Waves to Weather (W2W)
Description:
This special collection comprises the results of the Collaborative Research Center “Waves to Weather” (W2W), which is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) for a period of 4 years with possible extensions up to 12 years. The main topic of W2W is predictability and prediction of weather. The current scientific themes of W2W are "Upscale error growth", "Cloud-scale uncertainties", and "Predictability of local weather". It includes theoretical studies, numerical modeling, and process studies based in part on cutting edge statistical methods and visualization tools, NWP models and data collected during the field campaign NAWDEX.
The aim of W2W is to identify the limits of predictability of weather and to produce the best forecasts that are physically possible. The focus of W2W is on the most important causes of remaining uncertainties in weather prediction, which include:
- the quick upscale growth of forecast errors from insufficiently resolved or represented processes like convection or boundary layer mixing, which modify synoptic-scale waves,
- our limited understanding of processes in clouds, and
- the influence of local factors on weather that influence the predictability associated with larger-scale wave disturbances.
W2W addresses these three areas in a concerted effort involving contributions from the disciplines of atmospheric dynamics, cloud physics, statistics, inverse methods and visualization.
W2W uses, and further develops a broad range of tools, including numerical models with detailed treatment of cloud processes and aerosols, and ensemble forecasts with sophisticated statistical post-processing to describe uncertainty. Improved insight has already been gained through the development of new interactive visualization methods, that enable rapid exploration of forecast ensembles to identify the sources and evolution of uncertainty in meteorologically significant features, as well as through the unprecedented dataset collected during the international field campaign NAWDEX.
W2W currently consist of eighteen individual scientific projects located in Germany (Ludwig-Maximilians University of Munich, Karlsruhe Institute of Technology, Johannes Gutenberg University in Mainz, German Aerospace Center (DLR) Oberpfaffenhofen, and University of Heidelberg).
Collection organizers:
Audine Laurian and George C. Craig, Meteorological Institute, Ludwig-Maximilians University, Munich, Germany
Waves to Weather (W2W)
Abstract
A notable number of high-impact weather extremes have occurred in recent years, often associated with persistent, strongly meandering atmospheric circulation patterns known as Rossby waves. Because of the high societal and ecosystem impacts, it is of great interest to be able to accurately project how such extreme events will change with climate change, and to predict these events on seasonal-to-subseasonal (S2S) time scales. There are multiple physical links connecting upper-atmosphere circulation patterns to surface weather extremes, and it is asking a lot of our dynamical models to accurately simulate all of these. Subsequently, our confidence in future projections and S2S forecasts of extreme events connected to Rossby waves remains relatively low. We also lack full fundamental theories for the growth and propagation of Rossby waves on the spatial and temporal scales relevant to extreme events, particularly under strongly nonlinear conditions. By focusing on one of the first links in the chain from upper-atmospheric conditions to surface extremes—the Rossby waveguide—it may be possible to circumvent some model biases in later links. To further our understanding of the nature of waveguides, links to persistent surface weather events and their representation in models, we recommend exploring these links in model hierarchies of increasing complexity, developing fundamental theory, exploiting novel large ensemble datasets, harnessing deep learning, and increased community collaboration. This would help increase understanding and confidence in both S2S predictions of extremes and of projections of the impact of climate change on extreme weather events.
Abstract
A notable number of high-impact weather extremes have occurred in recent years, often associated with persistent, strongly meandering atmospheric circulation patterns known as Rossby waves. Because of the high societal and ecosystem impacts, it is of great interest to be able to accurately project how such extreme events will change with climate change, and to predict these events on seasonal-to-subseasonal (S2S) time scales. There are multiple physical links connecting upper-atmosphere circulation patterns to surface weather extremes, and it is asking a lot of our dynamical models to accurately simulate all of these. Subsequently, our confidence in future projections and S2S forecasts of extreme events connected to Rossby waves remains relatively low. We also lack full fundamental theories for the growth and propagation of Rossby waves on the spatial and temporal scales relevant to extreme events, particularly under strongly nonlinear conditions. By focusing on one of the first links in the chain from upper-atmospheric conditions to surface extremes—the Rossby waveguide—it may be possible to circumvent some model biases in later links. To further our understanding of the nature of waveguides, links to persistent surface weather events and their representation in models, we recommend exploring these links in model hierarchies of increasing complexity, developing fundamental theory, exploiting novel large ensemble datasets, harnessing deep learning, and increased community collaboration. This would help increase understanding and confidence in both S2S predictions of extremes and of projections of the impact of climate change on extreme weather events.