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ABSTRACT

This paper reviews the considerations in evaluating the skill and significance of screening multiple lingar
regression (SMLR) models. Formulations and procedures are given along with relevant mfel:ences to prior
studies. Topics discussed include predictor selection, serial correlation, artificial skill, true skill, and Monte
Carlo significance testing. New results with wide applicability in the assessment of SMLR model skill and
significance are presented in graphical form. However, the results are restricted to situations involving
predictors which are independent of one another and are serially uncorrelated. The methodology presented
is suggested for use in both model evaluation and experimental design.

1. Introduction

Screening multiple linear regression (SMLR) is a
statistical tool which has found extensive meteorolog-
ical application in short and long range forecasting,
both in research and operationally. Unfortunately,
the simplicity in using the many *“‘canned” statistical
packages available for use in SMLR is easily matched
by the additional complexity (which is a direct result
of the screening process) of assessing the model skill
and significance. Most statistical packages provide
measures of skill and significance for SMLR models
based on the assumption of a priori selection. Since
SMLR involves a posteriori selection (i.e., the best
M; predictors are chosen from a pool of M candidate
variables) these measures are invalid. One way in
which to circumvent this problem has been to parti-
tion the data sample into a dependent part (from
which the SMLR model is derived) and an indepen-
dent part (used for testing the model). This approach
is often unsatisfactory due to the smallness of the
dependent and independent samples (particularly in
climate studies) which leads to unstable estimates of
model parameters and verification statistics. Often
the researcher feels that the combined sample is not
large enough!

In an alternative approach (dependent sample test-

ing) skill and significance are assessed using the

sample from which the SMLR equations were derived.
In this case the “artificial predictability” due to both
finiteness of the sample and the effect of a posteriori
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selection must be taken into account. The effects of
artificial predictability on the evaluation of SMLR
models have been addressed by a number of authors,
most extensively by Davis (1976, 1977, 1978, and
1979, hereafter referred to as D1-D4). The purpose
of this paper is to present the results of a large
number of Monte Carlo simulations aimed at assessing
SMLR model skill and significance. The results are
summarized in such a fashion as to have wide appli-
cability with relative simplicity. In addition, suggested
strategies to be used in conjunction with the Monte
Carlo results are given along with relevant formula-
tions and their references in the literature.

2. Discussion

In essence, regression analysis is a means by which
a given variable Y (the independent variable or
predictand) is estimated as a linear combination of
m other (dependent) variables (X;), where both Y and
the X; are functions of time (7). This relationship can
be expressed as follows:
m
Y(0) = 2 BX,@). (1)
i=1
The regression coefficients (B;) are determined by
least squares in order to maximize the explained
variance of Y. It is assumed here (for simplicity) and
throughout the remainder of this paper that Y and
the X; have a mean value of zero (i.e., are in anomaly
form). It should be noted that in the relationships
presented here no distinction between population and
sample parameters is made. In reality, population
parameters are not known but are estimated from
the available sample.
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a. Predictor selection

The first step in building any regression model is
the selection of the type and number of predictors
(X;) to be included. It is often the case in meteorology
and oceanography that a large number of predictor
variables (measured at a number of gridpoint loca-
tions) are needed in order to capture the spatial
variability of the relevant predictor fields; this gives
rise to two major complications. First, the computa-
tional inconvenience and cost increases (nonlinearly)
with the number of predictors in the pool. Second,
in most cases there is considerable dependence be-
tween the gridpoint data values of a given field; as a
result, the usefulness of the regression coefficients (B;)
for interpretive purposes is lost.

In response to these problems, atmospheric and
oceanic scientists have made extensive use of Empir-
ical Orthogonal Functions (EOFs) since their intro-
duction by Lorenz (1956). Through EOF analysis
matters can be simplified by transformation of large
numbers of gridpoint variables into a small number
of independent (uncorrelated) patterns. The important
climatic signal is captured in those EOFs which are
distinguishable from random noise. One way to de-
termine the cutoff point which separates the climatic
signal from the noise is the Monte Carlo approach
discussed by Overland and Preisendorfer (1982).
However, the problem of “mixing” of adjacent pat-
terns (North et al., 1982) complicates the determi-
nation of the truncation point of the EOFs. Since the
Monte Carlo simulations reported in this paper are
based on independent predictors, in order to use
these results it is necessary to perform some transfor-
mation (EOF analysis, harmonic analysis, etc.) to
insure that the predictors are independent.

From a statistical standpoint it is preferable to
order and/or select the number of predictors a priori
(D1; D3; Barnett and Hasselmann, 1979; Barnett et
al., 1981) in order to limit artificial predictability.
The ability to do this depends largely on the com-
plexity and on the physical insight which the re-
searcher has regarding the particular problem. Strat-
egies for model building based on a variety of selection
criterion are given by Barnett and Hasselmann (1979)
and Barnett e al. (1981). The central concern in
these strategies is balancing the competing require-
ments of model skill and significance. Generally, the
more predictors in a given model, the larger the
hindcast skill and smaller the model significance.
Unfortunately, in many studies (particularly those of
an exploratory nature) the researcher does not have
enough insight to specify the model a priori. In these
cases the researcher turns to screening (a posteriori
selection), which is the primary topic of this paper.

b. Serial correlation

Of the two components of artificial predictability
discussed in the literature (i.e., the effects of serial
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correlation and of screening) the former has received
more attention, as well as an analytic treatment,
beginning with Bartlett (1946). The effect of serial
correlation has been quantified through the use of
the effective sample size (N*), where N* < N (the
actual sample size); in the absence of serial correlation
N* = N. Chelton (1983) presents an expression for
N* (based on Jenkins and Watts (1968), and Bendat
and Piersol (1971)):

+co
Nt =Ni/ 2 [piL)py(L) + pi(LYpyi(L)], (2)
L=—c .

where N¥ and N; are the effective and actual sample
sizes, respectively, in the zero lag cross correlation
between the predictand (Y) and predictor i (X;); each
p represents the cross or autocorrelation (of the two
variables indicated by subscripts) at lag L. It is
assumed that the sample size is large compared to
the (auto- and cross-correlation) time scales of Y and
the X;. In practice, (2) is evaluated over the range L
= +I/, where L is large enough so that the p(L)’s
become statistically indistinguishable from zero. The
above formulation (2) is more general than those
given by D1 and Sciremammano (1979) who assumed
that the effect of the cross correlation terms (p;, and
pyi) is negligible. The characteristic time scale 7 (i.e.,
the time needed to gain another degree of freedom)

"used by D1 and D3 is defined as follows:

T = NAt/N*, 3)
where At is the time between the (uniformly spaced)
observations. Another variation on the estimation of
the effective sample size was presented by Laurmann
and Gates (1977) for the case of a first order Markov
process.

The concept of an effective sample size (N*) with
its application to statistical significance testing has
been used quite extensively in meteorological studies.
Thiebaux and Zwiers (1984, hereafter referred to as
TZ) have pointed out that the estimation of N* has
been based on equating the ensemble mean square
of a time-averaged mean to the standard formula for
the variance of the mean of independent samples.
Based on an examination of other methods of com-
puting N* TZ conclude that the estimates of N* are
not unique. Thiebaux and Zwiers then compared a
variety of alternate methods of estimating N*; how-
ever, even the best of those methods is not entirely
satisfactory.

An even more serious problem pointed out by TZ
is that serial correlation in data violates some -as-
sumptions underlying the use of the Student’s t and
F distributions. As a result, it is not valid to compute
N* and use this value in significance testing. Thus,
the results of this study are applicable only in the
case of serially uncorrelated data.

c. Artificial skill and significance

By expanding on the work of Lorenz (1956), Davis
(D1-D4) has been foremost in addressing the problem
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of artificial predictability through the quantification
of the artificial skill (S,). He defines the true skill (S)
as the amount by which the hindcast skill (Sy, the
explained variance of the model) exceeds the artificial
skill:

S=S8y— S, 4
Furthermore, the forecast skill (SF) or skill in applymg

the regression equation to an independent sample
can be estimated by

Sp =~ Sy = 254. &)

According to Chelton (1983), the artificial skill (S,)
depends on the effective sample size (N*), the number
of predictors used in the regression model (m), and
the true skill (S). Assuming that N* is large,

= m(l — S)/N*. 6)
Davis’s formulation is the special case of (6) for small
true skill (S ~ O):

SA:F'

By combining (4) and (6) the true skill (5) can be
expressed as follows:

(M

N H - m/N *
§. 1 — m/N* ’ ®)
Similarly, by combining (5) and (6) the forecast skill
(Sr) can be estimated:

Sy — 2m/N*

S~ T N )

Again the reader is reminded that these formulations
may be erroneous (following TZ) when N* # N.

It should be noted that (4)-(9) apply to a priori
selection (nonscreening regression). For SMLR m lies
between M; and M, where the M, best predictors are
selected from a pool of M variables. Because of the
difficulty in deriving an analytic expression for S, as
applied to screening regression, much reliance has
been placed on Monte Carlo simulations. A general
relationship for the artificial skill as a function of M,
and M is given in Fig. 1 of D2. Lanzante and
Harnack (1982) corrected their S, values to account
for screening by using the appropriate value from
this figure as a multiplier. More discussion of this
topic is found in the next subsection.

The assessment of model significance has received
less analytic treatment than that of model skill. One
approach which has been used is to apply the classical
F-test or x? test using N* as the sample size; however,
this does not account for screening. The Miller equiv-
alent F-test (Miller, 1958), which has sometimes been
mis-applied, is not in general an adequate solution
since it is only applicable for the case in which one
predictor is selected from the pool. As a result, model
significance has been assessed predominantly through
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the use of Monte Carlo experiments, either by replac-
ing some of the observed data with random numbers,
or by randomly shuffling the predictand (e.g., Lund,
1970; Neumann et al., 1977). However, when either
spatial relationships or serial correlation are important
care must be taken to impose these conditions in the
randomization process.

d. Monte Carlo results

Given the widespread use of Monte Carlo tech-
niques in the evaluation of regression models, general
empirical relationships for assessing skill and signifi-
cance would be of considerable value in terms of
reducing human effort and computational costs. As
an added bonus they could aid in experimental design
(i.e., a priori decisions on predictor and pool sizes).
With these aims in mind, a large number of SMLR
Monte Carlo simulations were carried out using nor-
mally distributed random numbers as predictors and
predictands. A variety of pool-predictor size (1-6, 8,
10, 12, 14, 16, 18 and 20) and case size (10-100 by
5) combinations were used, with each combination
yielding an R? value (explained variance) for each of
1000 trials. From the R? distribution the mean value
(R? and the 5% tail value (R%; or R? value above
which lies 5% of all values) were computed. The
R%; and R? values are intended for use in assessing
model significance (at the 5% ‘significance level) and
artificial skill (i.e., the R? value expected as a result
of the screening process)

Two sets of charts (one set each for the R? and

'RZ; values) were constructed for each pool size,

depicting the variation of RZ or RZ,, as a function of
number of predictors selected and number of cases.
The values for the nonscreening cases (using all
predictors in the pool) were estimated based on the
relationship between the F-statistic and the R? value
which can be derived from the definition of the F-
test for regression found in any elementary statistics

book: .
-1
&
R*= (—— + 1) ,
VIF

where v, = n — m — 1, v, = m, n is the number of
cases, m is the number of variables in the model, and
F is the critical F value from an F table. The critical
F value for a one tailed test of 5% significance was
used to compute R%;,, while F = 1 (the expected
value of F) was used to compute R>.

After checking that these charts were reasonable
[internally consistent and consistent with the values
computed from (10) for the nonscreening cases] the
charts were summarized in two figures (based on the
representation in Fig. 1 of D2) by averaging over all
case sizes. In these two graphs (Figs. 1-2) the abscissa
(M,/M) represents the fraction of the pool size (M)
that is selected (M); the ordinate is the square of the
ratio of the R? values in screening M, predictors from

(10)
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a pool of M to that of using all M predictors (non-
screening). This representation is the same as used in
Fig. 1 of D2 except that here the ordinate is ¥
(instead of ¥) in order to provide a larger graphical
separation of the family of curves. The M = 10 curve
of D2 and this study are nearly identical; also, if the
M = 80 curve of D2 was plotted in Fig. 1 of this
study, the M = 20 curve would be roughly equidistant
between it and the M = 10 curve. Figure 2 of this
study (5% significance values) has no counterpart in
D2 but is equivalent to the relationships expressed in
Fig. 7 of Neumann et al. (1977); the major difference
is the fact that they computed values for much larger
pool and sample sizes than were used in this study,
and presented less general results (they used only
four values of M;).

The methodology described below can be applied
after the fact to assess skill and significance, or in the
preliminary stages of research. In the latter case,
typical R* and R%; values can be estimated before
performing any regression analyses; if, in the judge-
ment of the researcher the values seem higher than
could be expected, an adjustment of the M, and M
values might be in order. This should be done within
the framework presented by Barnett et al. (1981).

The best way in which to illustrate the method is
through an example. Suppose that N is 30 and that

0 2 4 3 8 10
Mg/M

FIG. 1. The relationship between #2 and M,/M for the artificial
skill in a SMLR model in which M, predictors are selected from a
pool of M independent predictors. ¥ is the ratio of artifical skills
of a model in which the best M, predictors are selected from a
pool of M, to that of a model containing all M predictors. The
family of curves represent (from top to bottom) pool sizes of 20,
10, 5, and 3. Find the F? by cross indexing M,/M with the
appropriate M curve. After taking the square root, multiply &
times the R? value computed from (10), where v, = n — m — 1,
vy = m, n = the sample size (N), m = M (pool size), and F = |
(the expected F value). Finally, multiply this result by the appropriate
sample size correction factor from Table 1. The value computed is
an estimate of the artificial skill (S, or R?).
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0 2 4 6 8 10
Mg/M
FIG. 2. As in Fig. 1 except that the relationship displayed is for
R%; (critical R? value used in assessing significance at the 5% level).
In addition, the sample size correction factors from Table 2 and
the F value for 5% significance (with », and », degrees of freedom)

should be used. The two curves are for M = 20 (top) and M = 3
(bottom).

5 independent predictors were to be screened from a
pool of 10. To assess the artificial skill apply the
value of M;/M (5/10 = 0.5) to the second curve from
the top in Fig. 1 (M = 10) to get #2 = 0.78 (or ¥
= (.88). Next, applying (10) with n = 30, m = 10,
and F = 1 (for significance, use Fig. 2 and the 5%
critical value of F with 10 and 19 degrees of freedom)
yields R? = 0.34. Finally, multiplying R?> and ¥ we
get 0.30; correct for the sample size by multiplying
this result by the appropriate value from Table |
(0.99) yielding R* = S, = 0.30. Apply the same
procedure using (10), Fig. 2, Table 2, and the one
tailed value of F (10, 19, 0.05) to estimate R?;, which

_is 0.49 in this case.

While this completes the procedure for the assess-
ment of SMLR skill and significance, other factors
may have to be considered. For example, if a model
hierarchy scheme suggested by Barnett et al. (1981)
was used, it would be necessary to make the distinction

TABLE 1. Sample size correction factors (multipliers) for use with
Fig. 1. After computing an R? value from (10) and multiplying by
& from Fig. 1, multiply by the correction factor above (which is a
function of the sample size). These factors were computed by av-
eraging the Monte Carlo results over all pool and predictor sizes,
for a given sample size, and normalizing to a mean of 1. Note that
while these correction factors have only a small effect, the sample
size has a much larger effect on the F value used in (10).

Sample size
10 20 30 40 50 60 70 80 90 100

091 097 099 100 101 102 102 102 102 102
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TABLE 2. As in Table 1 except for use with Fig. 2.

Sample size

10 20 30 40 50 60 70 80 90 100

098 098 098 099 1.00 100 101 102 102 103

between single candidate and multiple candidate se-
lection criterion. Accounting for this normally involves
the use of an individual model significance level
which is different from 5%, in order to have 95%
confidence in the overall scheme. By noting that
there is only a small difference between the corre-
sponding curves in Figs. 1-2 (which represent the
50% and 5% significance levels, respectively) and the
values in Tables 1 and 2, it is possible to make a
good estimate of F for other significance levels; the
effect of the variation of F with M will account for
most of the variation of RZ%; with M.

Finally, when a given experiment is composed of
multiple models (perhaps representing different loca-
‘tions) it is important to make an assessment of the
overall significance of the experiment. In the case of
a grid with a separate model for each location, a
simple count of the number of significant models
could be misleading due to the dependence between
gridpoints. This count (adjusted to the grid spacing)
should be compared to the effective number of in-
dependent gridpoints in order to assess field signifi-
cance. An application of the binomial distribution
and Monte Carlo simulation for this purpose is
discussed by Livezey and Chen (1983).

3. Summary

Some of the various concerns which must be
addressed in the evaluation of screening regression
- models were given in this paper along with a review
of formulations and procedures for estimating model
skill and significance, including the-effective sample
size, artificial skill, and true skill. Additionally, the
results of a large number of Monte Carlo simulations
were presented as an aid in assessing model skill and
significance for screening regression involving predic-
tors that are independent of one another and are
serially uncorrelated. These results were presented in
such a form as to have wide applicability, and can
be used in experimental design as well as model
-evaluation.
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