations of sparse sampling and spatiotemporal variability. Typically, a 1-km-deep decoupled stratocumulus-capped boundary layer near California evolved into 2-km-deep precipitating cumulus clusters surrounded by patches of thin stratus that dissipated toward Hawaii. Low cloud cover was correlated with estimated inversion strength more than with cloud droplet number, even though the thickest clouds were generally precipitating and ultraclean layers indicative of aerosol–cloud–precipitation interaction were common west of 140°W. Accumulation-mode aerosol concentration correlated well with collocated cloud droplet number concentration and was typically largest near the surface. Aitken mode aerosol concentration was typically larger in the free troposphere. Wildfire smoke produced spikes of aerosol and trace gases on some flights. CSET data are compared with space–time collocated output from MERRA-2 reanalysis and from the CAM6 climate model run with winds and temperature nudged toward this reanalysis. The reanalysis compares better with the observed relative humidity than does nudged CAM6. Both vertically diffuse the stratocumulus cloud layer versus observations. MERRA-2 slightly underestimates in situ carbon monoxide measurements and underestimates ozone depletion within the boundary layer.
Abstract
The Cloud System Evolution in the Trades (CSET) aircraft campaign was conducted in the summer of 2015 in the northeast Pacific to observe the transition from stratocumulus to cumulus cloud regime. Fourteen transects were made between Sacramento, California, and Kona, Hawaii, using the NCAR’s High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V (GV) aircraft. The HIAPER W-band Doppler cloud radar (HCR) and the high-spectral-resolution lidar (HSRL), in their first deployment together on board the GV, provided crucial cloud and precipitation observations. The HCR recorded the raw in-phase (I) and quadrature (Q) components of the digitized signal, from which the Doppler spectra and its first three moments were calculated. HCR/HSRL data were merged to develop a hydrometeor mask on a uniform georeferenced grid of 2-Hz temporal and 20-m vertical resolutions. The hydrometeors are classified as cloud or precipitation using a simple fuzzy logic technique based on the HCR mean Doppler velocity, HSRL backscatter, and the ratio of HCR reflectivity to HSRL backscatter. This is primarily applied during zenith-pointing conditions under which the lidar can detect the cloud base and the radar is more sensitive to clouds. The microphysical properties of below-cloud drizzle and optically thin clouds were retrieved using the HCR reflectivity, HSRL backscatter, and the HCR Doppler spectrum width after it is corrected for the aircraft speed. These indicate that as the boundary layers deepen and cloud-top heights increase toward the equator, both the cloud and rain fractions decrease.
Abstract
The Cloud System Evolution in the Trades (CSET) aircraft campaign was conducted in the summer of 2015 in the northeast Pacific to observe the transition from stratocumulus to cumulus cloud regime. Fourteen transects were made between Sacramento, California, and Kona, Hawaii, using the NCAR’s High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V (GV) aircraft. The HIAPER W-band Doppler cloud radar (HCR) and the high-spectral-resolution lidar (HSRL), in their first deployment together on board the GV, provided crucial cloud and precipitation observations. The HCR recorded the raw in-phase (I) and quadrature (Q) components of the digitized signal, from which the Doppler spectra and its first three moments were calculated. HCR/HSRL data were merged to develop a hydrometeor mask on a uniform georeferenced grid of 2-Hz temporal and 20-m vertical resolutions. The hydrometeors are classified as cloud or precipitation using a simple fuzzy logic technique based on the HCR mean Doppler velocity, HSRL backscatter, and the ratio of HCR reflectivity to HSRL backscatter. This is primarily applied during zenith-pointing conditions under which the lidar can detect the cloud base and the radar is more sensitive to clouds. The microphysical properties of below-cloud drizzle and optically thin clouds were retrieved using the HCR reflectivity, HSRL backscatter, and the HCR Doppler spectrum width after it is corrected for the aircraft speed. These indicate that as the boundary layers deepen and cloud-top heights increase toward the equator, both the cloud and rain fractions decrease.
Abstract
The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the North Pacific trade winds. The study centered on seven round trips of the National Science Foundation–National Center for Atmospheric Research (NSF–NCAR) Gulfstream V (GV) between Sacramento, California, and Kona, Hawaii, between 7 July and 9 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. Global Forecast System forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the high-spectral-resolution lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud, and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloud–precipitation complexes, and patches of shallow cumuli in very clean environments. Ultraclean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle, and boundary layer sampling made over open areas of the northeast Pacific along 2-day trajectories during CSET will be an invaluable resource for modeling studies of boundary layer cloud system evolution and its governing physical processes.
Abstract
The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the North Pacific trade winds. The study centered on seven round trips of the National Science Foundation–National Center for Atmospheric Research (NSF–NCAR) Gulfstream V (GV) between Sacramento, California, and Kona, Hawaii, between 7 July and 9 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. Global Forecast System forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the high-spectral-resolution lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud, and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloud–precipitation complexes, and patches of shallow cumuli in very clean environments. Ultraclean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle, and boundary layer sampling made over open areas of the northeast Pacific along 2-day trajectories during CSET will be an invaluable resource for modeling studies of boundary layer cloud system evolution and its governing physical processes.
Abstract
A common feature of the stratocumulus-to-cumulus transition (SCT) is the presence of layers in which the concentration of particles larger than 0.1 μm is below 10 cm−3. These ultraclean layers (UCLs) are explored using aircraft observations from 14 flights of the NSF–NCAR Gulfstream V (G-V) aircraft between California and Hawaii. UCLs are commonly located in the upper part of decoupled boundary layers, with coverage increasing from less than 5% within 500 km of the California coast to ~30%–60% west of 130°W. Most clouds in UCLs are thin, horizontally extensive layers containing drops with median volume radii ranging from 15 to 30 μm. Many UCL clouds are optically thin and do not fully attenuate the G-V lidar and yet are frequently detected with a 94-GHz radar with a sensitivity of around −30 dBZ. Satellite data indicate that UCL clouds have visible reflectances of ~0.1–0.2 and are often quasi laminar, giving them a veil-like appearance. These optically thin veil clouds exist for 1–3 h or more, are associated with mesoscale cumulus clusters, and likely grow by spreading under strong inversions. Active updrafts in cumulus (Cu) clouds have droplet concentrations of ~25–50 cm−3. Collision–coalescence in the Cu and later sedimentation in the thinner UCL clouds are likely the key processes that remove droplets in UCL clouds. UCLs are relatively quiescent, and a lack of mixing with dry air above and below the cloud may help to explain their longevity. The very low and highly variable droplet concentrations in UCL clouds, together with their low geometrical and optical thickness, make these clouds particularly challenging to represent in large-scale models.
Abstract
A common feature of the stratocumulus-to-cumulus transition (SCT) is the presence of layers in which the concentration of particles larger than 0.1 μm is below 10 cm−3. These ultraclean layers (UCLs) are explored using aircraft observations from 14 flights of the NSF–NCAR Gulfstream V (G-V) aircraft between California and Hawaii. UCLs are commonly located in the upper part of decoupled boundary layers, with coverage increasing from less than 5% within 500 km of the California coast to ~30%–60% west of 130°W. Most clouds in UCLs are thin, horizontally extensive layers containing drops with median volume radii ranging from 15 to 30 μm. Many UCL clouds are optically thin and do not fully attenuate the G-V lidar and yet are frequently detected with a 94-GHz radar with a sensitivity of around −30 dBZ. Satellite data indicate that UCL clouds have visible reflectances of ~0.1–0.2 and are often quasi laminar, giving them a veil-like appearance. These optically thin veil clouds exist for 1–3 h or more, are associated with mesoscale cumulus clusters, and likely grow by spreading under strong inversions. Active updrafts in cumulus (Cu) clouds have droplet concentrations of ~25–50 cm−3. Collision–coalescence in the Cu and later sedimentation in the thinner UCL clouds are likely the key processes that remove droplets in UCL clouds. UCLs are relatively quiescent, and a lack of mixing with dry air above and below the cloud may help to explain their longevity. The very low and highly variable droplet concentrations in UCL clouds, together with their low geometrical and optical thickness, make these clouds particularly challenging to represent in large-scale models.
Abstract
In Part I, aircraft observations are used to show that ultraclean layers (UCLs) in the marine boundary layer (MBL) are a common feature of the stratocumulus-to-cumulus transition (SCT) region over the northeast Pacific. The ultraclean layers are defined as layers of either cloud or clear air in which the concentration of particles with diameter larger than 0.1 μm is below 10 cm−3. Here, idealized microphysical parcel modeling shows that in the cumulus regime, collision–coalescence can strongly deplete cloud droplet concentration in cumulus (Cu) updrafts, thereby removing cloud condensation nuclei (CCN) from the atmosphere, suggesting that collision scavenging is likely the key process causing the low particle concentration in UCLs. Furthermore, the model results suggest that the stratocumulus regime is typically not favorable for UCL formation, because condensate amounts are generally not large enough to deplete drops in the time it takes to loft air to the upper planetary boundary layer (PBL). A bulk parameterization of the coalescence-scavenging rate is derived based on in situ measurements. The fractional coalescence-scavenging rate is found to be strongly dependent upon liquid water content (LWC) and, hence, the height above cloud base, indicating that a higher cloud top and thus a greater cloud thickness in a Cu updraft is an important factor accounting for the observed sharp rise of UCL coverage in the SCT region. An important implication is that PBL height, which controls maximum cloud thickness, and therefore LWC in updrafts, could be a crucial factor constraining coalescence scavenging and thus the formation of UCLs in the MBL.
Abstract
In Part I, aircraft observations are used to show that ultraclean layers (UCLs) in the marine boundary layer (MBL) are a common feature of the stratocumulus-to-cumulus transition (SCT) region over the northeast Pacific. The ultraclean layers are defined as layers of either cloud or clear air in which the concentration of particles with diameter larger than 0.1 μm is below 10 cm−3. Here, idealized microphysical parcel modeling shows that in the cumulus regime, collision–coalescence can strongly deplete cloud droplet concentration in cumulus (Cu) updrafts, thereby removing cloud condensation nuclei (CCN) from the atmosphere, suggesting that collision scavenging is likely the key process causing the low particle concentration in UCLs. Furthermore, the model results suggest that the stratocumulus regime is typically not favorable for UCL formation, because condensate amounts are generally not large enough to deplete drops in the time it takes to loft air to the upper planetary boundary layer (PBL). A bulk parameterization of the coalescence-scavenging rate is derived based on in situ measurements. The fractional coalescence-scavenging rate is found to be strongly dependent upon liquid water content (LWC) and, hence, the height above cloud base, indicating that a higher cloud top and thus a greater cloud thickness in a Cu updraft is an important factor accounting for the observed sharp rise of UCL coverage in the SCT region. An important implication is that PBL height, which controls maximum cloud thickness, and therefore LWC in updrafts, could be a crucial factor constraining coalescence scavenging and thus the formation of UCLs in the MBL.