Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics

Description:

Current climate, weather, and compositional forecasts have limited predictive skill within the Indo-Pacific warm pool regions and across Southeast Asia. Improvement of our forecasting capability has significant societal consequences, as cyclone activity, periods of drought and flooding, and severe biomass burning episodes affect the livelihoods and security of the millions of people inhabiting Southeast Asia. These regions are characterized by deep, moist convection that is organized and maintained over a range of spatio-temporal scales, ranging from coastal convection to ENSO and IOD. While comparison of uncoupled and coupled simulations suggests that air–sea interactions are important in organizing convection, a process-based understanding of exactly how air-sea interaction influences large-scale convective patterns and relationships to overall monsoon meteorology remains uncertain. Tightly linked land, oceanic, and atmospheric processes likely all have an important role to play, requiring an interdisciplinary approach for improved understanding. The recent US-funded field campaigns Propagation of INtraseasonal Tropical Oscillations (PISTON), Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISOBOB), and Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) and their international counterparts—South China Sea Two-Island Monsoon Experiment (SCSTIMX) and Ocean Mixing and Monsoon (OMM)—have focused on air-sea observations, forecast, and model studies over timescales of sub-daily to multi-year within the Indo-Pacific warm pool region with the aim of improving our coupled, interdisciplinary understanding across the air–sea interface. This special collection showcases the results from these observational campaigns and corresponding numerical modeling efforts. Contributions range from ocean-centric to atmosphere-centric to fully coupled works that address sub-seasonal to seasonal variability of convection including that associated with the Madden Julian oscillation and boreal summer intraseasonal oscillations, monsoon variability, cyclone activity, the diurnal cycle, and/or related cloud, aerosol, land, and ocean processes.

Collection organizers:
Emily Shroyer, Oregon State University
Sue Chen, US Naval Research Laboratory
Eric Maloney, Colorado State University
Jeffrey Reid, US Naval Research Laboratory
Amit Tandon, University of Massachusetts, Dartmouth

Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics

You are looking at 1 - 2 of 2 items for :

  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All
J. S. Reid
,
H. B. Maring
,
G. T. Narisma
,
S. van den Heever
,
L. Di Girolamo
,
R. Ferrare
,
P. Lawson
,
G. G. Mace
,
J. B. Simpas
,
S. Tanelli
,
L. Ziemba
,
B. van Diedenhoven
,
R. Bruintjes
,
A. Bucholtz
,
B. Cairns
,
M. O. Cambaliza
,
G. Chen
,
G. S. Diskin
,
J. H. Flynn
,
C. A. Hostetler
,
R. E. Holz
,
T. J. Lang
,
K. S. Schmidt
,
G. Smith
,
A. Sorooshian
,
E. J. Thompson
,
K. L. Thornhill
,
C. Trepte
,
J. Wang
,
S. Woods
,
S. Yoon
,
M. Alexandrov
,
S. Alvarez
,
C. G. Amiot
,
J. R. Bennett
,
M. Brooks
,
S. P. Burton
,
E. Cayanan
,
H. Chen
,
A. Collow
,
E. Crosbie
,
A. DaSilva
,
J. P. DiGangi
,
D. D. Flagg
,
S. W. Freeman
,
D. Fu
,
E. Fukada
,
M. R. A. Hilario
,
Y. Hong
,
S. M. Hristova-Veleva
,
R. Kuehn
,
R. S. Kowch
,
G. R. Leung
,
J. Loveridge
,
K. Meyer
,
R. M. Miller
,
M. J. Montes
,
J. N. Moum
,
A. Nenes
,
S. W. Nesbitt
,
M. Norgren
,
E. P. Nowottnick
,
R. M. Rauber
,
E. A. Reid
,
S. Rutledge
,
J. S. Schlosser
,
T. T. Sekiyama
,
M. A. Shook
,
G. A. Sokolowsky
,
S. A. Stamnes
,
T. Y. Tanaka
,
A. Wasilewski
,
P. Xian
,
Q. Xiao
,
Zhuocan Xu
, and
J. Zavaleta

Abstract

The NASA Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex) employed the NASA P-3, Stratton Park Engineering Company (SPEC) Learjet 35, and a host of satellites and surface sensors to characterize the coupling of aerosol processes, cloud physics, and atmospheric radiation within the Maritime Continent’s complex southwest monsoonal environment. Conducted in the late summer of 2019 from Luzon, Philippines, in conjunction with the Office of Naval Research Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment with its R/V Sally Ride stationed in the northwestern tropical Pacific, CAMP2Ex documented diverse biomass burning, industrial and natural aerosol populations, and their interactions with small to congestus convection. The 2019 season exhibited El Niño conditions and associated drought, high biomass burning emissions, and an early monsoon transition allowing for observation of pristine to massively polluted environments as they advected through intricate diurnal mesoscale and radiative environments into the monsoonal trough. CAMP2Ex’s preliminary results indicate 1) increasing aerosol loadings tend to invigorate congestus convection in height and increase liquid water paths; 2) lidar, polarimetry, and geostationary Advanced Himawari Imager remote sensing sensors have skill in quantifying diverse aerosol and cloud properties and their interaction; and 3) high-resolution remote sensing technologies are able to greatly improve our ability to evaluate the radiation budget in complex cloud systems. Through the development of innovative informatics technologies, CAMP2Ex provides a benchmark dataset of an environment of extremes for the study of aerosol, cloud, and radiation processes as well as a crucible for the design of future observing systems.

Open access
Emily Shroyer
,
Amit Tandon
,
Debasis Sengupta
,
Harindra J. S. Fernando
,
Andrew J. Lucas
,
J. Thomas Farrar
,
Rajib Chattopadhyay
,
Simon de Szoeke
,
Maria Flatau
,
Adam Rydbeck
,
Hemantha Wijesekera
,
Michael McPhaden
,
Hyodae Seo
,
Aneesh Subramanian
,
R Venkatesan
,
Jossia Joseph
,
S. Ramsundaram
,
Arnold L. Gordon
,
Shannon M. Bohman
,
Jaynise Pérez
,
Iury T. Simoes-Sousa
,
Steven R. Jayne
,
Robert E. Todd
,
G. S. Bhat
,
Matthias Lankhorst
,
Tamara Schlosser
,
Katherine Adams
,
S. U. P Jinadasa
,
Manikandan Mathur
,
M. Mohapatra
,
E. Pattabhi Rama Rao
,
A. K. Sahai
,
Rashmi Sharma
,
Craig Lee
,
Luc Rainville
,
Deepak Cherian
,
Kerstin Cullen
,
Luca R. Centurioni
,
Verena Hormann
,
Jennifer MacKinnon
,
Uwe Send
,
Arachaporn Anutaliya
,
Amy Waterhouse
,
Garrett S. Black
,
Jeremy A. Dehart
,
Kaitlyn M. Woods
,
Edward Creegan
,
Gad Levy
,
Lakshmi H. Kantha
, and
Bulusu Subrahmanyam

Abstract

In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.

Full access