Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics

Description:

Current climate, weather, and compositional forecasts have limited predictive skill within the Indo-Pacific warm pool regions and across Southeast Asia. Improvement of our forecasting capability has significant societal consequences, as cyclone activity, periods of drought and flooding, and severe biomass burning episodes affect the livelihoods and security of the millions of people inhabiting Southeast Asia. These regions are characterized by deep, moist convection that is organized and maintained over a range of spatio-temporal scales, ranging from coastal convection to ENSO and IOD. While comparison of uncoupled and coupled simulations suggests that air–sea interactions are important in organizing convection, a process-based understanding of exactly how air-sea interaction influences large-scale convective patterns and relationships to overall monsoon meteorology remains uncertain. Tightly linked land, oceanic, and atmospheric processes likely all have an important role to play, requiring an interdisciplinary approach for improved understanding. The recent US-funded field campaigns Propagation of INtraseasonal Tropical Oscillations (PISTON), Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISOBOB), and Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) and their international counterparts—South China Sea Two-Island Monsoon Experiment (SCSTIMX) and Ocean Mixing and Monsoon (OMM)—have focused on air-sea observations, forecast, and model studies over timescales of sub-daily to multi-year within the Indo-Pacific warm pool region with the aim of improving our coupled, interdisciplinary understanding across the air–sea interface. This special collection showcases the results from these observational campaigns and corresponding numerical modeling efforts. Contributions range from ocean-centric to atmosphere-centric to fully coupled works that address sub-seasonal to seasonal variability of convection including that associated with the Madden Julian oscillation and boreal summer intraseasonal oscillations, monsoon variability, cyclone activity, the diurnal cycle, and/or related cloud, aerosol, land, and ocean processes.

Collection organizers:
Emily Shroyer, Oregon State University
Sue Chen, US Naval Research Laboratory
Eric Maloney, Colorado State University
Jeffrey Reid, US Naval Research Laboratory
Amit Tandon, University of Massachusetts, Dartmouth

Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics

Iury T. Simoes-Sousa
,
Amit Tandon
,
Jared Buckley
,
Debasis Sengupta
,
Sree Lekha J. Sree Lekha J.
,
Emily Shroyer
, and
Simon P. de Szoeke

Abstract

Atmospheric cold pools, generated by evaporative downdrafts from precipitating clouds, are ubiquitous in the Bay of Bengal. We use data from three moorings near 18°N to characterize a total of 465 cold pools. The cold pools are all dry, with a typical temperature drop of 2°C (maximum 5°C) and specific humidity drop of 1 g kg−1 (maximum = 6 g kg−1). Most cold pools last 1.5–3.5 h (maximum = 14 h). Cold pools occur almost every day in the north bay from April to November, principally in the late morning, associated with intense precipitation that accounts for 80% of total rain. They increase the latent heat flux to the atmosphere by about 32 W m−2 (median), although the instantaneous enhancement of latent heat flux for individual cold pools reaches 150 W m−2. During the rainiest month (July), the cold pools occur 21% of the time and contribute nearly 14% to the mean evaporation. A composite analysis of all cold pools shows that the temperature and specific humidity anomalies are responsible for ∼90% of the enhancement of sensible and latent heat flux, while variations in wind speed are responsible for the remainder. Depending on their gust-front speed, the estimated height of the cold pools primarily ranges from 850 to 3200 m, with taller fronts more likely to occur during the summer monsoon season (June–September). Our results indicate that the realistic representation of cold pools in climate models is likely to be important for improved simulation of air–sea fluxes and monsoon rainfall.

Significance Statement

Atmospheric cold pools form over the ocean when falling rain evaporates, leading to a dense cold air mass spreading over the surface. They impact air–sea heat exchanges over tropical regions and give rise to new rainstorms. We analyze data from three fixed, closely spaced buoys to describe cold pools and investigate their role in rainfall and air–sea interactions in the northern Bay of Bengal (Indian Ocean). We find that cold pools are associated with about 80% of all rain and are important for ocean–atmosphere heat and moisture exchange, especially from April to November. We estimate the speed of cold pools and derive their heights (850–3200 m) using theory.

Free access
A. Anutaliya
,
U. Send
,
J. L. McClean
,
J. Sprintall
,
M. Lankhorst
,
C. M. Lee
,
L. Rainville
,
W. N. C. Priyadarshani
, and
S. U. P. Jinadasa

Abstract

Boundary currents along the Sri Lankan eastern and southern coasts serve as a pathway for salt exchange between the Bay of Bengal and the Arabian Sea basins in the northern Indian Ocean, which are characterized by their contrasting salinities. Measurements from two pairs of pressure-sensing inverted echo sounders (PIES) deployed along the Sri Lankan eastern and southern coasts as well as satellite measurements are used to understand the variability of these boundary currents and the associated salt transport. The volume transport in the surface (0–200-m depth) layer exhibits a seasonal cycle associated with the monsoonal wind reversal and interannual variability associated with the Indian Ocean dipole (IOD). In this layer, the boundary currents transport low-salinity water out of the Bay of Bengal during the northeast monsoon and transport high-salinity water into the Bay of Bengal during the fall monsoon transition of some years (e.g., 2015 and 2018). The Bay of Bengal salt input increases during the 2016 negative IOD as the eastward flow of high-salinity water during the fall monsoon transition intensifies, whereas the effect of the 2015/16 El Niño on the Bay of Bengal salt input is still unclear. The time-mean eddy salt flux over the upper 200 m estimated for the April 2015–March 2019 period along the eastern coast accounts for 9% of the salt budget required to balance an estimated 0.13 Sv (1 Sv ≡ 106 m3 s−1) of annual freshwater input into the Bay of Bengal. The time-mean eddy salt flux over the upper 200 m estimated for the December 2015–November 2019 period along the southern coast accounts for 27% of that same salt budget.

Significance Statement

In the northern Indian Ocean, the highly saline Arabian Sea undergoes extreme evaporation while the Bay of Bengal (BoB) receives excess freshwater input. The focus of this study is the role of the observed time-variable circulation around Sri Lanka that permits the exchange between these basins to maintain their salinity distributions. The circulation fluctuates seasonally following the monsoon wind reversal and interannually in response to large-scale climate modes. The BoB freshwater export around Sri Lanka occurs during the northeast monsoon, whereas saline water import occurs during the fall monsoon transition of some years. However, rapid changes in both water volume transport and salt exchange can occur. The circulation over 0–200-m depth transports ∼9%–27% of the BoB salt budget.

Free access
Kyle Chudler
,
Steven A. Rutledge
, and
Brenda Dolan

Abstract

Isolated warm-rain cells are an important feature over the tropical oceans. Although warm rain is typically associated with relatively small raindrops, large raindrops (>4.5 mm in diameter) have been observed in some cases. Previous studies have examined warm rain cells with large drops on a case-study basis, but they have yet to be investigated in a broader, statistical sense. During the recent Propagation of Intraseasonal Oscillations (PISTON) field campaign, a C-band polarimetric radar routinely measured extreme values of differential reflectivity in small, isolated convection, indicating the presence of large drops. Using an objective feature identification and tracking algorithm, this study offers new insights to the structure and frequency of cells containing large drops. Cells with high differential reflectivity (>3.5 dB) were present in 24% of all radar scans. The cells were typically small (8-km2 mean area), short lived (usually <10 min), and shallow (3.7-km mean height). High differential reflectivity was more often found on the upwind side of the cells, suggesting a size sorting mechanism was operating establishing a low concentration of large drops on the upwind side. Differential reflectivity also tended to increase at lower altitudes, which is hypothesized to be due to continued drop growth and increasing temperature (increasing the dielectric constant of water). Rapid vertical cross-section radar scans, as well as transects made by a Learjet aircraft with onboard particle probes, are also used to analyze these cells, and support the conclusions drawn from statistical analysis.

Free access
Luc Rainville
,
Craig M. Lee
,
K. Arulananthan
,
S. U. P. Jinadasa
,
Harindra J. S. Fernando
,
W. N. C. Priyadarshani
, and
Hemantha Wijesekera

Abstract

We present high-resolution sustained, persistent observations of the ocean around Sri Lanka from autonomous gliders collected over several years, a region with complex, variable circulation patterns connecting the Bay of Bengal and the Arabian Sea to each other and the rest of the Indian Ocean. The Seaglider surveys resolve seasonal to interannual variability in vertical and horizontal structure, allowing quantification of volume, heat, and freshwater fluxes, as well as the transformations and transports of key water mass classes across sections normal to the east (2014–15) and south (2016–19) coasts of Sri Lanka. The resulting transports point to the importance of both surface and subsurface flows and show that the direct pathway along the Sri Lankan coast plays a significant role in the exchanges of waters between the Arabian Sea and the Bay of Bengal. Significant section-to-section variability highlights the need for sustained, long-term observations to quantify the circulation pathways and dynamics associated with exchange between the Bay of Bengal and Arabian Sea and provides context for interpreting observations collected as “snapshots” of more limited duration.

Significance Statement

The strong seasonal variations of the wind in the Indian Ocean create large and rapid changes in the ocean’s properties near Sri Lanka. This variable and poorly observed circulation is very important for how temperature and salinity are distributed across the northern Indian Ocean, both at the surface and at depths. Long-term and repeated surveys from autonomous Seagliders allow us to understand how freshwater inflow, atmospheric forcing, and underlying ocean variability act to produce observed contrasts (spatial and seasonal) in upper-ocean structure of the Bay of Bengal and Arabian Sea.

Open access
Sebastian Essink
,
Verena Hormann
,
Luca R. Centurioni
, and
Amala Mahadevan

Abstract

Horizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from drifter clusters using three approaches. At submesoscale horizontal length scales O ( 1 10 ) km , kinematic properties become as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O ( hours to days ) . By simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calculations due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and aspect ratio) are determined and error functions estimated empirically and theoretically. The most robust method—a two-dimensional, linear least squares fit—is applied to the first few days of a drifter dataset from the Bay of Bengal. Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of drifter observations, while also highlighting challenges and limitations.

Significance Statement

The purpose of this study is to provide insights and guidance for computing horizontal velocity gradients from clusters (i.e., three or more) of Lagrangian surface ocean drifters. The uncertainty in velocity gradient estimates depends strongly on the shape deformation of drifter clusters by the ocean currents. We propose criteria for drifter cluster length scales and aspect ratios to reduce uncertainties and develop ways of estimating the magnitude of the resulting errors. The findings are applied to a real ocean dataset from the Bay of Bengal.

Full access
Kerstin Cullen
,
Emily Shroyer
, and
Larry O’Neill

Abstract

The Sri Lanka Dome is a cyclonic recirculation feature in the Southwest Monsoon Current system in the southern Bay of Bengal. Cooler sea surface temperature (SST) in the vicinity of this system is often denoted as the Bay of Bengal “Cold Pool.” Although the wind shadow of Sri Lanka creates a region of strong positive wind stress curl, both sea level height dynamics and the distribution of cool SST cannot be explained by wind stress curl alone via traditional Ekman pumping. Moreover, the Cold Pool region is often aligned with the eastern portion of the Sri Lanka Dome, as defined by sea surface height. Previous work has attributed the spatial SST pattern to lateral advection. In this analysis, we explore whether low-latitude weakly nonlinear “vorticity” Ekman pumping could be an explanation for both cooling and observed changes in sea level height in the southwest Bay of Bengal. We show that weakly nonlinear upwelling, calculated from ERA5 and AVISO geostrophic currents, collocates with changes in sea level height (and presumably isopycnals). While the SST signal is sensitive to several factors including the net surface flux, regional upwelling explains changes in AVISO sea level height if the nonlinear terms are included, in both the Sri Lanka Dome and the region of the Southwest Monsoon Current.

Full access
Patrick Orenstein
,
Baylor Fox-Kemper
,
Leah Johnson
,
Qing Li
, and
Aakash Sane

Abstract

Empirically generated indices are used to evaluate the skill of a global climate model in representing the monsoon intraseasonal oscillation (MISO). This work adapts the method of Suhas et al., an extended empirical orthogonal function (EEOF) analysis of daily rainfall data with the first orthogonal function indicating MISO strength and phase. This method is applied to observed rainfall and Community Earth System Model (CESM1.2) simulation results. Variants of the CESM1.2 including upper ocean parameterizations for Langmuir turbulence and submesoscale mixed layer eddy restratification are used together with the EEOF analysis to explore sensitivity of the MISO to global upper ocean process representations. The skill with which the model variants recreate the MISO strength and persistence is evaluated versus the observed MISO. While all model versions reproduce the northward rainfall propagation traditionally associated with the MISO, a version including both Langmuir turbulence and submesoscale restratification parameterizations provides the most accurate simulations of the time scale of MISO events.

Full access
Peter G. Veals
,
Adam C. Varble
,
James O. H. Russell
,
Joseph C. Hardin
, and
Edward J. Zipser

Abstract

An aerosol indirect effect on deep convective cores (DCCs), by which increasing aerosol concentration increases cloud-top height via enhanced latent heating and updraft velocity, has been proposed in many studies. However, the magnitude of this effect remains uncertain due to aerosol measurement limitations, modulation of the effect by meteorological conditions, and difficulties untangling meteorological and aerosol effects on DCCs. The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign in 2018–19 produced concentrated aerosol and cloud observations in a location with frequent DCCs, providing an opportunity to examine the proposed aerosol indirect effect on DCC depth in a rigorous and robust manner. For periods throughout the campaign with well-mixed boundary layers, we analyze relationships that exist between aerosol variables (condensation nuclei concentration > 10 nm, 0.4% cloud condensation nuclei concentration, 55–1000-nm aerosol concentration, and aerosol optical depth) and meteorological variables [level of neutral buoyancy (LNB), convective available potential energy, midlevel relative humidity, and deep-layer vertical wind shear] with the maximum radar-echo-top height and cloud-top temperature (CTT) of DCCs. Meteorological variables such as LNB and deep-layer shear are strongly correlated with DCC depth. LNB is also highly correlated with three of the aerosol variables. After accounting for meteorological correlations, increasing values of the aerosol variables [with the exception of one formulation of aerosol optical depth (AOD)] are generally correlated at a statistically significant level with a warmer CTT of DCCs. Therefore, for the study region and period considered, increasing aerosol concentration is mostly associated with a decrease in DCC depth.

Full access
Hemantha W. Wijesekera
,
W. J. Teague
,
David W. Wang
,
Z. R. Hallock
,
Conrad A. Luecke
,
Ewa Jarosz
,
H. J. S. Fernando
,
S. U. P. Jinadasa
,
Tommy G. Jensen
,
Adam Rydbeck
, and
Maria Flatau

Abstract

Upper-ocean heat content and heat fluxes of 10–60-day intraseasonal oscillations (ISOs) were examined using high-resolution currents and hydrographic fields measured at five deep-water moorings in the central Bay of Bengal (BoB) and satellite observations as part of an international effort examining the role of the ocean on monsoon intraseasonal oscillations (MISOs) in the BoB. Currents, temperature, and salinity were sampled over the upper 600–1200 m from July 2018 to June 2019. The 10–60-day velocity ISOs of magnitudes 20–30 cm s−1 were observed in the upper 200 m, and temperature ISOs as large as 3°C were observed in the thermocline near 100 m. The wavelet cospectral analysis reveals multiple periods of ISOs carrying heat southward. The meridional heat-flux divergence associated with the 10–60-day band was strongest in the central BoB at depths between 40 and 100 m, where the averaged flux divergence over the observational period is as large as 10−7 °C s−1. The vertically integrated heat-flux divergence in the upper 200 m is about 20–30 W m−2, which is comparable to the annual-average net surface heat flux in the northern BoB. Correlations between the heat content over the 26°C isotherm and the outgoing longwave radiation indicate that the atmospheric forcing typically leads changes of the oceanic heat content, but in some instances, during fall–winter months, oceanic heat content leads the atmospheric convection. Our analyses suggest that ISOs play an important role in the upper-ocean heat balance by transporting heat southward, while aiding the air–sea coupling at ISO time scales.

Full access
K. Jossia Joseph
,
Amit Tandon
,
R. Venkatesan
,
J. Thomas Farrar
, and
Robert A. Weller

Abstract

The inception of a moored buoy network in the northern Indian Ocean in 1997 paved the way for systematic collection of long-term time series observations of meteorological and oceanographic parameters. This buoy network was revamped in 2011 with Ocean Moored buoy Network for north Indian Ocean (OMNI) buoys fitted with additional sensors to better quantify the air–sea fluxes. An intercomparison of OMNI buoy measurements with the nearby Woods Hole Oceanographic Institution (WHOI) mooring during the year 2015 revealed an overestimation of downwelling longwave radiation (LWR↓). Analysis of the OMNI and WHOI radiation sensors at a test station at National Institute of Ocean Technology (NIOT) during 2019 revealed that the accurate and stable amplification of the thermopile voltage records along with the customized datalogger in the WHOI system results in better estimations of LWR↓. The offset in NIOT measured LWR↓ is estimated first by segregating the LWR↓ during clear-sky conditions identified using the downwelling shortwave radiation measurements from the same test station, and second, finding the offset by taking the difference with expected theoretical clear-sky LWR↓. The corrected LWR↓ exhibited good agreement with that of collocated WHOI measurements, with a correlation of 0.93. This method is applied to the OMNI field measurements and again compared with the nearby WHOI mooring measurements, exhibiting a better correlation of 0.95. This work has led to the revamping of radiation measurements in OMNI buoys and provides a reliable method to correct past measurements and improve estimation of air–sea fluxes in the Indian Ocean.

Significance Statement

Downwelling longwave radiation (LWR↓) is an important climate variable for calculating air–sea heat exchange and quantifying Earth’s energy budget. An intercomparison of LWR↓ measurements between ocean observing platforms in the north Indian Ocean revealed a systematic offset in National Institute of Ocean Technology (NIOT) Ocean Moored buoy Network for north Indian Ocean (OMNI) buoys. The observed offset limited our capability to accurately estimate air–sea fluxes in the Indian Ocean. The sensor measurements were compared with a standard reference system, which revealed problems in thermopile amplifier as the root cause of the offset. This work led to the development of a reliable method to correct the offset in LWR↓ and revamping of radiation measurements in NIOT-OMNI buoys. The correction is being applied to the past measurements from 12 OMNI buoys over 8 years to improve the estimation of air–sea fluxes in the Indian Ocean.

Open access