Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics

Description:

Current climate, weather, and compositional forecasts have limited predictive skill within the Indo-Pacific warm pool regions and across Southeast Asia. Improvement of our forecasting capability has significant societal consequences, as cyclone activity, periods of drought and flooding, and severe biomass burning episodes affect the livelihoods and security of the millions of people inhabiting Southeast Asia. These regions are characterized by deep, moist convection that is organized and maintained over a range of spatio-temporal scales, ranging from coastal convection to ENSO and IOD. While comparison of uncoupled and coupled simulations suggests that air–sea interactions are important in organizing convection, a process-based understanding of exactly how air-sea interaction influences large-scale convective patterns and relationships to overall monsoon meteorology remains uncertain. Tightly linked land, oceanic, and atmospheric processes likely all have an important role to play, requiring an interdisciplinary approach for improved understanding. The recent US-funded field campaigns Propagation of INtraseasonal Tropical Oscillations (PISTON), Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISOBOB), and Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) and their international counterparts—South China Sea Two-Island Monsoon Experiment (SCSTIMX) and Ocean Mixing and Monsoon (OMM)—have focused on air-sea observations, forecast, and model studies over timescales of sub-daily to multi-year within the Indo-Pacific warm pool region with the aim of improving our coupled, interdisciplinary understanding across the air–sea interface. This special collection showcases the results from these observational campaigns and corresponding numerical modeling efforts. Contributions range from ocean-centric to atmosphere-centric to fully coupled works that address sub-seasonal to seasonal variability of convection including that associated with the Madden Julian oscillation and boreal summer intraseasonal oscillations, monsoon variability, cyclone activity, the diurnal cycle, and/or related cloud, aerosol, land, and ocean processes.

Collection organizers:
Emily Shroyer, Oregon State University
Sue Chen, US Naval Research Laboratory
Eric Maloney, Colorado State University
Jeffrey Reid, US Naval Research Laboratory
Amit Tandon, University of Massachusetts, Dartmouth

Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics

Michael B. Natoli
and
Eric D. Maloney

Abstract

The impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 data, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-yr composite analysis are used to understand the effect of the quasi-biweekly oscillation (QBWO) on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches maximum amplitude on the western side of the Philippines on days with average to above-average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO. Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local-scale environmental background state similarly.

Full access
Emily Shroyer
,
Amit Tandon
,
Debasis Sengupta
,
Harindra J. S. Fernando
,
Andrew J. Lucas
,
J. Thomas Farrar
,
Rajib Chattopadhyay
,
Simon de Szoeke
,
Maria Flatau
,
Adam Rydbeck
,
Hemantha Wijesekera
,
Michael McPhaden
,
Hyodae Seo
,
Aneesh Subramanian
,
R Venkatesan
,
Jossia Joseph
,
S. Ramsundaram
,
Arnold L. Gordon
,
Shannon M. Bohman
,
Jaynise Pérez
,
Iury T. Simoes-Sousa
,
Steven R. Jayne
,
Robert E. Todd
,
G. S. Bhat
,
Matthias Lankhorst
,
Tamara Schlosser
,
Katherine Adams
,
S. U. P Jinadasa
,
Manikandan Mathur
,
M. Mohapatra
,
E. Pattabhi Rama Rao
,
A. K. Sahai
,
Rashmi Sharma
,
Craig Lee
,
Luc Rainville
,
Deepak Cherian
,
Kerstin Cullen
,
Luca R. Centurioni
,
Verena Hormann
,
Jennifer MacKinnon
,
Uwe Send
,
Arachaporn Anutaliya
,
Amy Waterhouse
,
Garrett S. Black
,
Jeremy A. Dehart
,
Kaitlyn M. Woods
,
Edward Creegan
,
Gad Levy
,
Lakshmi H. Kantha
, and
Bulusu Subrahmanyam

Abstract

In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.

Full access
B. Praveen Kumar
,
Eric D’Asaro
,
N. Sureshkumar
,
E. Pattabhi Rama Rao
, and
M. Ravichandran

Abstract

We use profiles from a Lagrangian float in the north Indian Ocean to explore the usefulness of Thorpe analysis methods to measure vertical scales and dissipation rates in the ocean surface boundary layer. An rms Thorpe length scale LT and an energy dissipation rate εT were computed by resorting the measured density profiles. These are compared to the mixed layer depth (MLD) computed with different density thresholds, the Monin–Obukhov (MO) length LMO computed from the ERA5 reanalysis values of wind stress, and buoyancy flux B0 and dissipation rates ε from historical microstructure data. The Thorpe length scale LT is found to accurately match MLD for small (<0.005 kg m−3) density thresholds, but not for larger thresholds, because these do not detect the warm diurnal layers. We use ξ = LT/|LMO| to classify the boundary layer turbulence during nighttime convection. In our data, 90% of points from the Bay of Bengal (Arabian Sea) satisfy ξ < 1 (1 < ξ <10), indicating that wind forcing is (both wind forcing and convection are) driving the turbulence. Over the measured range of ξ, εT decreases with decreasing ξ, i.e., more wind forcing, while ε increases, clearly showing that ε/εT decreases with increasing ξ. This is explained by a new scaling for ξ ≪ 1, εT = 1.15B0ξ0.5 compared to the historical scaling ε = 0.64B0 + 1.76ξ−1. For ξ ≪ 1 we expect ε = εT. Similar calculations may be possible using routine Argo float and ship data, allowing more detailed global measurements of εT, thereby providing large-scale tests of turbulence scaling in boundary layers.

Full access
Kyle Chudler
and
Steven A. Rutledge

Abstract

The Propagation of Intraseasonal Oscillations (PISTON) field campaign took place in the waters of the western tropical North Pacific during the late summer and early fall of 2018 and 2019. During both research cruises, the Colorado State University SEA-POL polarimetric C-band weather radar obtained continuous 3D measurements of oceanic precipitation systems. This study provides an overview of the variability in convection observed during the PISTON cruises, and relates this variability to large-scale atmospheric conditions. Using an objective classification algorithm, precipitation features are identified and labeled by their size (isolated, sub-MCS, MCS) and degree of convective organization (nonlinear, linear). It is shown that although large mesoscale convective systems (MCSs) occurred infrequently (present in 13% of radar scans), they contributed a disproportionately large portion (56%) of the total rain volume. Conversely, small isolated features were present in 91% of scans, yet these features contributed just 11% of the total rain volume, with the bulk of the rainfall owing to warm rain production. Convective rain rates and 30-dBZ echo-top heights increased with feature size and degree of organization. MCSs occurred more frequently in periods of low-level southwesterly winds, and when low-level wind shear was enhanced. By compositing radar and sounding data by phases of easterly waves (of which there were several in 2018), troughs are shown to be associated with increased precipitation and a higher relative frequency of MCS feature occurrence, while ridges are shown to be associated with decreased precipitation and a higher relative frequency of isolated convective features.

Full access
Benjamin C. Trabing
and
Michael M. Bell

Abstract

A growing body of work has documented the existence of diurnal oscillations in the tropical cyclone outflow layer. These diurnal pulses have been examined primarily using satellites or numerical models, and detailed full tropospheric observations or case study analyses of diurnal pulses are lacking. Questions remain on the vertical extent of diurnal pulses and whether diurnal pulses are coupled to convective bands or constrained to the outflow layer. During the Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign, diurnal oscillations in the upper-level clouds were observed during Typhoon Kong-rey’s (2018) rapid intensification. Over a 3.5-day period where a broad distribution of cold upper-level clouds was overhead, detailed observations of Typhoon Kong-rey’s rainbands show that convection had reduced echo tops but enhanced reflectivity and differential reflectivity aloft compared to other observations during PISTON. Shortwave heating in the upper levels increased the stability profile in an overall favorable thermodynamic environment for convection during the day, which could help to explain the diurnal differences in convective structure. Under the cirrus canopy, nocturnal convection was deeper and daytime convection shallower in contrast to the rest of the PISTON dataset. Diurnal oscillations in the brightness temperatures were found to be coupled to radially outward propagating convective rainbands that were preceded ~6 h by outflow jets. The cooling pulses occurred earlier than found in previous studies. The pulses were asymmetric spatially, which is likely due to a combination of the vertical wind shear and storm intensity.

Full access
Kenneth G. Hughes
,
James N. Moum
,
Emily L. Shroyer
, and
William D. Smyth

Abstract

In low winds ( 2 m s−1), diurnal warm layers form, but shear in the near-surface jet is too weak to generate shear instability and mixing. In high winds ( 8 m s−1), surface heat is rapidly mixed downward and diurnal warm layers do not form. Under moderate winds of 3–5 m s−1, the jet persists for several hours in a state that is susceptible to shear instability. We observe low Richardson numbers of Ri ≈ 0.1 in the top 2 m between 1000 and 1600 local time (LT) (from 4 h after sunrise to 2 h before sunset). Despite Ri being well below the Ri = ¼ threshold, instabilities do not grow quickly, nor do they overturn. The stabilizing influence of the sea surface limits growth, a result demonstrated by both linear stability analysis and two-dimensional simulations initialized from observed profiles. In some cases, growth rates are sufficiently small (≪1 h−1) that mixing is not expected even though Ri < ¼. This changes around 1600–1700 LT. Thereafter, convective cooling causes the region of unstable flow to move downward, away from the surface. This allows shear instabilities to grow an order-of-magnitude faster and mix effectively. We corroborate the overall observed diurnal cycle of instability with a freely evolving, two-dimensional simulation that is initialized from rest before sunrise.

Full access
C. A. Luecke
,
H. W. Wijesekera
,
E. Jarosz
,
D. W. Wang
,
J. C. Wesson
,
S. U. P. Jinadasa
,
H. J. S. Fernando
, and
W. J. Teague

Abstract

Long-term measurements of turbulent kinetic energy dissipation rate (ε), and turbulent temperature variance dissipation rate (χ T ) in the thermocline, along with currents, temperature, and salinity were made at two subsurface moorings in the southern Bay of Bengal (BoB). This is a part of a major international program, conducted between July 2018 and June 2019, for investigating the role of the BoB on the monsoon intraseasonal oscillations. One mooring was located on the typical path of the Southwest Monsoon Current (SMC), and the other was in a region where the Sri Lanka dome is typically found during the summer monsoon. Microstructure and finescale estimates of vertical diffusivity revealed the long-term subthermocline mixing patterns in the southern BoB. Enhanced turbulence and large eddy diffusivities were observed within the SMC during the passage of a subsurface-intensified anticyclonic eddy. During this time, background shear and strain appeared to influence high-frequency motions such as near-inertial waves and internal tides, leading to increased mixing. Near the Sri Lanka dome, enhanced dissipation occurred at the margins of the cyclonic feature. Turbulent mixing was enhanced with the passage of Rossby waves and eddies. During these events, values of χ T exceeding 10−4 °C2 s−1 were recorded concurrently with ε values exceeding 10−5 W kg−1. Inferred diffusivity peaked well above background values of 10−6 m2 s−1, leading to an annually averaged diffusivity near 10−4 m2 s−1. Turbulence appeared low throughout much of the deployment period. Most of the mixing occurred in spurts during isolated events.

Free access
Adam H. Sobel
,
Janet Sprintall
,
Eric D. Maloney
,
Zane K. Martin
,
Shuguang Wang
,
Simon P. de Szoeke
,
Benjamin C. Trabing
, and
Steven A. Rutledge

Abstract

The Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment conducted a field campaign in August–October 2018. The R/V Thomas G. Thompson made two cruises in the western North Pacific region north of Palau and east of the Philippines. Using select field observations and global observational and reanalysis datasets, this study describes the large-scale state and evolution of the atmosphere and ocean during these cruises. Intraseasonal variability was weak during the field program, except for a period of suppressed convection in October. Tropical cyclone activity, on the other hand, was strong. Variability at the ship location was characterized by periods of low-level easterly atmospheric flow with embedded westward propagating synoptic-scale atmospheric disturbances, punctuated by periods of strong low-level westerly winds that were both connected to the Asian monsoon westerlies and associated with tropical cyclones. In the most dramatic case, westerlies persisted for days during and after tropical cyclone Jebi had passed to the north of the ship. In these periods, the sea surface temperature was reduced by a couple of degrees by both wind mixing and net surface heat fluxes that were strongly (~200 W m−2) out of the ocean, due to both large latent heat flux and cloud shading associated with widespread deep convection. Underway conductivity–temperature transects showed dramatic cooling and deepening of the ocean mixed layer and erosion of the barrier layer after the passage of Typhoon Mangkhut due to entrainment of cooler water from below. Strong zonal currents observed over at least the upper 400 m were likely related to the generation and propagation of near-inertial currents.

Full access
Simon P. de Szoeke

Abstract

A small integrated oceanographic thermometer with a nominal response time of 1 s was affixed to a floating hose “sea snake” towed near the bow of a research vessel. The sensor measured the near-surface ocean temperature accurately and in agreement with other platforms. The effect of conduction and evaporation is modeled for a sensor impulsively alternated between water and air. Large thermal mass makes most sea snake thermometers insensitive to temperature impulses. The smaller 1-s thermometer cooled by evaporation, but the sensor never reached the wet-bulb temperature. The cooling was less than 6% of the (~2.7°C) difference between the ocean temperature and the wet-bulb temperature in 99% of 2-s−1 samples. Filtering outliers, such as with a median, effectively removes the evaporative cooling effect from 1- or 10-min average temperatures.

Open access
Kenneth G. Hughes
,
James N. Moum
, and
Emily L. Shroyer

Abstract

Penetration of solar radiation in the upper few meters of the ocean creates a near-surface, stratified diurnal warm layer. Wind stress accelerates a diurnal jet in this layer. Turbulence generated at the diurnal thermocline, where the shear of the diurnal jet is concentrated, redistributes heat downward via mixing. New measurements of temperature and turbulence from fast thermistors on a surface-following platform depict the details of this sequence in both time and depth. Temporally, the sequence at a fixed depth follows a counterclockwise path in logϵ–logN parameter space. This path also captures the evolution of buoyancy Reynolds number (a proxy for the anisotropy of the turbulence) and Ozmidov scale (a proxy for the outer vertical length scale of turbulence in the absence of the free surface). Vertically, the solar heat flux always leads to heating of fluid parcels in the upper few meters, whereas the turbulent heat flux divergence changes sign across the depth of maximum vertical temperature gradient, cooling fluid parcels above and heating fluid parcels below. In general, our measurements of fluid parcel heating or cooling rates of order 0.1°C h−1 are consistent with our estimates of heat flux divergence. In weak winds (<2 m s−1), sea surface temperature (SST) is controlled by the depth-dependent absorption of solar radiation. In stronger winds, turbulent mixing controls SST.

Free access