Temperature and Humidity Effects on Refractive Index Fluctuations in Upper Regions of the Convective Boundary Layer

STEPHEN D. BURK

Naval Environmental Prediction Research Facility, Monterey, CA 93940

11 November 1980 and 9 March 1981

ABSTRACT

Here we illustrate a method which readily permits determination of the relative contributions of the individual temperature-humidity structure terms to total C_n^2 within the uppermost region of the clear, convective boundary layer. The relative contributions of terms involving C_r^2, C_{T_q} and C_{q^2} to acoustic, optical and microwave C_n^2 are shown to be functions primarily of the ratio, $\Delta q/\Delta \Theta_v$, of humidity to virtual potential temperature jump across the inversion. A graphical procedure is illustrated for quickly determining the expected degree of error if C_r^2 or C_{q^2} are directly inferred from C_n^2.

1. Introduction

Often in remote sensing applications it is desirable to infer individual temperature and humidity structure parameter values (C_r^2, C_{T_q} and C_{q^2}) from the intensity of the return signal. The return signal, however, is proportional to the refractive index structure parameter C_n^2 and generally an assumption must be introduced in order to infer C_r^2 and C_{q^2} from the measured C_n^2 value. For example, temperature fluctuations are often taken to be the sole contributor to acoustic C_n^2, and thus C_r^2 is inferred directly from an acoustic sounder return (Neff, 1975; Asimakopoulos et al., 1976). As another example, moisture fluctuations are often assumed to be the sole contributor to microwave C_n^2, and thus clear-air radar returns are used to infer C_{q^2}.

A simple method of quickly determining the extent of validity of the above-mentioned inferences appears desirable. Here we describe such a method for the interfacial layer of a clear, convective boundary layer. We combine the layer-averaged expressions for individual structure parameters developed by Wyngaard and LeMone (1980) with the C_n^2 relationships formulated by Wesely (1976).

2. Temperature-humidity contributions to C_n^2

Interfacial layer-averaged structure parameters are written by Wyngaard and LeMone (hereafter WL) as

$$
\langle C_r^2 \rangle = \frac{T_r \theta_v}{Z_{T_r}^{2/3}}, \tag{1}
$$

$$
\langle C_{T_q} \rangle = \frac{q_r \theta_v}{Z_{q_r}^{2/3}}, \tag{2}
$$

$$
\langle C_{q^2} \rangle = \frac{3.9(p\Delta q)^3 \theta_v}{Z_{q^2}^{2/3} \Delta \Theta_v}, \tag{3}
$$

where

$$
q_i = \rho \Delta q \left(2.2 - 2.4 T \frac{\Delta q}{\Delta \Theta_v} \right),
$$

$$
T_i = \Delta \Theta_v \left[0.5 - 2.6 T \frac{\Delta q}{\Delta \Theta_v} + 1.4 \left(T \frac{\Delta q}{\Delta \Theta_v} \right)^2 \right].
$$

When combined with the Wesely (1976) relationships, we can evaluate the percent contribution of individual structure parameter terms to total C_n^2. Wesely writes

$$
(C_n^2)_a = (C_r^2/4T^2)\alpha_a^2, \tag{4}
$$

$$
(C_n^2)_o = \left(\frac{A_p}{T^2} \right) \alpha_o^2, \tag{5}
$$

$$
(C_n^2)_m = \left(\frac{C_p}{\epsilon T^2} \right) \alpha_m^2, \tag{6}
$$

where the subscripts a, o and m refer to acoustic, optical and microwave, respectively, and

$$
\alpha_a^2 = 1 + \frac{2DT}{\epsilon} \frac{C_{T_q}}{C_r^2} + \left(\frac{DT}{\epsilon} \right)^2 \frac{C_{q^2}}{C_r^2}, \tag{7}
$$

$$
\alpha_o^2 = 1 + \frac{2(1-A_2/A_1)T}{\epsilon} \frac{C_{T_q}}{C_r^2}
$$

$$
+ \frac{(1-A_2/A_1)^2T^2}{\epsilon^2} \frac{C_{a^2}}{C_r^2}, \tag{8}
$$

$$
\alpha_m^2 = 1 - \left[\frac{2A_2}{C} + \frac{4 \epsilon \epsilon'}{pT} \right] \frac{C_{T_q}}{C_{q^2}}
$$

$$
+ \left[\frac{A_2}{C} + \frac{2 \epsilon \epsilon'}{pT} \right] \frac{C_T}{C_{q^2}}. \tag{9}
$$

We choose to use specific humidity q rather than absolute humidity Q, but otherwise the notation is the same as in WL (see the Appendix for a list of symbols).
The assumption frequently used to infer temperature or humidity structure parameters from remote sensor measurements is that these various \(\alpha^2\) values equal unity. In that event, optical and acoustic \(C^2\) are solely dependent on \(C_T^2\), and microwave \(C^2\) is solely dependent on \(C_T^2\). Here we wish to quantitatively evaluate the extent of validity of such assumptions concerning \(\alpha^2\) values. Further, in cases where \(C^2\) is not simply dependent solely on a single structure parameter, we seek a handy method of quickly evaluating the relative contribution of each temperature-humidity structure parameter to total \(C^2\). Thus, we now focus more closely on the individual \(\alpha^2\) values.

If we take interfacial averages of Eqs. (7)–(9), and utilize the WL expressions [Eqs. (1)–(3)], we find

\[
\langle \alpha^2 \rangle = 1 + \frac{2DT}{\epsilon} \frac{\rho r [2.2 - 2.4 Tr]}{0.5 - 2.6 Tr + 1.4 (Tr)^2} \\
+ \left(\frac{DT}{\epsilon} \right)^2 \frac{3.9 (\rho r)^2}{0.5 - 2.6 Tr + 1.4 (Tr)^2}, \tag{10}
\]

\[
\langle \alpha^2 \rangle = 1 + \frac{2(1 - A_2/A_3) T}{\epsilon} \\
\times \frac{\rho r [2.2 - 2.4 Tr]}{0.5 - 2.6 Tr + 1.4 (Tr)^2} + \frac{(1 - A_2/A_3) T}{\epsilon} \right]^2 \\
\times \left[\frac{3.9 (\rho r)^2}{0.5 - 2.6 Tr + 1.4 (Tr)^2} \right], \tag{11}
\]

\[
\langle \alpha_m^2 \rangle = 1 - \left[\frac{2Ae}{C} + \frac{4ee}{pT} \left[\frac{2.2 - 2.4 Tr}{3.9 \rho r} \right] + \frac{Ae}{C} + \frac{2ee}{pT} \right]^2 \left[\frac{0.5 - 2.6 Tr + 1.4 (Tr)^2}{3.9 (\rho r)^2} \right], \tag{12}
\]

![Fig. 1. Evaluation of the interfacial layer acoustic correction factor \(\langle \alpha_a^2 \rangle\) and optical correction factor \(\langle \alpha_o^2 \rangle\) as a function of \(r = \Delta q/\Delta q_o\). Here Eqs. (10) and (11) are evaluated with \(p = 900 \text{ mb}\) for several indicated temperatures.](image1)

![Fig. 2. Ratios of third term to second term in Eqs. (10)–(12) with \(|\alpha_a^2(3-2)|\) being the absolute magnitude of this ratio in Eq. (10), \(|\alpha_o^2(3-2)|\) for Eq. (11), and \(\alpha_m^2(3-2)\) for Eq. (12). Dominance of second term involving \(C_T^2\) is indicated in each case. Selected mean temperature, pressure and vapor pressure indicated on figure.](image2)
where we have taken $r = \Delta q/\Delta \Theta_v$. The striking (and useful) feature of these expressions is that the dependence on inversion height z_i and surface virtual temperature scale θ_e has canceled out. Furthermore, we will show graphically that these $\langle \alpha^2 \rangle$ expressions are functions primarily of r, with only relatively weak dependencies on temperature, pressure and, in the case of $\langle \alpha_m^2 \rangle$, vapor pressure. Thus, for selected values of T, p and e, we may evaluate Eqs. (10)–(12) for a wide range of interfacial layer conditions by varying the ratio r.

Figs. 1–4 present plots showing the nature of these $\langle \alpha^2 \rangle$ dependencies. We examine only the typical case for a convective boundary layer in which Δq is negative, $\Delta \Theta_v$ positive, and therefore, r negative.

Fig. 1 shows that the dependence on mean temperature of $\langle \alpha_a^2 \rangle$ and $\langle \alpha_e^2 \rangle$ is not strong. This figure also shows that when the humidity jump is small and the virtual potential temperature jump is large across the interfacial layer, $\langle \alpha_a^2 \rangle$ and $\langle \alpha_e^2 \rangle$ approach unity. This is reasonable since under such
conditions the humidity fluctuations would tend to
be small, while the temperature fluctuations would
be large, making \((C_n^2)_{a}\) and \((C_{r}^2)_{a}\) primarily
dependent on \(C_{r}^2\). At the other extreme of large \(\Delta q\)
and small \(\Delta \Theta_a\), Fig. 1 indicates the importance of
accounting for the terms involving \(C_{q}^2\) and \(C_{r}^2\)
when making the transformation from \(C_{r}^2\) to acoustic or
optical \(C_n^2\).

It may appear odd that the \(a^2\) values in Eqs. (4)
and (5) turn out to be less than unity. The term
involving \(C_{r}^2\), however, is negative when \(r\) is negative
and, further, this term tends to be larger in
absolute magnitude than the positive \(C_{q}^2\) term. The
dominance of the \(C_{r}^2\) term over the \(C_{q}^2\) term in Eqs.
(10)–(11) is displayed in Fig. 2. Plotted are the
absolute magnitudes of the ratios of the third to
second term in Eq. (10) [labeled \(|\alpha_{r}^{a}(3−2)|\)] and in
Eq. (11) [labeled \(|\alpha_{r}^{a}(3−2)|\)].

These results are in qualitative agreement with the
computations of structure parameters by Burk
(1980) using a numerical boundary-layer model. (See
Burk, Figs. 6, 8 and 12 for examples of clear,
convective boundary layers in which there is con-
siderable interfacial layer cancellation of the \(C_{r}^2\)
contribution to acoustic \(C_n^2\) by the \(C_{r}^2\) term.) A more
complete comparison of the WL formulations with
predictions of a numerical turbulence closure model
are presented in Burk (1981).

Fig. 3 illustrates the magnitude of the pressure
dependence of \(\langle \alpha_{r}^{2}\rangle\) and \(\langle \alpha_{m}^{2}\rangle\). In Fig. 4 the
behavior of \(\langle \alpha_{m}^{2}\rangle\) is displayed, showing that \(\langle \alpha_{m}^{2}\rangle\)
deviates significantly from unity when \(|r| < 1.\)
Thus, when the temperature jump is large and the
humidity jump small, the \(C_{r}^2\) and \(C_{r}^2\) terms make
important contributions to total microwave \(C_n^2\) in
fact, the \(C_{r}^2\) term dominates the \(C_{r}^2\) term, as can be
seen in Fig. 2. The ratio of the third term in Eq.
(12) to the second term is labeled as \(\alpha_{m}^{a}(3−2)\) in
Fig. 2.

3. Concluding remarks

The transformations between individual tempera-
ture-humidity structure parameters and \(C_n^2\) shown
in Eqs. (4)–(6) require knowledge of the correction
factors \(\alpha_{r}^{2}\), \(\alpha_{q}^{2}\) and \(\alpha_{m}^{2}\). Using formulations
developed by WL, we show that these \(a^2\) factors have
simple dependencies on bulk properties within the
interfacial layer.

As an example, consider a sounding in which
\(\Delta \Theta_a = 4^\circ C\), \(\Delta q = -5 \times 10^{-3}\), \(p = 900\)mb, \(e = 10\)
mb and \(T = 285\) K. From Fig. 1 we find that the
contribution of \(C_{r}^2\) to optical \(C_n^2\) is reduced by about
35% due to the terms involving \(C_{r}^2\) and \(C_{r}^2\) (and
Fig. 2 shows that in this example the optical \(C_{r}^2\)
term is about 16 times larger in absolute magnitude
than the \(C_{r}^2\) term). Also, if we were to assume
that acoustic \(C_{n}^2\) was solely dependent on \(C_{r}^2\) when
making the transformation indicated in Eq. (4), Fig. 1
shows that we would be in error by nearly a factor of
3. In this example the correction factor for micro-
waves, \(\langle \alpha_{m}^{2}\rangle\), is about 1.25 according to Fig. 4.

It should be reiterated that use of Eqs. (10)–(12),
or Figs. 1–4, should be restricted to the conditions
discussed in WL; viz., the interfacial layer of clear,
convectively driven boundary layers.

As noted by a reviewer, a word of caution is war-
ranted concerning our treatment of \(C_{r}^2\). The
Wyngaard and LeMone (1980) expression for \(\langle C_{r}^2\rangle\) has
not been verified in the inertial subrange at the
highest frequencies where wave-scattering phe-
nomena occurs. The aircraft data from which \(C_{r}^2\)
is computed are generally sampled at a consider-
ably lower frequency than that responsible for the
scattering. Direct testing using optical and other re-
 mote sensing techniques in conjunction with con-
t rional aircraft sampling appears necessary to re-
solve remaining ambiguities.

Acknowledgments. The helpful comments of Drs.
Andrews, Goroch, Paul Tag and Alan Weinstein are
gratefully acknowledged.

APPENDIX

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Coefficient in microwave refractivity ((=77.6 \times 10^{-6}) K mb(^{-1}))</td>
</tr>
<tr>
<td>A(_1), A(_2)</td>
<td>Coefficients in optical refractivity ((A_1 = 78.7\times 10^{-6}) K mb(^{-1}), (A_2 = 66.3\times 10^{-6}) K mb(^{-1}))</td>
</tr>
<tr>
<td>C</td>
<td>Coefficient in microwave refractivity ((=0.375\ K^2\ mb^{-1}))</td>
</tr>
<tr>
<td>C(_n^2), C(_q^2), C(_r^2)</td>
<td>Structure parameters for refractive index, specific humidity and temperature, respectively</td>
</tr>
<tr>
<td>C(_{r}^2)</td>
<td>Joint temperature-humidity structure parameter</td>
</tr>
<tr>
<td>D</td>
<td>Constant in acoustic refractivity ((=0.307))</td>
</tr>
<tr>
<td>e</td>
<td>Vapor pressure</td>
</tr>
<tr>
<td>p</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>q</td>
<td>Specific humidity</td>
</tr>
<tr>
<td>q(_i)</td>
<td>Interfacial layer humidity scale [Eq. (2)]</td>
</tr>
<tr>
<td>r</td>
<td>Ratio of humidity to virtual potential temperature jump across interfacial layer (=[\Delta q/\Delta \Theta_i])</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature</td>
</tr>
<tr>
<td>T(_i)</td>
<td>Interfacial layer temperature scale, Eq. (1)</td>
</tr>
<tr>
<td>Z(_i)</td>
<td>Inversion height</td>
</tr>
</tbody>
</table>

Greek symbols

\(\alpha_n^2\), \(\alpha_o^2\), \(\alpha_m^2\) correction factors in transformations of acoustic, optical and microwave \(C_n^2\) [Eqs. (4)-(6)]

\(\epsilon\) constant appearing in vapor pressure to specific humidity conversion (= 0.622)

\(\rho\) atmospheric density

\(\theta_v\) mixed-layer temperature scale

\(\Theta_v\) virtual potential temperature

Other symbols

\(\langle\;\rangle\) virtual

\(\Delta\langle\;\rangle\) bulk difference across interfacial layer

\(\langle\;\rangle\) interfacial-layer average.

REFERENCES

