12th International Precipitation Conference (IPC12)

Description:

Precipitation remains one of the most challenging processes to model and predict at the local, regional and global scales with significant implications for our ability to quantify water cycle dynamics, inform decision making, and predict hydro-geomorphic hazards in response to extremes. A key to these efforts is adequate observations across space and time scales to constrain and improve models, inform data assimilation efforts, and detect and attribute changes in large-scale dynamics and regional extremes. This special collection of papers is based on advances presented at the 12th International Precipitation Conference (IPC12) which brought together the international community to integrate research, discuss challenges and opportunities, and craft future directions. Innovative contributions in this special collection include advances on three main themes: (1) estimation of precipitation from multiple sensors; (2) water cycle dynamics and predictive modeling at local to global scales; and (3) hydrologic impacts of precipitation extremes and anticipated change. This collection also includes a meeting summary published in BAMS: 10.1175/BAMS-D-20-0014.1.

The support by NSF (grant EAR-1928724) and NASA (grant 80NSSC19K0726) to organize the 12th International Precipitation Conference (IPC12), Irvine California, June 2019, and produce the IPC12 special collection of papers is gratefully acknowledged.

Collection organizer:
Efi Foufoula-Georgiou, Department of Civil and Environmental Engineering, University of California, Irvine (UCI)

12th International Precipitation Conference (IPC12)

Clement Guilloteau
,
Efi Foufoula-Georgiou
,
Pierre Kirstetter
,
Jackson Tan
, and
George J. Huffman

Abstract

Satellite precipitation products, as all quantitative estimates, come with some inherent degree of uncertainty. To associate a quantitative value of the uncertainty to each individual estimate, error modeling is necessary. Most of the error models proposed so far compute the uncertainty as a function of precipitation intensity only, and only at one specific spatiotemporal scale. We propose a spectral error model that accounts for the neighboring space–time dynamics of precipitation into the uncertainty quantification. Systematic distortions of the precipitation signal and random errors are characterized distinctively in every frequency–wavenumber band in the Fourier domain, to accurately characterize error across scales. The systematic distortions are represented as a deterministic space–time linear filtering term. The random errors are represented as a nonstationary additive noise. The spectral error model is applied to the IMERG multisatellite precipitation product, and its parameters are estimated empirically through a system identification approach using the GV-MRMS gauge–radar measurements as reference (“truth”) over the eastern United States. The filtering term is found to be essentially low-pass (attenuating the fine-scale variability). While traditional error models attribute most of the error variance to random errors, it is found here that the systematic filtering term explains 48% of the error variance at the native resolution of IMERG. This fact confirms that, at high resolution, filtering effects in satellite precipitation products cannot be ignored, and that the error cannot be represented as a purely random additive or multiplicative term. An important consequence is that precipitation estimates derived from different sources shall not be expected to automatically have statistically independent errors.

Significance Statement

Satellite precipitation products are nowadays widely used for climate and environmental research, water management, risk analysis, and decision support at the local, regional, and global scales. For all these applications, knowledge about the accuracy of the products is critical for their usability. However, products are not systematically provided with a quantitative measure of the uncertainty associated with each individual estimate. Various parametric error models have been proposed for uncertainty quantification, mostly assuming that the uncertainty is only a function of the precipitation intensity at the pixel and time of interest. By projecting satellite precipitation fields and their retrieval errors into the Fourier frequency–wavenumber domain, we show that we can explicitly take into account the neighboring space–time multiscale dynamics of precipitation and compute a scale-dependent uncertainty.

Open access
Yagmur Derin
,
Pierre-Emmanuel Kirstetter
,
Noah Brauer
,
Jonathan J. Gourley
, and
Jianxin Wang

Abstract

To understand and manage water systems under a changing climate and meet an increasing demand for water, a quantitative understanding of precipitation is most important in coastal regions. The capabilities of the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) V06B product for precipitation quantification are examined over three coastal regions of the United States: the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. A novel uncertainty analysis of IMERG is proposed that considers environmental and physical parameters such as elevation and distance to the coastline. The IMERG performance is traced back to its components, i.e., passive microwave (PMW), infrared (IR), and morphing-based estimates. The analysis is performed using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference at the native resolution of IMERG of 30 min and 0.1°. IMERG Final (IM-F) quantification performance heavily depends on the respective contribution of PMW, IR, and morph components. IM-F and its components overestimate the contribution of light rainfall (<1 mm h−1) and underestimate the contribution of high rainfall rates (>10 mm h−1) to the total rainfall volume. Strong regional dependencies are highlighted, especially over the West Coast, where the proximity of complex terrain to the coastline challenges precipitation estimates. Other major drivers are the distance from the coastline, elevation, and precipitation types, especially over the land and coast surface types, that highlight the impact of precipitation regimes.

Free access
Yagmur Derin
,
Pierre-Emmanuel Kirstetter
, and
Jonathan J. Gourley

Abstract

As a fundamental water flux, quantitative understanding of precipitation is important to understand and manage water systems under a changing climate, especially in transition regions such as the coastal interface between land and ocean. This work aims to assess the uncertainty in precipitation detection over the land–coast–ocean continuum in the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V06B product. It is examined over three coastal regions of the United States—the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different surfaces (land, coast, and ocean). A novel and integrated approach traces the IMERG detection performance back to its components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference. The best detection performances are reported with PMW estimates (hit rates in the range [25%–39%]), followed by morphing ([20%–34%]), morphing+IR ([17%–27%]) and IR ([11%–16%]) estimates. Precipitation formation mechanisms play an important role, especially in the West Coast where orographic processes challenge detection. Further, precipitation typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but suffers from false alarms ([10%–53%]). Overall, IMERG displays nonhomogeneous precipitation detection capabilities tracing back to its components. Results point toward a similar behavior across various land–coast–ocean continuum regions of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.

Full access
Clement Guilloteau
,
Efi Foufoula-Georgiou
,
Pierre Kirstetter
,
Jackson Tan
, and
George J. Huffman

Abstract

As more global satellite-derived precipitation products become available, it is imperative to evaluate them more carefully for providing guidance as to how well precipitation space–time features are captured for use in hydrologic modeling, climate studies, and other applications. Here we propose a space–time Fourier spectral analysis and define a suite of metrics that evaluate the spatial organization of storm systems, the propagation speed and direction of precipitation features, and the space–time scales at which a satellite product reproduces the variability of a reference “ground-truth” product (“effective resolution”). We demonstrate how the methodology relates to our physical intuition using the case study of a storm system with rich space–time structure. We then evaluate five high-resolution multisatellite products (CMORPH, GSMaP, IMERG-Early, IMERG-Final, and PERSIANN-CCS) over a period of 2 years over the southeastern United States. All five satellite products show generally consistent space–time power spectral density when compared to a reference ground gauge–radar dataset (GV-MRMS), revealing agreement in terms of average morphology and dynamics of precipitation systems. However, a deficit of spectral power at wavelengths shorter than 200 km and periods shorter than 4 h reveals that all satellite products are excessively “smooth.” The products also show low levels of spectral coherence with the gauge–radar reference at these fine scales, revealing discrepancies in capturing the location and timing of precipitation features. From the space–time spectral coherence, the IMERG-Final product shows superior ability in resolving the space–time dynamics of precipitation down to 200-km and 4-h scales compared to the other products.

Open access
Akhil Sanjay Potdar
,
Pierre-Emmanuel Kirstetter
,
Devon Woods
, and
Manabendra Saharia

Abstract

In the hydrological sciences, the outstanding challenge of regional modeling requires to capture common and event-specific hydrologic behaviors driven by rainfall spatial variability and catchment physiography during floods. The overall objective of this study is to develop robust understanding and predictive capability of how rainfall spatial variability influences flood peak discharge relative to basin physiography. A machine-learning approach is used on a high-resolution dataset of rainfall and flooding events spanning 10 years, with rainfall events and basins of widely varying characteristics selected across the continental United States. It overcomes major limitations in prior studies that were based on limited observations or hydrological model simulations. This study explores first-order dependencies in the relationships between peak discharge, rainfall variability, and basin physiography, and it sheds light on these complex interactions using a multidimensional statistical modeling approach. Among different machine-learning techniques, XGBoost is used to determine the significant physiographical and rainfall characteristics that influence peak discharge through variable importance analysis. A parsimonious model with low bias and variance is created that can be deployed in the future for flash flood forecasting. The results confirm that, although the spatial organization of rainfall within a basin has a major influence on basin response, basin physiography is the primary driver of peak discharge. These findings have unprecedented spatial and temporal representativeness in terms of flood characterization across basins. An improved understanding of subbasin scale rainfall spatial variability will aid in robust flash flood characterization as well as with identifying basins that could most benefit from distributed hydrologic modeling.

Full access
Thomas C. van Leth
,
Hidde Leijnse
,
Aart Overeem
, and
Remko Uijlenhoet

Abstract

We investigate the spatiotemporal structure of rainfall at spatial scales from 7 m to over 200 km in the Netherlands. We used data from two networks of laser disdrometers with complementary interstation distances in two Dutch cities (comprising five and six disdrometers, respectively) and a Dutch nationwide network of 31 automatic rain gauges. The smallest aggregation interval for which raindrop size distributions were collected by the disdrometers was 30 s, while the automatic rain gauges provided 10-min rainfall sums. This study aims to supplement other micro-γ investigations (usually performed in the context of spatial rainfall variability within a weather radar pixel) with new data, while characterizing the correlation structure across an extended range of scales. To quantify the spatiotemporal variability, we employ a two-parameter exponential model fitted to the spatial correlograms and characterize the parameters of the model as a function of the temporal aggregation interval. This widely used method allows for a meaningful comparison with seven other studies across contrasting climatic settings all around the world. We also separately analyzed the intermittency of the rainfall observations. We show that a single parameterization, consisting of a two-parameter exponential spatial model as a function of interstation distance combined with a power-law model for decorrelation distance as a function of aggregation interval, can coherently describe rainfall variability (both spatial correlation and intermittency) across a wide range of scales. Limiting the range of scales to those typically found in micro-γ variability studies (including four of the seven studies to which we compare our results) skews the parameterization and reduces its applicability to larger scales.

Open access
F. Joseph Turk
,
Sarah E. Ringerud
,
Yalei You
,
Andrea Camplani
,
Daniele Casella
,
Giulia Panegrossi
,
Paolo Sanò
,
Ardeshir Ebtehaj
,
Clement Guilloteau
,
Nobuyuki Utsumi
,
Catherine Prigent
, and
Christa Peters-Lidard

Abstract

A fully global satellite-based precipitation estimate that can transition across the changing Earth surface and complex land/water conditions is an important capability for many hydrological applications, and for independent evaluation of the precipitation derived from weather and climate models. This capability is inherently challenging owing to the complexity of the surface geophysical properties upon which the satellite-based instruments view. To date, these satellite observations originate primarily from a variety of wide-swath passive microwave (MW) imagers and sounders. In contrast to open ocean and large water bodies, the surface emissivity contribution to passive MW measurements is much more variable for land surfaces, with varying sensitivities to near-surface precipitation. The NASA–JAXA Global Precipitation Measurement (GPM) spacecraft (2014–present) is equipped with a dual-frequency precipitation radar and a multichannel passive MW imaging radiometer specifically designed for precipitation measurement, covering substantially more land area than its predecessor Tropical Rainfall Measuring Mission (TRMM). The synergy between GPM’s instruments has guided a number of new frameworks for passive MW precipitation retrieval algorithms, whereby the information carried by the single narrow-swath precipitation radar is exploited to recover precipitation from a disparate constellation of passive MW imagers and sounders. With over 6 years of increased land surface coverage provided by GPM, new insight has been gained into the nature of the microwave surface emissivity over land and ice/snow-covered surfaces, leading to improvements in a number of physically and semiphysically based precipitation retrieval techniques that adapt to variable Earth surface conditions. In this manuscript, the workings and capabilities of several of these approaches are highlighted.

Free access
Andrea Camplani
,
Daniele Casella
,
Paolo Sanò
, and
Giulia Panegrossi

Abstract

This paper describes a new Passive Microwave Empirical Cold Surface Classification Algorithm (PESCA) developed for snow-cover detection and characterization by using passive microwave satellite measurements. The main goal of PESCA is to support the retrieval of falling snow, since several studies have highlighted the influence of snow-cover radiative properties on the falling-snow passive microwave signature. The developed method is based on the exploitation of the lower-frequency channels (<90 GHz), common to most microwave radiometers. The method applied to the conically scanning Global Precipitation Measurement (GPM) Microwave Imager (GMI) and the cross-track-scanning Advanced Technology Microwave Sounder (ATMS) is described in this paper. PESCA is based on a decision tree developed using an empirical method and verified using the AutoSnow product built from satellite measurements. The algorithm performance appears to be robust both for sensors in dry conditions (total precipitable water < 10 mm) and for mean surface elevation < 2500 m, independent of the cloud cover. The algorithm shows very good performance for cold temperatures (2-m temperature below 270 K) with a rapid decrease of the detection capabilities between 270 and 280 K, where 280 K is assumed as the maximum temperature limit for PESCA (overall detection statistics: probability of detection is 0.98 for ATMS and 0.92 for GMI, false alarm ratio is 0.01 for ATMS and 0.08 for GMI, and Heidke skill score is 0.72 for ATMS and 0.69 for GMI). Some inconsistencies found between the snow categories identified with the two radiometers are related to their different viewing geometries, spatial resolution, and temporal sampling. The spectral signatures of the different snow classes also appear to be different at high frequency (>90 GHz), indicating potential impact for snowfall retrieval. This method can be applied to other conically scanning and cross-track-scanning radiometers, including the future operational EUMETSAT Polar System Second Generation (EPS-SG) mission microwave radiometers.

Open access
Yingzhao Ma
,
V. Chandrasekar
,
Haonan Chen
, and
Robert Cifelli

Abstract

It remains a challenge to provide accurate and timely flood warnings in many parts of the western United States. As part of the Advanced Quantitative Precipitation Information (AQPI) project, this study explores the potential of using the AQPI gap-filling radar network for streamflow simulation of selected storm events in the San Francisco Bay Area under a WRF-Hydro modeling system. Two types of watersheds including natural and human-affected among the most flood-prone region of the Bay Area are investigated. Based on the high-resolution AQPI X-band radar rainfall estimates, three basic routing configurations, including Grid, Reach, and National Water Model (NWM), are used to quantify the impact of different model physics options on the simulated streamflow. It is found that the NWM performs better in terms of reproducing streamflow volumes and hydrograph shapes than the other routing configurations when reservoirs exist in the watershed. Additionally, the AQPI X-band radar rainfall estimates (without gauge correction) provide reasonable streamflow simulations, and they show better performance in reproducing the hydrograph peaks compared with the gauge-corrected rainfall estimates based on the operational S-band Next Generation Weather Radar network. Also, a sensitivity test reveals that surficial conditions have a significant influence on the streamflow simulation during the storm: the discharge increases to a higher level as the infiltration factor (REFKDT) decreases, and its peak goes down and lags as surface roughness coefficient (Mann) increases. The time delay analysis of precipitation input on the streamflow at the two outfalls of the surveyed watersheds further demonstrates the link between AQPI gap-filling radar observations and streamflow changes in this urban region.

Free access
Alberto Ortolani
,
Francesca Caparrini
,
Samantha Melani
,
Luca Baldini
, and
Filippo Giannetti

Abstract

Measuring rainfall is complex, due to the high temporal and spatial variability of precipitation, especially in a changing climate, but it is of great importance for all the scientific and operational disciplines dealing with rainfall effects on the environment, human activities, and economy. Microwave (MW) telecommunication links carry information on rainfall rates along their path, through signal attenuation caused by raindrops, and can become measurements of opportunity, offering inexpensive chances to augment information without deploying additional infrastructures, at the cost of some smart processing. Processing satellite telecom signals brings some specific complexities related to the effects of rainfall boundaries, melting layer, and nonweather attenuations, but with the potential to provide worldwide precipitation data with high temporal and spatial samplings. These measurements have to be processed according to the probabilistic nature of the information they carry. An ensemble Kalman filter (EnKF)-based method has been developed to dynamically retrieve rainfall fields in gridded domains, which manages such probabilistic information and exploits the high sampling rate of measurements. The paper presents the EnKF method with some representative tests from synthetic 3D experiments. Ancillary data are assumed as from worldwide-available operational meteorological satellites and models, for advection, initial and boundary conditions, and rain height. The method reproduces rainfall structures and quantities in a correct way, and also manages possible link outages. Its results are also computationally viable for operational implementation and applicable to different link observation geometries and characteristics.

Open access