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ABSTRACT

An analytical solution to the Navier-Stokes equations for three-dimensional stationary flows of small
Reynolds number in the atmospheric boundary layer over terrain is presented.

Analyses of the effects of topography, horizontal pressure gradient and Coriolis forces on the velocity
distribution in the atmospheric boundary layer indicate that 1) the horizontal component of the velocity
in the boundary layer turns right (left) with increasing height in the Northern (Southern) Hemisphere,
2) upward (downward) motion occurs on the windward (lee) side of the mountain, and 3) upward (down-
ward) motion also occurs on the slope to the right (left) of the geostrophic wind in the Northern Hemisphere,
whereas in the Southern Hemisphere downward (upward) motion occurs on the slope to the right (left)

of the geostrophic wind.

1. Introduction

Velocity distribution in the atmospheric boundary
layer over a flat surface was first studied by Ekman
(1905) who assumed a constant eddy viscosity in the
planetary boundary layer, and obtained an exact
solution to the Navier-Stokes equations for the bal-
ance between Coriolis, pressure-gradient and vis-
cous forces. In recent years, a large number of ana-
lytical and numerical models for the study of the
mean and turbulent motions in the planetary bound-
ary layer under various thermal stratifications has
been constructed. However, most of these investi-
gations have emphasized on flows in the boundary
layer over flat surfaces.

Because of increasing concern about atmospheric
pollution in many population centers, industrial and
power plants, which are located in valleys and ter-
rain, and since atmospheric motion is the mechanism
for the transport and dispersion of pollutants, there
is a growing interest in the atmospheric motion and
pollution in these regions (Kao, 1976).

For flows in the planetary boundary layer over
flat surfaces, the mean motion may be assumed to
be homogeneous in the horizontal, therefore, the
Navier-Stokes equations become linear (Ekman,
1905) and the motion is horizontal. However, when
the inhomogeneity in the topographical configura-
tion of the earth’s surface is taken into account,
the motion is three-dimensional and the equations
of motion are no longer linear. The purposes of this
note are to seek an analytical solution to the Navier-
Stokes equations for three-dimensional stationary
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flows of small Reynolds numbers in the atmospheric
boundary layer over mountain-terrain, and to
analyze the effects of topography and Coriolis force
on the velocity distribution in the boundary layer.

2. An analytic solution to the boundary-layer
equations

Considering stationary flows of small Reyn-
olds number in the planetary and surface boundary
layers over terrain, let #(x, y) be the topographical
configuration of the terrain, h, be the thickness of
the surface boundary layer, and G = u, + iv, be the
geostrophic wind velocity. The Navier-Stokes equa-
tions, hydrostatic and continuity equations may be
expressed as
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where u, v, w are respectively the x, y, z compo-
nents of the velocity, p is the pressure, g the gravity
acceleration, p the density, f the Coriolis parameter,
and K the coefficient of eddy diffusivity assumed
constant as a first approximation.
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For stationary flow in the surface boundary layer,
the equation of motion may be expressed as

0 . Uy (1 a
a2l 2),
0z k \z L

where i = (—1)2, u, = (v/p)'?, a is a constant
which has been experimentally determined to be
4.75, L the Monin-Obukhov length, and k the
von Karman’s constant.

The boundary conditions for this model are that
all components of the velocity are zero at the solid
boundary, z = A(x, y), the velocity tends to the geo-
strophic velocity as z tends to infinity, and that at
the lower boundary of the planetary boundary layer
the wind direction coincides with the wind stress, i.e.,
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(u +iv) =G + (B, + iB) exp{—( + iwlz — h(x,y) — hl},
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u=v=w=0, at Zzh(x,Y), (6)

U~y v—> v, as z — ®, @
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u+iv=A-5—(u+iv), at z=h(x,y)+hs, @8)
' 4

where A is a constant.
Combining Eqgs. (1) and (2), we obtain

(u—6—+vi+w£)(u+iv—G)
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Differential equation (9) has the following solution
which satisfies the boundary conditions (7):

(10)

w = (u, + exp{—vlz — h(x,y) — hJ}{B, cosv[z — h{x,y) — h,] + B; sinv[z — h(x,y) — h,]}D) —(;—}i
X

+ (v, + exp{—v[z — h(x,y) — hJ}{B; cosv[z — h(x,y) — h] — B, sinv[z — h(x, y) - hs]})‘?_al;' , (11

where B, and B; are constants, and v = (f/2K)"2.
Since wind in the surface boundary layer is uni-
directional, wind velocity in the surface boundary

layer may be expressed as
u+iv=|u+ivle?, (12)

where « is the angle made between the wind in the
surface boundary layer and the geostrophic wind.

At the lower boundary of the planetary boundary
layer, Eq. (10) yields

(u + l'v)2=h(‘p,y)+h” = G + (Br + iBi). (13)

Elimination of the left-hand terms of Eqgs. (12) and
(13) gives

(B, + iB)) = |u + iv| mneapine®® — G, (14)
Eq. (10) may then be written as
u+tiv=G+ {|u + iv|z=hu,y)+,,xeia - G}
x exp{—( + [z — h(x,y) — h]} (15)

forz = h(x,y) + h,.
"~ It can be shown by applying the boundary con-
dition (8) to Eq. (15) that
| + iv| oheemren,{ Av(cosa — sina) + cosa}
- Av(u, — v,) = 0, (16)
Iu + iU|z=h(1,y)+;;s{Av(COSa — sina) + sina}
— Av(u, + v,) = 0. (17)

Solving for A and |u + iv|z=,,(dr,y,+,hr from Eqs.
(16) and (17), we obtain

ucosa — sina) + v, (cosa + sina
e &) ¥ bl L, )
2v(u, sina — v, cosa)

lu + il) I 2=Mx,»)+hy

= u,(cosa — sina) + vy {cosa + sina). (19)
Substitution of (19) into (15) gives
u +iv = (u, + ivy)
—exp{—( + vz — h(x,y) — h]}
x {(u, + iv,) — [u,(cosa — sina)
+ vy(cosa + sina)le*}. (20)

The real and imaginary parts of Eq. (20) can be
shown to be, respectively,

uy, — exp{—vlz — h(x,y) — h}
X {u, cosv[z — h(x,y) — hy]

I

U

+ v, sinv[z — A(x,y) — h]
— [u,(cosa — sina) + v,(cosa + sina)]

x cos(vlz — h(x,y) — h — o)}, (21)

v, — exp{—v[z — h(x, y) — h]}
X {—u, sinvfz — h(x,y) — hy}

S
I

+ v, cosvlz — h(x,y) — hy)
+ [ugz{cosa — sina) + vy(cosa + sina)]

x sin(v[z — h(x,y) — A — o)}, (22)
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"~ To match the wind distribution in the surface
boundary layer with the wind at the lower boundary
of the planetary layer, let the wind distribution in
the surface boundary layer be

|u + ivl = u—;—[ln[z —hley) + Zo]
29

z - h(-xs Y)

At the lower boundary of the planetary boundary
layer, Eq. (5) becomes

. I,l* ‘hs + 2y hs
]u + lvlz=h(,l-,y)+hs = —I;—[ln( ) + a Z] . (25)

Zy

Elimination of the right-hand side terms from (19)
and (25) gives

_ k[u,(cosa — sina) + v,(cosa + sina))

() e ]

20 L

It may be noticed that friction velocity u, depends
onG, L and a.

Substitution of (26) into (24) gives the velocity
profiles in the surface boundary layer,

(26)

Uy

Therefore,

vy = G(1 + 22 exp{—vlz — h(x,y) — h,]} sina cos{a + %m — v[z — h(x,y) — h]}),
v, = 212G exp{—v[z — h(x,y) — h]} sina sin{a + 347 — v[z — h(x,y) — h]},
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for h(x,y) <z < h(x,y) + h,.

We let the s and n axes be respectively oriented
parallel and horizontally perpendicular to the geo-
strophic wind, and v, and v, be respectively the
velocity components along the s and n axes. There-
fore, G becomes a real number, « is the cross-
isobaric angle of the wind at the surface, and Eq.
(20) becomes

v, + iv, = G + G{(cosa — sina)ei® — 1}
x exp{—( + iw[z — h(x,y) — hl}
= G + G sina{-(sina + cosa)
+ i{cosa — sina)} exp{—(1 + i)

X vz — h)x,y) - hl}. (28)

Since
ellet@Hml = cos[a + (347)] + i sinfa + (G4m)], (29)
Eq. (28) may be written as
vy + iv, = G[1 + 2 sina exp(—v[z — h(x,y) — hs]

+i{a + G4m) — vz — h(x,y) — kD). (30)

(€2))
(32)

h
w =G + 22 exp{-vlz — h(x,y) — hi]} sina cos{a + %m — vz — h(x,y) — h,]}) %—
X

+ 212G exp{—v[z — h(x,y) — h,]} sina sin{a + %7 — v[z — h(x,y) — hi]} %y}i , (33)

for z > h(x,y) + h,. Eq. (27) becomes
G(cosa — sina)

Ivs+ivnl = ’ 3
ER=p
Zo L

« {ln[z — h(x,y) + Zo} + a[z - hL(x,y)]],

Zo
h. h
w = |v, + ivnl(cosai— + sina _6_) , (34
Ox dy

for h(x,y) =< z < h(x,y) + h,.

The cross-isobaric angle a may be estimated from
Eq. (32) by putting v, = 0 at the geostrophic wind
level, z = H. Thus,

] 1/2
o= (-Qﬂ> [H — h(x,y) — hy) — % (35)

Eq. (35) indicates that the cross-isobaric angle
is a function of the coefficient of eddy diffusivity,
topographical configuration and latitude ¢, and that
a decreases with increasing height of the topography.

Substitutions of (35) into Egs. (30), 31), (32) and
(34) yield, respectively,
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v, = G(1 + 22 exp{—v[z — h(x,y) — hil}
x sin{v[H — h(x,y) — h;} — 3%n} cosv(H — z)), (36)
v, = 212G exp{—viz — h(x,y) — h]}
x sin{v[H — h(x,y) — h,] — 3=} sinv(H — z), 37)
oh

w=G ™ + 212G exp{—v[z — h(x,y) — h,]}
X

x sin{v[H — h(x,y) — h,] — 37}
X [cosv(H — Z)Z—ﬁ + sinv(H — Z)?_aﬂ , (38)

for z > h(x,y) + h; and
212G cos{v[H — h(x,y) — hy] — Vam}

() e 2]
Zo L

« [ln[z —h(x,y) + zo] ta [z —hL(x,y)]} . (39)

Zo

Ivs +iv,,| =

forh(x,y)<z<h(x,y)+ h,.

3. Flow characteristics in the atmospheric
boundary layer over a circular mountain

To analyze the effects of topography, the Coriolis
and pressure gradient forces on stationary flows of
small Reynolds number in the planetary bound-
ary layer, we consider a model mountain of which
the height takes the form ’

1
h*(x*,y*) = avH[
1 + exp{—b[(x*? + y*3)2 + (]}
+ ! - 11, 40)
1+ exp{b[(x** + y*3)'* — c]}
z z z" z z
o

X

F16. 1. Distribution of nondimensional velocity components in
the vertical cross section passing through the mountain top,
parallel to the geostrophic wind.
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F1G. 2. As in Fig. 1 except the vertical cross section is
perpendicular to the geostrophic wind.

where x* = vx,y* = vy, h* = vh, h,* = vh,are the
nondimensionalized coordinates x, y, height of the
mountain, and the surface boundary thickness, re-
spectively. )

Fora=b=c=1,vH =1, h*0, 0) = 0.1, h*
= 0.1,and z,* = 0.0001, we have computed the non-
dimensionalized velocity components, U* = v,/G,
V* = p,/G and W* = w/G with the use of Egs. (36)-
(39), and plotted the results on Figs. 1 and 2.

Fig. 1 shows the distribution of the nondimen-
sional velocity components in the vertical cross sec-
tion passing through the mountain top, parallel to
the geostrophic wind. It is seen that U* = V* = W*
= 0 at the surface of the mountain, and that U* — 1,
V* — 0 as z — . On the windward slope of the
mountain, a horizontal convergence of U* results
in an upward motion, whereas on the lee side of
the mountain a downward motion occurs as a con-
sequence of a horizontal divergence of U*.

Fig. 2 shows the distribution of the nondimen-
sional velocity components in the vertical cross-sec-
tion perpendicular to the geostrophic wind, passing
through the mountain top. It is seen that U* = V*
= W* = 0 at the surface of the mountain, and that
U* — 1, V* = 0as z — «. On the slope to the right
of the mountain top, in the Northern (Southern)
Hemisphere, a horizontal convergence (divergence)
of V* results in an upward (downward) motion,
whereas on the slope to the left of the mountain
top, in the Northern (Southern) Hemisphere, a hori-
zontal divergence (convergence) of V* contributes
to a downward (upward) motion.

4. Conclusions

Analyses of the effects of topography, horizontal
pressure gradient and Coriolis forces on the velocity
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distribution in the atmospheric boundary layer indi-
cate that 1) the horizontal component of the velocity
in the boundary layer turns right (left) with increas-
ing height in the Northern (Southern) Hemisphere,
2) upward (downward) motion occurs on the wind-
ward (lee) side of the mountain, and 3) upward
(downward) motion also occurs on the slope to the
right (left) of the geostrophic wind in the Northern
Hemisphere, whereas in the Southern Hemisphere
downward (upward) motion occurs on the slope to
the right (left) of the geostrophic wind. Therefore,
there would be more chance of getting precipitation
on the windward side and on the slope to the right
(left) of the geostrophic wind in the Northern
(Southern) Hemisphere.

It should be mentioned that the purpose of this
paper is to seek basic characteristics of three-dimen-
sional flow of small Reynolds number in the boundary
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layer over terrain in a rotating system. Because of
the constraint of small Reynolds number, the solution
presented here can only be applied to flow of small
velocity over terrain of comparatively small height.
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