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ABSTRACT

A parameterization scheme is developed to predict the supersaturation and the first two moments of
predominantly maritime nuclei distributions during the condensation phase. The supersaturation and
mean droplet growth predicted through this parameterization agree very well with those computed from
the explicit microphysical equations using 55 spectral intervals.

1. Introduction

In recent years a great deal of emphasis and effort
have centered around the problem of cloud droplet
growth due to condensation. Models developed to
simulate this process vary from complex two-dimen-
sional models treating the microphysics explicitly
(Amason and Greenfield, 1972; Clark, 1973) to sim-
pler models including only the bulk physics (Kessler,
1969; Arnason et al., 1968). To solve the complete
set of microphysical equations numerically involves
the use of very small time steps, and is consequently
time-consuming. The bulk-physics models, on the
other hand, parameterize the condensation process in
a rather crude way. It is evident from the works of
Arnason and Greenfield (1972) and Silverman and
Glass (1973) that considerable interactions exist be-
tween the micro- and macro-structures of cumulus
clouds, particularly during early development when
supersaturation plays a significant role in this inter-
action process. Variations in supersaturation are
largely determined by the imbalance between two
opposing factors: first, the adiabatic cooling due to
ascending motions within the cloud which increase
the supersaturation, and second, the effect of con-
densation which extracts the available water vapor
and thereby acts to reduce the supersaturation.
Furthermore, the latent heat released due to conden-
sation, water vapor buoyancy and weight of liquid
water also affect the potential temperature and vor-
ticity distributions within the cloud. Thus, micro-
physical processes are inextricably coupled to macro-
physical processes of hydrodynamical development
on the scales of convective elements through the
degree of supersaturation.

! Present affiliation: Division of Air.Resources, New York
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Because of the importance of the condensation
process in cloud development, there is a need for a
parameterization scheme that not only retains most
of the properties of the explicit microphysics, but also
can be economically simulated. Clark (1974) developed
a parameterization scheme to predict the first three
moments of the droplet distribution and supersatura-
tion, assuming that the cloud droplet spectrum is
governed by a gamma distribution, and neglecting
the salt mass term (solution effect) in the droplet-
growth equation. The gamma distribution for cloud
droplet spectra is rather arbitrary although it may
fit some observed spectra. Also, the solution effect
plays a significant role in the droplet-growth equation
during the initia} stage of droplet growth. Therefore,
the evolution of droplet growth by condensation must
be ezamined through a cloud model including com-
plete microphysics within a Lagrangian radius-space
framework,

The objective of this paper is to present a pa-
rameterization scheme for the spectral distribution of
predominantly maritime nuclei during condensational
growth. The behavior of various terms in the droplet-
growth equation is first explored, and from the knowl-
edge gained a parameterization scheme is developed
to predict the first two moments of the nuclei dis-
tribution, supersaturation and the total liquid water
content. The results from the parameterized model
are compared with those derived from the explicit
microphysical computations using 55 spectral inter-
vals. Furthermore, the usefulness of this scheme
in refining the bulk-physics models is discussed
qualitatively.

2. The condensation process

Prior to activation of a group of nuclei, changes
in droplet radius 7, in response to a change in super-
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saturation S, are obtained by means of the equi-
librium equation (Fletcher, 1966)

a b
S__+_=0) (1)
r
such that
dr dS 3b a
IV N
dtlgqu \dt I

where EQU stands for the equilibrium growth; a~3.3
X10=%/T [cm], b=4.31im/M [cm®], T is tempera-
ture, 7 the Van’t Hoff factor, m the mass of dry salt
and M the molecular weight of salt.

Once the supersaturation S reaches the droplet’s
critical supersaturation S.=2a/3r, [where 7. is the
critical radius given by (3b/a)?], the growth of droplet
is governed by the equation

dr a b
(r+z>—=G(S——+—>F,
dt r

where G=Dp,/pi(14G1), G is a function depending
mainly on temperature, F the ventilation factor and /
a parameter inversely proportional to the accom-
modation coefficient.

From his experimental work, Rooth (1960) found
that the value of [ is less than 2 um and suggested
that it can be neglected in the droplet growth equa-
tion since its contribution to initial cloud development
is limited. However, Warner’s (1969) numerical com-
putations indicated that the accommodation coeffi-
cient may account for the observed broad droplet
spectrum. Our numerical experiments with Arnason
and Greenfield’s (1972) two-dimensional model indi-
cated that the accommodation coefficient does not
play a significant role in the condensational growth
equation. Since the measured values of the accom-
modation coefficient cover a wide range, it is hard
to justify any specific value for it. Due to uncer-
tainty of the role of the accommodation coefficient,
we assume that it can be neglected in the droplet
growth equation. The condensational growth is sig-
nificant only during the initial stages of cloud de-
velopment. Once the droplets have grown to a size
of about 20 uym in radius, other processes such as
coalescence become dominant. Fletcher (1966) sug-
gested that for droplets <10 um in radius, the ven-
tilation factor is close to unity, and for droplets of
30 pm in radius its value is 1.14. Therefore, for the
droplet range in which condensational growth is
dominant, the ventilation effect can be neglected.
With these assumptions, the droplet growth equation
can be written as

©)
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Eq. (3) can also be written in the form

ar? a b
—=2G <S ——+—)
dt r 7

)

to predict the growth rates of 72

The rates of growth of supersaturation and liquid
water content are governed by the equations (Fletcher,
1966)

as dpw
_— H 1W - H D ——
d 2 (5)
dpw dr
—=~4wpy ANT—, 6
di dt

where the summation is taken over all droplet cate-

gories. Here,
g 70.622L
ke )
RTo\ C,T

L2q:.0

H2=( +1>/.Pv,a.0-
C,RT?

For symbols not explained here, reference is made to
the Appendix.

It should be recognized that the first term in Eq. (5)
is a macrophysical contribution and the second term
is a microphysical contribution to the changes in
supersaturation. Eq. (6) can be written as

dpy dr
——z41rp;( > ANr—
dt

dr
+ X Aer——). ©)
EQU dt

EQU NEQU dt

The first summation term represents the contribution
from equilibrium growth [Eq. (2)] and the second
from nonequilibrium (NEQU) growth [Eq. (3)].

3. Numerical results of microphysics

In order to develop a successful parameterization
for the condensation process, it is necessary to under-
stand the behavior of various terms in Egs. (1)-(6).
First of all, Eq. (3) is examined in its averaged

state, i.e.,
i /S a b
—=G(———+—), ®
dt r 2 ¥
where
~ 1
()= 2 (nnar,
Ny NEQU

N, is the total droplet number density and the sum-
mation is taken over spectral categories which have
been activated. In fact, if Eq. (8) is multiplied by
No/N1, N1 being the number density of activated
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TasLE 1. Data relating to the eight types of nuclei distributions used in the parameterized and microphysical models. N, is the
cumulative number (cm™) of nuclei, K the group index, # the mass of dry salt nucleus, 7o the droplet radius at the initial time and S,
the critical supersaturation. The Eriksson and Warner distributions are similar to those used by Arnason and Greenfield (1972). Cases
1-6 are obtained through the equation N =CS%. The value of k is set 0.7 and C=800 for case 1, C=1000 for case 2 and C=1400 for
case 3. The value of C is kept constant at 900 and £=0.2 for case 4, k=0.5 for case 5 and £=0.9 for case 6. Although the nuclei are
initially divided into 17 groups, subsequent computations of droplet growth through explicit microphysical equations utilize 55 spectral
intervals for finer resolution.

m 7o Se No No No No No Ny No No
K (g) (m) (%) Eriksson Warner Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
1 5.80 %1071 0.011  5.22600
2 3.66 X10718 0.022  2.17480  23.2690  3.236X102  1.378X10° 1.723X10® 2.412 X108 1.051X10* 1.327X10® 1.811X103
3 1.46 X 10717 0.044  1.08950  21.8490  2.138X102  8.495X102 1,062 X103 1.487X10* 9.156 X102 9.394X102 9.722 X10?
4 5.80 X107 0.085  0.54628  19.9660  1.445X10?  5.239X102 6,549 X102 9.169 X102 7.975X10? 6.652X10? 5.223 X102
5 2.31 X107 0.180  0.27386  17.6830  9.550X10!  3.231X10t 4.039X102 5.655X10? 6.946X10? 4.710X10? 2.806 X102
6 0.92 X108 0.340  0.13722  13.8220  6.310X101  1.992X10? 2.490X10? 3.486X102 6.050X102 3.334X10? 1.506 X102
7 3.66 10715 0.700  0.06877  11.4970  4.169X10!  1.228X102 1.535X10? 2.149X10? 5,269X102 2.360 X10% 8.089 X101
8 1.46 X101 1.080  0.03445 82160  2.188X10'  7.570X101  9.462 X101 1.325X10? 4.580X102 1.670X107 4.342X10!
9 5.80 X101 1.800  0.01728 5.2310 6.026 3.945 X101 as in case 1
10 2.31 X101 3.000  0.00866 2.9480 1.622 2.992 as in case 1
11 0.92 X107 4000  0.00434 0.9910  4.365 X107 2.270 as in case 1
12 3.665 X 10712 5.000  0.00217 0.4567  1.202 X101 1.722 asin case 1
13 1.46 X101 8.000,  0.00109 0.1180  3.236 X107z 1,306 X107 as in case 1
14 5.80X10-11  13.000  0.00055 0.0204  8.913X107 9,908 X10~2 as in case 1
15 23110710 17.000  0.00027 0.0024  2.399 X102  7.517 X1073 asin case'1
16 0.92X10~  25.000  0.00014 0.0001  6.457 X107 5,702 X104 as in case 1
17 3.66X10-%  38.000  0.00007 1.788 X10~%  4.010 X 10~ asin case 1
droplets, it becomes the equation of mean radius where
growth of activated droplets: -1
] ) ()==— 2 ()nAr.
& ¢S a b N, NEQU
"5 2.5y . R
dt r r 7 The data used in the numerical simulation of the
57
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Fic. 1. Shape of the time-dependent vertical velocity used in the numerical simulations. The profile
is given by W=W+At—B#+CF, where Wo=1 m s, 4A=1481, B=0.1605X 1072, C=0.4115X107%,
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F16. 2a. Diagram illustrating the behavior of the three terms in the mean droplet-growth
equation (8). Also included for comparison is the supersaturation development derived

from Eq. (5).

F16. 2b. Comparison between terms (S/F—a/r®) and (S/r—a/rP+b/r). Warner’s nuclei
distribution and a time-dependent vertical velocity are chosen for these runs.

condensation process are given in Table 1. The salt
nuclei are divided into 17 groups and each is iden-
tified by its mass m; 7y is radius of the droplet at
the initial time. In subsequent computations of droplet
growth, 55 spectral intervals covering a droplet radius
range 0.011 to 70 um are used for finer resolution.

These data are similar to those used by Arnason
and Greenfield (1972).

The droplet growth utilizing Warner’s (1969) nuclei
distribution is computed in the Lagrangian framework.
This makes use of the fact that the number of droplets
within each interval is conserved. A 1 s micro-time
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step is used to ensure -required accuracy and com-
putational stability for maritime nuclei distributions
(Arnason and Brown, 1971). From the macroscopic
point of view, the vertical velocity W is time-de-
pendent, and is given by W({)=W,+A4t—B+C#,
where Wyis 1 m s}, A, B and C are constants; and ¢
the time in seconds. This is schematically shown in
Fig. 1. The vertical velocity W is changed at every
macro-time step of 15 s. It is assumed that the air
is saturated initially, i.e., So=0.

The behavior of the three terms in parenthesis on
right-hand side of Eq. (8) for the first 30 s simulation
is depicted in Fig. 2a. The development of super-
saturation is also shown in the diagram for com-
parison purposes. The sudden jumps at 3, 6 and 21 s
in the curves are due to the activation of a spectral
category. This is essentially a manifestation of cate-
gorization of droplet spectra and number density in
numerical treatment of the condensation process;
nevertheless, the numerical results in Fig. 2a reveal
that during the activation stage, the solution effect
is equally as important as the other two effects. Once
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the activation is completed, the solution term becomes
about two orders of magnitude smaller than the
curvature term and three orders of magnitude smaller
than the supersaturation term.

In order to investigate the relative contributions
of the equilibrium growth, ie., growth of droplets
not yet activated, and solution term to the mean
droplet growth, four numerical experiments are con-
ducted: (i) a run with complete microphysics by using
Egs. (2), (3), (4), (5) and (7); (i) a run without con-
tribution from equilibrium growth by using Egs. (3),
(4), (5) and (7) [the > rqu term in Eq. (7) is ne-
glected]; (iii) a run identical to (i) but neglecting
solution term; and (iv) a run neglecting both equi-
librium growth and solution terms.

The results of the computations of supersaturation S
and mean radius 7 of activated droplets are shown in
Figs. 3 and 4, respectively, for 10 min of simulation.
It is evident from these diagrams that runs (ii)—(iv)
grossly overestimate the supersaturation. The mean
radius is overestimated for run (i), while for runs
(iii) and (iv) it is underestimated. The fact that

COMPLETE MICROPHYSICAL MODEL (RUN)

—_———

PARAMETERIZED MODEL

WITHOUT EQUILIBRIUM GROWTH (RUNII)
WITHOUT SOLUTION EFFECT (RUN i) (ZSRUNIV after first 10 Sec.)

7

~
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S
2
I
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.24
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{ 2 3 4 5 6 7 8 9 10
TIME { MIN.)

F1c. 3. Comparison of supersaturation predictions for the test runs (i)-(iv). See Section 3
of text for explanation. i



May 1977 S. TRIVIKRAMA RAO

25

PARAMETERIZED MODEL

(XXX R RN

20

w

MEAN RADIUS 1 ()

3

AND ZON-HWA FENG 537

COMPLETE MICROPHYSICAL MODEL (RUNi)
WITHOUT EQUILIBRIUM GROWTH (RUN i}
WITHOUT SOLUTION EFFECT {RUNiii) (= RUN iV after first 10 sec.)

o ¥ T B v L T T L} 1 -
o] 1 2 3 4 5 6 7 8 9 10
TIME (MiN.)

F16. 4. Mean radius growth for test runs (i)-(iv).

results of runs (iii) and (iv) are identical except for
the first 10 s indicates that equilibrium growth is not
significant to the overall droplet growth while the
solution term is ignored. In the next paragraph the
importance of the equilibrium growth with the solu-
tion term retained [runs (i) and (ii)] will be stressed.
The behavior of (H.dp,/dt) term in the S equation
for runs (i)-(iv) as a function of time for the first
minute of simulation together with the contribution
from the equilibrium part to the liquid water change
(shown in Fig. 5) reveals that the contribution from
the first term in Eq. (7) is quite small and can be
omitted without affecting the computations in run ().

When equilibrium growth is neglected, the droplet
radius is kept at its initial size until S exceeds the

critical supersaturation S.. Once S exceeds S, the
growth rate of this droplet is governed by Eq. (3).
The growth rate of this droplet becomes very large
since the radius of this droplet is still in the sub-
micron range and the contribution from the solution
term is inversely proportional to radius raised to the
fourth power. This feature can be seen from the
sudden rising of Hdp,/dt at 3 and 6 s in Fig. 5 during
the activation stage. This increase of H,dp,/d¢ con-
tribution therefore produces a decrease of S [see
Eq. (6) and Fig. 3] and in turn results in a smaller
Smax In run (ii). Due to a decrease in Smax, the radius
of the smallest activated droplet is 0.18 um instead
of 0.085 ym in runs (i) and (iii) which have a higher
Smax. Thus, a fewer number of categories are acti-
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COMPLETE MICROPHYSICAL MODEL (RUNI)

WITHOUT EQUILIBRIUM GROWTH (RUNii}

WITHOUT SOLUTION EFFECT (RUNii) (SRUN iV after first10 sec.)
PARAMETERIZED MODEL (eq.110a)
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F1c. 5. Microphysical contribution to supersaturation prediction [second term on right-hand
side in Eq. (5)] for test runs (i)—(iv).

vated in addition to initially large growth rate. This
results in larger 7 in run (i) than in.the other runs
as seen in Fig. 4. During the post-activation stage
(t>30s), Hydp,/dt in run (ii) decreases as a result
of large 7. This produces a slow decrease in S and
results in higher value of .S than that of run (i) in
the postactivation stage. It appears that the major
factor in the difference between run (i) and run (ii)
is Eq. (2) and not the X_rqu term in (7).

Due to neglect of positive contribution from the
solution effect in Eq. (6), Smax for run (iii) reaches
~30% higher than run (i). The droplet growth is
reduced because of lack of contribution from solution
term. This results in smaller 7, as seen in Fig. 4, even
though the supersaturation is high (Fig. 3).

The above experiments have clearly demonstrated
the significance of the equilibrium growth and solu-
tion terms. Despite their negligible magnitudes during
the post-activation stage, during the activation stage
the errors through the neglect of these terms are
transmitted to the mean radius growth and the con-
sequent results seem to diverge-with time from the
complete microphysical computation (see Fig. 4). This
implies that the parameterization of the condensation
process should retain complete microphysics implicitly
or explicitly, especially during the activation stage.

4. Parameterization of the condensation process

The objective of this parameterization is to sim-
plify the set of microphysical equations in such a way
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that whatever the initial conditions may be, the
parameterized equations are able to represent the
basic features of the exact equations.

a. Equation for the supersaturation

From Egs. (6) and (7) together with the fact that
latent heat released due to equilibrium growth [pro-
portional to the first term of Eq. (7)] can be neglected,
Eq. (5) becomes

A dr
—=H,W—Hyrp; >, ANr—,
dat NEQU dt

which can be rewritten with the help of (4) as

as b
—-'=H1W—H3 Z <ST—G+*—;>
r

dt NEQU

(a)
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or _
s b
——=H1W—Hs(SF—a+~>N 1 (10)
dt 72

where H;=4wpGH,, Ny is cumulative number density
of activated nuclei, and the overbar is defined as

-1
()=— % ()AN.

N, NEQU

The complexity of the solution term poses a major

.difficulty in parameterizing Eq. (10). However, the

behavior of the terms (SF—a+b/r?) and (SF—a)
shown in Fig. 6a reveal that the two terms differ
only during the first 7 s of simulation. An assumption
is thus made that the solution term can be omitted

- b
—_— Sr-u+7§

ssees SF-a

L L T T nl
o 5 10 15 20 25 30
TIME (SEC}
-2
10 (b)
—_— T -5
3

ssses

TIME (SEC)

Fi1G. 6. Comparison (a) between terms (.S_’F_—-a-i—b_/_rz) and (S7—a) and (b) between
terms (¢/r—b/r%) and (a/7).
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in the first-order approximation. Eq. (10) becomes

A

JOURNAL OF APPLIED METEOROLOGY VoLUME 16
3 (a)
— (+)
....... -
T
{10 —— v u T T r T T T —r T -
0 10 20 30 40 S0 60 70 80 SO 100 HO 120
TIME (SEC)
10 — T ~ T ~T T T T T T 7
O 10 20 30 40 50 60 70 80 90 100 1O 120
TIME (SEC) ’
Fi6. 7. Comparison (a) between 7 and (F)~? and (b) between 72 and (r%)™.
(see Fig. 2a), Eq. (9) can be restated as
dr S a
(11) —zc;(———) for £>40s. (13)
dt F P

':i—zHIW—Ha(Sf-'—a)Nl for all :>0.
t

b. Equation for the first moment of the droplet distribution

To simplify the mean radius growth Eq. (9), the
behaviors of 1) r and (7, and 2) 2 and (s?)!
are computed and the results are presented in Fig. 7.
The sudden jumps observed at 3, 6 and 21 s are
related to the activation of new categories. After 40 s
of simulation it is clear that

() and 7= ()L (12)

Since the solution effect can be disregarded after 40 s

(Note that S and ¢ are not functions of droplet radius.)
For the first 40 s or during the activation stage,

the comparison between the quantities (S/r—a/r®
+b&/r*) and (S/F—a/r?); shown in Fig. 2b, reveals the
empirical relationship

e, (14)

except for the first 4 s. In view of this the two terms
on the right-hand side of (14) no longer represent the
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supersaturation and curvature effects only, but through
an internal compensation by use of (7/)! and (+?)7,
they implicitly include the solution effect. The pa-
rameterized form of mean radius growth then becomes

dr S a

—=G<———-—) for all ¢>0. (15)

i \F g

¢. Equation for the second moment of the droplet
distribution
Eq. (4) can be written as

ar a b
——=ZG(S——+——>. (16)
dt r 7

Again for t>40 s, ri=(F)! from Fig. 7a and the
solution term in (16) can be dropped. Since (F)1<r!
for t<40 s, we believe by the same token as in Sec-
tion 4b above that

a b a

OO

r r? 7"

The contribution of the solution term is again ab-
sorbed in the term (—a/7). Fig. 6b lends support to

this argument. Hence the parameterized form of
Eq. (16) can be written as

17

(18).

drt a
__=ZG(S—-—) for all #>0.
7

dt

d. Equation for the number density of activated droplets

Twomey (1959) suggested that the number of con-
densation nuclei active at percent supersaturation S
is given by

n(S)=CS*. 19)
Actually, nuclei will not be activated until S reaches S,
the critical supersaturation, which is a function of
molarity. Eq. (19) is a good approximation to observa-
tional data only above a certain minimal value of .S,
and does not necessarily apply to large and giant salt
nuclei (radius >1 wm). The constants C and % are
determined for a given nuclei distribution by a re-
gression method. Then in the subsequent droplet
growth by the parameterized scheme, the total number
density N; of activated droplets is computed ac-
cording to
N1=CS* (20
since the Lagrangian framework is employed. During
the activation stage S and IV, increase. When the super-

TRIVIKRAMA RAO AND ZON-HWA FENG
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saturation reaches its maximum, N; also reaches a
maximum and, thereafter, N, is kept constant since
no more droplets can be activated.

The initial conditions are given by

-1
ro=—>3 ru(r)Ar,
N;

— 1
r?=—>3 7’n(r)Ar,
Ni

So-—‘—'HlW,

where Nr=>n(r)Ar and the summations taken are
for those categories for which So2>S.(7). The micro-
and macro-time steps and the form of vertical velocity
are the same as those used in the microphysical com-
putations. The parameterization scheme is tested for
Warner’s nuclei distribution (see Table 1) using
C=225 and £k=0.62,

The supersaturation and mean radius development
for 10 min of simulation using Egs. (11), (15), (18)
and (20) shown in Figs. 3 and 4, respectively, indicate
close agreement between the microphysical and pa-
rameterized computations despite an about 149, error
in Smax prediction.

The changes in liquid water content computed from

dpw d7-'
Hy—=H4mpi*—N, (21)
dt dt
are identical to those computed from
dpw
Hg-d——=H3(Sf—ll)N1. (118,)
i

Although during first 20 s there is a difference. be-
tween the microphysical and parameterized models
(see Fig. 5), the future development of supersatura-
tion based on Egs. (21) or (11a) agrees very well
with that computed from the microphysical model.

The performance of this parameterization scheme
was also tested using a constant vertical velocity in
Eq. (11). The results for W=1, 2, 4 and 5 m s~ are
comparable to those obtained from the microphysical
model. The results of the variable draft profile are
only included here since the motions within a cloud
parcel are time-dependent. The applicability of the
proposed parameterization scheme to other types of
nuclei distributions and its limitations are described
in the following section.

5. Applications and limitations

Eight different distributions are used to compare
the results of evolution of S and 7 from the micro-
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TaBLE 2. Comparison between the results of the parameterized model and the microphysical model for different types of nuclei
distributions. N, is the cumulative number of nuclei in a given distribution, R the smallest radius activated and N, the cumulative
number of activated nuclei in a given distribution. S and # are the supersaturation and mean radius. The subscript p on any variable
refers to that derived through the parameterized model. The numbers on the subscript indicate simulation time in minutes. The per-
formance of the parameterization scheme is indicated under “Comments.”

Eriksson Warner Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Variable Np=20.680115 N,=22580.62 Np=8005%7 Np=10005°7 Njy=1400507 Np=90050-2 Np=900505 Njp=9005°-
No (ecm™) 23.3 323 1378 1722 2412 1051 1327 1811
R(um) 0.044 0.085 0.18 0.18 0.18 0.34 0.34 0.18
Nt (cm™3) 21.8 145 323 404 565 605 333 281
Nip (cm™) 21.6 138 334 401 530 681 467 288
AA(I;V(I%_)NI’)/NI +19.1 +7.4 -3.1 0.74 6.2 —12.6 -40.2 —-2.5
Smaz(%) 1.15 0.547 0.332 0.311 0.275 0.183 0.270 0.356
Sp at Smax(%) 1.30 0.449 0.278 0.255 0.222 0.220 0.247 0.276
F(um) at Smax 8.3 2.85 1.88 1.73 1.43 1.91 2.20 1.93
Pp(um) at Sp 8.9 4.13 2.61 2.49 2.32 2.00 2.33 2.88
S1(%) 1.09 0.322 0.197 0.174 0.148 0.139 0.192 0.213
So1(%) 1.27 0.329 0.190 0.171 0.149 0.132 0.159 0.205
F1(um) 10.8 6.49 5.14 4.77 4.22 4.20 5.11 5.38
Fp1(um) 11.6 6.87 5.26 4.95 4.52 4.14 4.70 5.56
Sa 1.02 0.328 0.201 0.176 0.146 0.140 0.197 0.219
Spa 1.18 0.342 0.197 0.176 0.150 0.131 0.162 0.215
T2 19.9 11.3 8.78 8.15 7.27 7.14 8.70 9.20
Fas 21.4 11.7 8,77 8.25 7.53 6.91 7.84 9.23
Ss 1.02 0.328 0.200 0.175 0.143 0.137 0.197 0.219
Sype 1.18 0.344 0.196 0.175 0.148 0.128 0.160 0.215
Fe 28.5 16.2 12.5 11.6 10.4 10.1 12.4° 13.1
pe 30.7 16.6 12.4 1.7 10.6 9.78 111 13.0
S1o0 0.91 0.292 0.178 0.155 0.127 0.130% 0.175 0.195
Spi0 1.05 0.307 0.175 0.156 0.132 0.123* 0.142 0.191
1o 36.6 20.7 1.60 14.8 13.3 11.7% 15.8 16.8
Fplo 39.4 21.3 1.59 14,9 13.6 11.3* 14.2 16.7
Comment** Fair Good Excellent Excellent Excellent Good Fair Excellent
(A7 increaging  (both A¥ and (A7 slowly {bad predic- (both A¥ and

while AS is AS remain increasing) tion of Sp AS de-

more or less unchanged) while A¥ creasing)

unchanged) increasing)

* These quantities represent 8 min simulation time, since the microphysical computations blew up at 10 min.

** Comments include response to values of AF = [Ff —7p| and AS =[S —Sy|.

physical model (Section 2) and the parameterized
model (Section 4). Two are the observed nuclei dis-
tribution by Eriksson (1959) and Warner (1969), and
the others are generated by choosing various combina-
tions of the constants C and % in Eq. (20). The value
for % is kept constant and C is varied in three cases,
while in the remaining three cases C is kept constant
and k is varied., The cumulative number of nuclei in
the range 0.011-1.08 um is obtained from (20). Nuclei

of radius >1.08 pm are obtained by modifying Warner’s .

data. These distributions are listed in Table 1.

The results using these eight distributions are
summarized in Table 2. Variables with subscript p
refer to quantities derived from the parameterized
model. For cases with £>0.6 and the quantity AN,
= (N1—N1,)/N; not exceeding 10%, excellent agree-
ment between microphysics and parameterization is
found (see last row in Table 2). This is not hard to
understand since for these cases there are fewer large
(radius between 0.3 and 1 um) and giant (radius >1
pm) condensation nuclei, so that the supersaturation
(Smax) is able to reach a higher value without water
vapor being consumed fast, and in turn more nuclei
categories can be activated.

Once the supersaturation .S, mean droplet radius 7,
and the total activated number density NV are obtained
through parameterization, changes in liquid water con-
tent can be derived from Eq. (21). Also, since the
warming of the bulk air by released latent heat and the
total amount of supported liquid water are the only
feedback effects from the condensation process on
mesoscale dynamic processes, the parameterization
scheme can be used to predict the change in the
potential temperature as

. (22)
dt C,pTo di

On the other hand, vorticity is influenced by the
total liquid water content which serves as a sink.
The vorticity equation is written as

a9 ( 0, ) 23
—=g———q)
dt ) ax 0,,_0

It is apparent that the macrophysical parameters
(6,¢) can now be predicted through this simple pa-
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rameterized microphysics. Furthermore, this can be
applied to include the supersaturation effects in
Kessler’s (1969) parameterization. This may be
achieved by replacing the temperature and vorticity
equations of Kessler’s scheme by Eqgs. (22) and (23),
respectively, and by using (11) to predict the super-
saturation. Since coalescence changes the droplet dis-
tribution, this scheme is strictly applicable to non-
precipitating shallow cumuli.

6. Conclusions

The proposed parameterization for the condensa-
tion phase in cloud development successfully simulates
the droplet growth due to condensation. The scheme
is applicable to a variety of nuclei distributions,
ranging from extreme maritime (Eriksson) to mari-
time-continental. Since the logic of this parameter-
ization scheme is based on the behavior of the micro-
physics, it does not require that the initial droplet
distribution possess an analytical form a priori. The
proposed scheme successfully bridges the gap between
condensation nuclei and cloud parameters, and can
thus be used to approximate the interaction between
the micro- and macrostructures of cumulus clouds.
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APPENDIX

List of Symbols

These symbols either occur repeatedly or are not
defined in the text. A subscript 0 is used to designate
the environmental variables and a subscript p repre-
sents that variable derived through parameterization.

a quantity proportional to the inverse of the
temperature occurring in the droplet-growth
equation

b quantity proportional to the mole fraction of

a salt nucleus occurring in the droplet-
growth equation
coefficient in the relation between nuclei avail-
able for nucleation and supersaturation
specific heat per unit mass at constant pressure
diffusion coefficient of water vapor in air
(0.226 cm? s71),
ventilation factor

3
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G function occurring in the droplet-growth
equation

g acceleration of gravity (981 cm s~2)

H,, H, functions in the prediction equation for
supersaturation.

1 Van’t Hoff factor

k quantity occurring in the equation relating
the nuclei available for nucleation and
supersaturation

l factor inversely proportional to the accom-
modation coefficient

L latent heat of evaporation (2.50X10Y ergs
g

m mass of dry salt nucleus

M molecular weight of salt

N,y cumulative number density per unit volume

in a given spectrum

N, cumulative number density per unit volume
of activated nuclei in a given spectrum

AN number of nuclei or droplets per unit volume
within a radius interval Ar

AN,  percentage difference in total number density
between parameterized and microphysical
models [=100(NV1—N1,)/N+1]

n number of nuclei or droplets per unit volume
per unit radius interval

qs saturation mixing ratio

Jw specific water content (p,,/po)

R, gas constant for moist air (2.87X10° ergs
g K)

r droplet radius

) radius of droplet at initial time

7. critical drop radius [ = (3b/a)t]

first and second moments of nuclei distribution

supersaturation

supersaturation at initial time

critical supersaturation [ =2a/37.]

temperature (K)

time

vertical wind component

horizontal coordinate

vorticity for two-dimensional flow

potential temperature

virtual potential temperature

virtual potential temperature of the per-
turbation

p density of air

P density of liquid water

Py density of water vapor

Po.s saturation density of water vapor

Pw total liquid water content per unit volume.

Loy
3

LY

Dy R g“bﬁ

D
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