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ABSTRACT

Satellite rainfall estimates from a microwave emission-based algorithm by Witheit et al. are verified using
the noncontiguous rain gauge method incorporating monthly Pacific atoll rain gauge data. The results are
compared with those obtained using an infrared-based satellite algorithm, the GOES precipitation index. Com-
parisons between satellite estimates with simple spatial averages of point rain gauge data are shown to be
ineffective at identifying statnstncally significant differences between the two algorithms due to substantial amounts
of spatial sampling error in the rain gauge spatial averages. By effectively reducing this error, the noncontiguous
rain gauge method reveals distinctive differences in the ability of each of the algorithms to accurately estimate
monthly rainfall over the open ocean. The results indicate that the microwave algorithm, while slightly biased,
is significantly less biased than the infrared, which tends to overestimate high rainfall values and underestimate

low rainfall values. However, the random error associated with both algorithms is essentially the same.

1. Introduction

The measurement of precipitation is important to
monitor and detect global climate change. The advent
of meteorological satellites provided the only means
for obtaining estimates of large-scale convective pre-
cipitation over the greater portion of the earth and, in
particular, over the tropical oceans where other types
of instruments are sparsely distributed.

A wide variety of satellite-based algorithms trans-
forming received radiance to rainfall have been devel-
oped (Barrett and Martin 1981). Rain-rate estimation
techniques using satellite information are based on the
empirical or physical relationships between rain rate
and cloud variables, such as cloud height, cloud-top
temperature, high-cloud amount or scattering, and
emissivity properties from raindrops. This information
is obtained from visible (VIS), infrared (IR ), and mi-
crowave (MW) measurements, or a combination of
these wavelengths.

An early approach to estimating tropical convectwe
rainfall using satellite imagery from National Oceanic
and Atmospheric Administration polar-orbiting sat-

* Also a visiting scientist in Planetary Geosciences, University of
Hawaii, Honolulu, Hawaii.

Corresponding author address: Dr. Mark L. Morrissey, Oklahoma
Climatological Survey, University of Oklahoma, Sarkeys Energy
Center, Suite 1210, 100 East Boyd, Norman, OK 73019-0628.

© 1995 American Meteorological Society

ellites was developed by Kilonsky and Ramage (1976).
The technique was based upon the relationship between
the number of highly reflective clouds within 1.0°
X 1.0° latitude-longitude boxes per month and
monthly Pacific island rain gauge measurements. The
number of highly reflective clouds was determined
subjectively from visual imagery. By introducing IR
data into their analysis scheme, Garcia (1985) con-
structed the highly reflective cloud index, which relates
the number of occurrences of highly reflective clouds
per box to monthly rainfall.

Using satellite IR measurements, Arkin (1979) and
Richards and Arkin (1981) found that the fractional
amount of high clouds within an area was strongly cor-
related with the areal rain amount observed during the
Global Atmospheric Research Program (GARP) At-
lantic Tropical Experiment (GATE). Arkin and Meis-
ner (1987) used these results to develop a simple IR
thresholding technique for estimating areal rainfall [i.e.,
the GOES (Geostationary Operational Environmental
Satellite) precipitation index (GPI)].

Wilheit et al. ( 1991) developed a physical approach
to estimating rain rate using MW measurements based
upon the earlier work of Wilheit et al. (1977), who
established a relationship between columnar rain rate
and received MW radiance. By assuming a form for
the probability density function (PDF) of rainfall in-
tensity, the algorithm retrieves the monthly rainfall
from MW emission of hydrometeors. Herein, monthly
average rainfall estimates produced by the PDF method
are termed WCC rain rate estimates (Chiu et al. 1993).
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To be of practical use, satellite algorithms must be
calibrated and their estimates verified using samples of
independent data accurately taken over time- and space
scales corresponding to those of the satellite estimates.
A common validation method is to apply regression
analysis to corresponding pairs of surface and satellite
volume rainfall estimates. Biases and random errors
associated with the satellite algorithm can then be
identified. Crucial to the success of the comparison is
the validity of the assumption that the surface volume
rainfall estimates are accurate. This depends upon rain
gauge instrument error and spatial sampling error. The
magnitude of the spatial sampling error depends upon
the relationship among the rain gauge density, the net-
work geometry, and the spatial covariance structure of
rainfall. In addition, temporal sampling error arising
from the discrete satellite visiting times within the
sampling space can produce significant differences be-
tween the surface and satellite estimates.

Efforts to quantify the temporal sampling error as-
sociated with different satellite systems have been made
(Laughlin 1981; McConnell and North 1987; Shin and
North 1988). For the soon to be launched Tropical
Rainfall Measuring Mission (Simpson et al. 1988 ) sat-
ellite, the temporal sampling error based upon GATE
rainfall statistics is about 8%—12% of estimated monthly
mean rain rates over a grid box of 5° X 5° (Shin and
North 1988). However, since the sampling configu-
ration of satellites is difficult to alter once they are in
orbit and accumulated total rainfall is the quantity to
be estimated, the variance due to temporal sampling
error remains in the satellite estimates, and, thus, the
focus of validation efforts should be placed in removing
the spatial sampling error in the areal rain gauge esti-
mates. One such effort by Morrissey (1991) has been
to create a hybrid validation method that effectively
reduces the spatial sampling error. The method, re-
ferred to as the noncontiguous rain gauge method (i.e.,
NCR method), incorporates the theoretical relation-
ship between the point and areal rainfall distribution
to construct statistical models from widely scattered
rain gauge measurements. The models provide values
that have the statistical distribution of areal rainfall
conditional on the satellite value. The values are paired
with satellite rainfall estimates using a scattered dia-
gram. Regression analysis can then be applied to assess
the bias and random error associated with the satellite
algorithm with the scatter due to spatial sampling error
minimized. The NCR method is directly applicable to
validating satellite estimates over open ocean regions
where only widely scattered rain gauge measurements
are available. Morrissey and Greene (1993) used the
NCR method to verify two simple satellite rainfall al-
gorithms within the different rainfall climate regimes
within the tropical Pacific.

The purpose of this study is to apply the NCR
method over the tropical Pacific using monthly rain
gauge data obtained from the Comprehensive Pacific
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Rainfall Data Base (CPRDB) (Morrissey et al. 1993b)
to verify the WCC satellite algorithm, which uses MW
data from the Special Sensor Microwave/Imager
(SSM/1). The SSM/I is onboard the polar-orbiting
Defense Meteorological Satellite Program (DMSP)
satellite. Recently, Chang et al. (1993) compared the
performance of the WCC algorithm over the tropical
Pacific region using data from rain gauges sited on Pa-
cific atolls (Morrissey and Greene 1991; Morrissey et
al. 1993a). Monthly rain gauge measurements within
the 5° X 5° latitude-longitude areas represented by
the satellite estimates were spatially averaged to pro-
duce volume (i.e., volume = area X time) estimates.
Based upon a comparison of the rain gauge and satellite
estimates, the algorithm produced estimates with ran-
dom errors of 50%-60% and a low bias of approxi-
mately 8%. The correlation coefficient between the rain
gauge and the algorithm estimates was 0.70. However,
it must be assumed that a significant portion of the
random error is due to spatial sampling error in rain
gauge-estimated volume rainfall since the rain gauge
density in the Pacific is quite low, and the spatial scale
of the tropical rainfall process is small (Morrissey and
Greene 1993). Thus, the correlation coefhicient found
by Chang et al. (1993) must be considered as a mini-
mum value with its actual value unknown. It will be
demonstrated that, by minimizing the spatial sampling
error, the NCR method provides accurate estimates of
both the bias and the random error in the satellite al-
gorithm. Hence, the correlation coefficient is accurately
determinable.

For comparison purposes, the GPI will also be verified
over the same time and space scales. The GPI has often
been used as a standard by which other satellite algorithms
have been compared (Chiu et al. 1993; Berg 1993; Mor-
rissey and Greene 1993). The NCR method will be de-
scribed briefly in section 2. The two satellite algorithms
are discussed in sections 3 and 4, and the results of the
verification are shown and discussed in section 5. Finally,
the conclusions are given in section 6.

2. The NCR method

Satellite rainfall estimates are verified by statistically
comparing them with surface estimated rainfall over
the same time- and space scales. Surface volume rainfall
is usually estimated using spatial averages of accu-
mulated rainfall totals obtained from closely spaced
rain gauges in order to minimize spatial sampling error.
Assuming homogeneous and stationary statistics, rain
gauge-estimated volume rainfall has a statistical dis-
tribution corresponding to every value of satellite-es-
timated rainfall. These distributions are thus “condi-
tional” on the satellite estimates. Assuming a rain gauge
network density of infinity, the first moments of these
distributions characterize the biases inherent in the
satellite algorithm, and the second moments charac-
terize its precision. For rain gauge densities less than
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infinity, these distributions become sample distribu-
tions whose second-order moments are larger than
those of the population due to sampling error. This
can significantly affect assessments of the bias and ran-
dom error associated with the satellite algorithm by
reducing the statistical significance of the fitted regres-
sion parameters. Although the sampling error can be
reduced by increasing the rain gauge density, this is a
difficult and expensive task over open ocean regions.

Morrissey (1991) developed, and Morrissey and
Greene (1993) later applied, an alternative method of
verifying satellite rainfall estimates using a statistical
modeling approach. The theoretical basis of the NCR
method, which lies in the transformation of the point
rainfall! distribution into a distribution of volume
rainfall estimates over the desired scales, is described
in detail by Morrissey (1991) and Morrissey and
Greene (1993). The NCR method incorporates the
functional relationship between the variance of esti-
mated volume rainfall and rain gauge density to con-
struct statistical models whose output have the distri-
bution of volume rainfall estimated from networks of
a specified gauge density. Estimates of the model pa-
rameters are determined using data obtained from
sparsely distributed rain gauges. Since the rain gauge
density is a parameter in these models, its value may
be selected so as to minimize the sampling error. A
different model is constructed for each value of a
quantized satellite rainfall estimate. A scatter diagram
can then be produced reiating model output to the cor-
responding satellite values. Linear or nonlinear regres-
sion analyses may be then applied to the pairs of model
and satellite-estimated values. By forcing the number
of model values to be a function of the number of rain
gauge data available, the number of degrees of freedom
is preserved allowing tests of significance of the resulting
regression relationship.

To apply this method, it must be assumed that rain-
fall is a random process and that its statistics are ho-
mogeneous conditional on the satellite rainfall value.
This is a more realistic assumption than one requiring
the rainfall statistics to be homogeneous independent
of satellite values. For example, it is known that the
mean rainfall rate varies from one climate regime to
another. However, the mean rainfall rate associated
with a given satellite value may be the same in both
climate regimes. This, of course, depends upon the re-
lationship between satellite-estimated and actual rain-
fall. Since conditional homogeneity is assumed, the
model parameters may be determined using rain gauges
distributed over a considerably larger region than the
spatial dimensions of the satellite rainfall estimate.

! Since rain gauges estimate accumulated rainfall, point estimates
in this paper refer to individual rain gauge accumulations over one
month,
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The initial step in the NCR method requires that all
rain gauge values in a selected region be sorted into
several datasets. Each rainfall dataset contains rain
gauge measurements taken simultaneously in time and
space with a quantized satellite rainfall estimate. The
quantization interval of the satellite values depends
upon the number of associated rain gauge values avail-
able per dataset. A good rule of thumb is that the sat-
ellite values should be quantized so that an adequate
estimate of the point rainfall distribution can be made
for each dataset. The flowchart shown in Fig. 1 illus-
trates the sequence of steps required to construct a sta-
tistical rainfall model for a given quantized satellite
value. This procedure should be repeated for each
quantized satellite value.

The point rain gauge values from a given dataset are
used to estimate the first- and second-order moments
of the point rainfall distribution. The conditional spa-
tial correlation function is then estimated by fitting
(using a least-squares method) an appropriate function
to interstation correlation coefficients plotted as a
function of rain gauge separation distance (to simplify
the description an isotropic spatial correlation structure
will be assumed ). To increase the number of rain gauge
pairs so that an adequate estimate of the spatial cor-
relation function can be made, an average rainfall cor-
relation structure representing a range of quantized
satellite rainfall values can be used (Morrissey and
Greene 1993).

The next step involves the determination of the con-
ditional volume rainfall variance using the variance

reduction relationship
var(P;) = Fy(N) var(5,), (1)

R eat for each satellite v:

Point Raingage Data

Point Rainfall
Mean and Variance

Spatial Correlation
Function

Variance Reduction
Relationship

[Volume Rainfall Variance

l

Gaussian Transform

Point Raingage
Data

Gaussian Transform

Modeled
™™ Volume Rainfall

FI1G. 1. The flowchart illustrating the sequence of steps required
in the NCR method to acquire model rainfall for a given quantized
satellite value.

Function for »| Function for
Point Rainfall Volume Rainfall
Distribution Distribution
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where var(p;) is the point rainfall variance conditional
of satellite value 5. The resultant conditional volume
rainfall variance var(P;) is equivalent to the variance
of volume rainfall estimates obtained from a single rain
gauge network (if one were available), consisting of a
number of randomly distributed rain gauges of density
N (i.e., number of rain gauges per area). The condi-
tional variance reduction factor Fi(N) (Rodriguez-
Iturbe and Mejia 1974; Morrissey 1991) is equal to

V) == {1+ (4N = DET141), ()

where A is the area corresponding to the spatial scale
of the satellite rainfall estimates. The expected value
of the conditional mean interstation correlation within
areas of size 4 is given by

DMAX

Elp 4] =f0 ps(v) f(v)dv, (3)
where the conditional spatial correlation p,(») is written
as a function of rain gauge separation distance », f(»)
is the frequency function of the distance between two
randomly distributed points in area A (appendix A),
and DMAX is the diagonal distance across a square
area of size A.

The variance reduction relationship accounts for the
reduction in the variance of volume rainfall estimated
from rain gauge networks having a density of N in the
presence of a spatially correlated field. A value for N
is selected analytically by first deciding on an acceptable
amount of sampling error (e.g., 5% ) (refer to Morrissey
and Greene 1993).

The advantage of the NCR method is that values
from widely scattered rain gauges can be used to de-
termine values for the parameters in Eq. (1), so long
as the spatial correlation function is adequately esti-
mated. An unbiased estimate of the first-order moment
of the volume rainfall distribution is the sample mean
point rainfall value. Once the first- and second-order
moments associated with each of the conditional rain-
fall distributions are estimated, the construction of the
statistical models can begin. This procedure, which is
fully described by Morrissey (1991) and Morrissey and
Greene (1993), will be described briefly below.

The modeling process begins by defining a random
variable p, representing the conditional point rainfall
histogram. The Gaussian transform function ¢ (U) is
then defined, which expresses the random variable p,
in terms of a standard normal random variable U [i.e.,
Ps = ¢s(U)]. Using an expansion of Hermite polyno-
mials, the transform function is fitted to the conditional
point rainfall histogram (Journel and Huijbregts 1978;
Morrissey 1991). The point rainfall variance appears
as one of the parameters defining the transform func-
tion. It is assumed that the transform function of the
random variable representing volume rainfall is the
same as that representing point rainfall with the point
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variance replaced by the volume variance. Standard
normal random numbers are used as input to the
model. This results in values having the same mean
and variance and similar higher-order moments as
would volume rainfall estimated from a network of
randomly distributed rain gauges having a density V.

Once the models are constructed, their output is
compared with the appropriate quantized satellite value
using a scatter diagram. The number of values pro-
duced from each model is dependent upon the number
of rain gauge values available for a given dataset (i.e.,
M), and is given by M,/ N, (refer to Morrissey and
Greene 1993). Linear or nonlinear regression analysis
is then applied to the values on the scatter diagram
and significance tests conducted.

The most important factor concerning the applica-
tion of the NCR method is the estimation of the spatial
correlation function. Frequently, there are an insuffi-
cient number of rain gauge pairs to estimate a separate
spatial correlation function for each quantized satellite
estimate. In this case, a spatial correlation function
representing a range of satellite estimates may be com-
puted (refer to Morrissey and Greene 1993). This
maximizes the number of pairs available without sig-
nificantly affecting the results of the comparison. For
verifying the satellite algorithms over the tropical Pa-
cific, a special weighting scheme was devised (described
in appendix B) and applied to the WCC and GPI al-
gorithms.

3. Satellite algorithms
a. The WCC algorithm

Considerable work has been placed in developing
rainfall retrieval methods using SSM/I data (e.g.,
Spencer et al. 1989; Olson 1989; Grody 1991; Liu and
Curry 1992). Some algorithms have been specifically
designed to estimate large-scale, long-term rainfall es-
timates suitable for climate research (Wilheit et al.
1991; Berg 1993).

Wilheit et al. (1991) developed an approach to es-
timating rainfall integrated over the time- and space
scales of climatological interest using operationally
available SSM /I MW data. The SSM/I is a four-fre-
quency (19.35, 22.235, 37, and 85.5 GHz) microwave
radiometer mounted on the near polar-orbiting, sun-
synchronous DMSP satellite (WCRP 1986). The spa-
tial resolution of the imagery varies from 69 km X 43
km at 19.35 GHz to 15 km X 13 km at 85.5 GHz. The
first two channels are attenuation-based measurements
representing the oxygen band (i.e., 50-60 GHz). The
last channel is a scattering-based measurement within
the water vapor line (i.e., 22.235 GHz). The 37-GHz
channel is the intermediate frequency channel in which
both measurement approaches must be considered.
The emission-based algorithm developed by Wilheit et
al. (1991) uses a linear combination of the 19.35- and
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22.235-GHz channel observations to minimize the
impact of water vapor.

The technique of Wilheit et al. (1991) is based upon
the Wilheit et al. (1977) radiative transfer model, which
establishes an analytical relationship between bright-
ness temperature and rain rate. Two basic assumptions
in the algorithm are that 1) the probability distribution
function of rainfall intensity has a lognormal form,
and 2) the nonraining portion of the brightness tem-
perature histogram has a normal distribution.

Retrieving monthly rainfall totals from the SSM/I
data begins with the collection and assimilation of
SSM/I data into frequency histograms of brightness
temperatures (BT ). The BT histogram allows the initial
estimation of the rain-rate distribution moments as-
suming a lognormal distribution. The mean height of
the rain clouds is also estimated from the BT histogram.
These rain rates are then translated into BT using the
radiative transfer function. The nonraining part of the
BT histogram is treated as a normal distribution. By
comparing the computed BT histogram with the ob-
served BT histogram adjustments of the lognormal rain
rate, parameters can be made and further iterations
performed until the first three moments of the two BT
histograms match. Finally, the resulting values of the
lognormal parameters determine the monthly rain to-
tals that are retrieved for each 5° X 5° box over oceanic
areas.

b. The GPI algorithm

The GPI rainfall estimates are derived from geosta-
tionary IR imagery using a simple thresholding tech-
nique that was presented by Arkin and Meisner (1987).
The technique is based upon the relationship between
the fractional coverage of cold cloud within 2.5° X 2.5°
boxes and area-averaged rainfall. Richards and Arkin
(1981) compared radar rain rates taken during GATE
with satellite IR imagery and found that the linear re-
lationship between areally averaged rainfall and frac-
tional coverage by cold clouds is relatively insensitive
to the threshold chosen. Furthermore, they indicate
that the optimum threshold for estimating convective
rainfall in 2.5° X 2.5° boxes is 235 K. For this thresh-
old, the slope of the regression relation between frac-
tional cloudiness and rainfall rate is relatively stable
with respect to the temporal averaging scale. For the
GP], this coefficient was determined to be 3 mm h™'.
The GPI relation is expressed as

rainfall (mm) = 3.0t Fc,

where Fc is the fractional cloudiness (a dimensionless
number between 0 and 1), and ¢ is the length of the
period (h) for which Fc was the mean fractional cloud-
iness. The GPI was found to work best in tropical
oceanic regions where convectively produced rainfall
predominates.
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FIG. 2. Locations of the Pacific atoll rain gauge sites
used for this study.

4. Data

This study uses rain gauge data extracted from the
CPRDB, which consists of daily rain gauge data from
over 250 Pacific island and atoll stations (Morrissey et
al. 1993b). Due to the questionable representation of
large island rainfall measurements, only rainfall from
gauges sited on atolls were in this study. This amounted
to approximately 99 sites across the Pacific (Fig. 2).
On the average, about 70% of the stations reported on
any given month.

The WCC rainfall estimates were obtained from the
National Aeronautics and Space Administration
(NASA) Goddard Space Flight Center.” Because the
DMSP satellite is in a sun-synchronous orbit, the ob-
servations are restricted to twice a day over a given
location. Thus, two datasets are obtained separately
and are referred to as AM and PM, respectively. The
monthly rain rate estimates are the average of the AM
and PM values and the results are corrected for beam-
filling error. The equation used is

_(AM +PM)
2.0 '

The dataset covers the global belt from 50°N to 50°S
from July 1987 to December 1990 with some records
during 1987 missing.

The GPI data were obtained from the Global Pre-
cipitation Climatology Project Geostationary Satellite
Precipitation Center.> The GPI rainfall estimates for
the Pacific region were derived using IR data from both
the Japanese Geostationary Meteorological Satellite
(GMS) and the GOES satellite. The IR data consti-
tuting the GPI have a temporal resolution of three
hours and a spatial resolution of approximately ! 1 km
(at nadir). The spatial resolution of the GPI data is

rainfall (mm month ™) 5.

2 Courtesy of Alfred Chang, NASA Goddard Space Flight Center,
Greenbelt, Maryland.
3 Courtesy of John Janowiak, Climate Analysis Center.
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2.5° X 2.5° latitude-longitude, and the time resolution
is five days. The period of record is five years (1986-
90). The GPI rainfall estimates represent the region
between 40.0°N and 40.0°S. To match the scales of
the WCC estimates, the original pentad GPI estimates
were averaged into monthly values and spatially into
5° X 5° resolution.

5. Results and discussion

a. Comparisons of satellite-estimated areal rainfall
with point surface measurements

To provide a baseline comparison, point rainfall
measured concurrently in time and space with the sat-
ellite estimates were compared. It will be demonstrated
that, although some conclusions may be drawn from
such a comparison, concrete statements concerning the
statistical validity of the results cannot be made due
to the influence of spatial sampling error and that the
NCR method must be applied under these circum-
stances. Figures 3 and 4 show the resulting comparison
between spatially averaged point rain gauge data and
the satellite-estimated areal rainfall from the GPI and
the WCC data, respectively. There are 2496 pairs of
such comparisons for the GPI and 2567 pairs for the
WCC estimates. The thick solid lines, which are the
regression lines computed using the least-squares
method, provide an estimate of the functional rela-
tionship betweén the surface point data and the areal

1000
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satellite estimates. The thin solid lines are the 45° lines
drawn to illustrate the bias in the relationship with re-
spect to rainfall amount.

Overall, the satellite values increase with increasing
point rainfall values. However, the error variance of
point rainfall, indicated by the scatter about the regres-
ston lines, is substantial for both algorithms. The slopes
of the regression lines are 0.81 for the WCC values and
0.73 for the GPI data. Although both algorithms pro-
duce biased values (i.e., the slopes are different than
1.0), it appears the WCC estimates are somewhat less
biased than the GPI values. The correlation between
the WCC estimates and rain gauge data is 0.66, which
is quite close to that found by Chang et al. (1993).
The correlation between the GPI estimates and rain
gauge data, while higher at 0.69, is not statistically sig-
nificantly higher (at the 95% level). A positive intercept
is indicated by both algorithms. The intercept is 48.3
mm month™! for the WCC estimates and 57.4
mm month~' for the GPL

Residual analysis showed that the data pairs asso-
ciated with both algorithms were nonnormally distrib-
uted and the error variance was not constant. A Box—
Cox transformation (Draper and Smith 1981) was ap-
plied to the data pairs that satisfactorily stabilized the
variance and produced a quasi-normal distribution.
Statistical significance tests ( not shown ) were then ap-
plied to the regression parameters associated with the
transformed data. The results of the tests indicated that
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FiG. 3. GPl-estimated rainfall versus rain gauge-measured point rainfall. The thick solid line is the
least-squares linear regression analysis line, and the thin solid line is the 45° line.
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FI1G. 4. As in Fig. 3 but for the WCC estimates.

the slopes, intercepts, and the correlation coefficients
associated with both algorithms were statistically dif-
ferent from zero at the 95% confidence level. Unfor-
tunately, the very large confidence intervals about the
regression parameters (not shown) prevented the
identification of a statistical distinction between the
corresponding regression parameters associated with
the two algorithms (i.e., the null hypothesis of similar
regression parameters could not be rejected at the 95%
confidence level). Also, a bias could not be firmly es-
tablished in either algorithm (i.e., the null hypothesis
that the slopes were equal to 1.0 could not be rejected).
Thus, the large amount of scatter about both regression
lines prevented statistically sound and. conclusive
statements being made about the differences between
the algorithms and their respective amounts of bias
and random error.

A large percentage of the scatter may be attributed
to spatial sampling error in the rain gauge estimates,
instrument error, and temporal sampling error resulting
from the difference in the temporal sampling charac-
teristics between the two satellites. A certain percentage
of this scatter cannot be reduced since the temporal
sampling characteristics of the satellites are fixed and
the amount of rain gauge instrument error is unknown.
However, it is likely that if the contribution to the scat-
ter from spatial sampling error can be significantly re-
duced using the NCR method, concrete statements
could be made concerning the accuracy of the algo-
rithms and intercomparisons of the regressnon param-
eters.

b. Application of the NCR method

The satellite rainfall estimates were first quantized
into 80 intervals of 10 mm each (i.e., 10, 20, . .., 800
mm) for both WCC and GPI data. All point rain gauge
measurements taken simultaneously in time and space
with the quantized satellite values were sorted into two
groups of 80 ‘datasets (i.e., one group for each algo-
rithm). The point rainfall variance for each dataset
was then calculated individually. Due. to an insufficient
number of pairs of observations existing: for each da-
taset, one spatial correlation function representing the
range of satellite values was computed for each algo-
rithm (appendix B).

For the two sets of spatial correlation coefficients
(one set for each algorithm), an exponential function
of the following form prov1ded an adequate fit using a
least-squares method

p(») = a + be="9,

where a, b, and c are nonlinear regression coefficients
determined by a least-squares.method, and » is the sep-
aration distance. Figures 5 and 6 show the correlation
coefficients and the resulting function of each algo-
rithm. Statistical models, constructed using the pre-
viously described procedure, were then used to produce
two scatter diagrams, one for each satellite algorithm.
The selected rain gauge densities (i.e., N) obtained us-
ing Eq. (18) in Morrissey (1991) were 14 and 15 per
308 025 km” (i.e., 5° X 5° latitude-longitude areas)
for the GPI and the WCC algorithms, respectively (refer
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FI1G. 5. The spatial correlation among rain gauge stations for GPI
data. The least-squares fit exponential function is also given.

to Table ). It was assumed that 5% sampling error
remained in the areal averages [i.e., CV in Eq. (18) in
Morrissey 1991]. The statistics required to derive the
volume rainfall variances are given in Table 1. It should
be noted that since a single correlation function was
used to represent the range of quantized algorithm val-
ues, a single value of E[p|A4], N, and, consequently,
F(N)was computed, one for each algorithm (Morrissey
and Greene 1993).

The results of the NCR method applied to the GPI
is shown in Fig. 7. Overall, the variance about the
regression line has been reduced by approximately 67%
from that using the point data. While the parameters
of the regression equation have not significantly
changed, the correlation has increased to 0.88. It should
be assumed that this is a minimum value since rain
gauge instrumentation errors and satellite temporal
sampling error undoubtably account for some addi-
tional variance about the regression line. The standard
error about the regression line indicates that approxi-
mately 68% of the values fall within 47 mm.

For the WCC estimates, the regression parameters
have changed somewhat (Fig. 8) from these found us-
ing point data. The slope has increased to 0.91 and the
intercept has decreased to 33.9 mm month ™. This
probably results from an insufficient number of model
values greater than 480 mm month ™', which reduced
the range of WCC values tested. The amount of rain

r
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=
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‘FIG. 6. As in Fig. 5 but for the WCC estimates.
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TABLE 1. Values for the statistical parameters used to determine
the variance of volume rainfall using Eq. (1).

Algorithm E [p}A4} N F(N)
GPI 0.27 14 0.33
wCC 0.22 15 0.27

gauge data associated with the larger WCC values was
insufficient to produce model values greater than 480
mm month ™', Although inconclusive, the change in
the slope resulting from the decrease in the range of
WCC estimates suggests that a slight nonlinear rela-
tionship may exist between the WCC estimates and
the surface-measured volume rainfall. The standard
error about the regression line suggests that roughly
68% of the values fall within =53 mm of the value
predicted by the regression line. The correlation coef-
ficient has increased to 0.87.

Analysis conducted on the residuals (not shown)
indicated that the error variance was relatively stable
given changes in abscissa value. The NCR method
produced model values that were quasi-normally dis-
tributed in accordance with the central limit theorem
that states that a distribution converges to normality
with averaging. Also, the NCR method inherently pro-
duces independent model values, so that multicoline-
arity in the residuals was not a factor. Thus, standard
statistical significance tests could be appropriately ap-
plied to the regression parameters and the correlation
coeflicients associated with both algorithms.

Significance tests applied at the 95% confidence level
indicate that the regression parameters and the corre-
lation coefficients associated with both algorithms were
significantly different from zero. Also, the slope values
for both algorithms were significantly different from
one. This indicates that both algorithms are biased to
some degree. Table 2 shows that the GPI is significantly
biased with the population value for the slope between
0.80 and 0.67, while the same value for the WCC al-

600 —7
y=558+0.73x R=0.88 -
500 -7

400
300
200 |
100

Model Rainfall {mm/month)

i ]

o 1 ol 1 P
0 100 200 300 400 500 600
Satellite Rainfall (mm/month)

FiG. 7. The modeled rainfall using the NCR method versus the
GPl-estimated rainfall. The solid line represents the best-fit linear
function getting by least-squares nonlinear regression analysis. The
dashed line is the 45° line.
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FI1G. 8. As in Fig. 7 but for the WCC estimates.

gorithm lies between 0.99 and 0.83. The slope and in-
tercept values associated with the GPI algorithm were
also significantly different from the corresponding pa-
rameters associated with the WCC algorithm.

. While the correlation coeflicients for the two algo-
rithms were significantly different from zero, they were
not significantly different from each other, suggesting
that the level of random error in-the algorithms esti-
mates is essentially the same. The similarity in the
amouints of random error is, at first, surprising since
the more direct rainfall measurements come from the
MW technique. However, the WCC algorithm suffers
to some extent from the relatively low temporal sam-
pling rate associated with the DMSP satellite.

The overall bias-in the GPI, computed using one
minus the ratio of the mean rainfall estimated by the
GPI algorithm to that from the model estimates, is
approximately 5.4%. The value of this ratio for the
WCC algorithm is approximately 8.5%, which is es-
sentially the same as that found by Chang et al. (1993).
Although the overall bias in the GPI is less than that
in the WCC algorithm, comparisons of the GPI regres-
sion line with the 45° line in Fig. 7 illustrate that the
GPI tends to substantially overestimate high rainfall
values and underestimate low rainfall values. This is
in agreement with what was found by Morrissey and
Greene (1993). This “range-dependent bias™ is much
less for the WCC algorithm (Fig. 8).

6. Conclusions

Using the standard verification method of comparing
rainfall estimates from two satellite algorithms with
simple spatial averages of monthly rainfall data from
Pacific atoll rain gauge sites proved useful in the sense
that a statistical relationship could be established be-
tween the algorithm estimates and the surface obser-
vations (i.e., the slopes, intercepts, and correlation
coefficients. were - statistically different from one).
However, the substantial amount of scatter about the
regression lines produced by spatial sampling error
prevented conclusive statements being made about the
amount of bias and random error in the algorithms.
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The NCR method, by reducing this scatter, allowed
statistically valid conclusions concerning differences
between the two algorithms and the accuracy of their
estimation capabilities. It was found that the correlation
between monthly surface-measured rainfall and the
WCC-estimated monthly rainfall (0.87) was essentially
the same as that found for the GPI (i.e., 0.88). Thus,
both algorithms can account for approximately 77%
of monthly rainfall variance over the Pacific. However,
the significant differences were found between the
regression parameters associated with the algorithms.
While the WCC algorithm contained an overall bias
slightly higher than the GPI (8.5% compared to 5.4%),
its slope value was much closer to one (0.91 as com-
pared to 0.73 for the GPI). The intercept values for
both algorithms were significantly different from zero,
indicating that positive monthly rainfall values oc-
curred when the algorithms indicated that no rainfall
fell during the month. Thus, using the resulting regres-
sion relationships, correction factors based upon the
computed slope values may enable the algorithms to
produce relatively unbiased estimates of monthly rain-
fall for the tropical Pacific region.

It should be mentioned that since the algorithms
were tested using data from the entire tropical Pacific
region, regional biases could not be identified and may
exist. Insufficient data prevented the use of the NCR
method to assess these biases. As the WCC record
lengthens, it will soon be possible to test for regional
biases in this algorithm. .

The regression statistics associated with the two al-
gorithms suggest that the GPI suffers from regional and
perhaps seasonal biases in its calibration coefficient of
3 mm h~'. This probably explains some of the scatter
observed in Fig. 7. Morrissey and Greene’s ( 1993) work
suggests that the overestimation by the GPI of high
monthly rainfall stems from a fundamental difference
in the relationship between the amount of cold clouds
per area and volume rainfall between the Pacific and
the Atlantic (where the GPI was calibrated). Since
convective systems in the Atlantic intertropical con-
vergence zone (ITCZ) tend to be more isolated than
those in the South Pacific convergence zone (SPCZ),
it was hypothesized that in the Pacific a greater fraction
of nonraining cirrus is advected into a given area from
systems located outside this area: This “cirrus contam-

TABLE 2. Confidence limits associated with the regression
parameters and the correlation coefficients. The 95% significance level
was assumed.

Slope Intercept
(mm month™") (mm month™") Correlation
Algorithm Lower Upper Lower Upper Lower Upper
GPI 0.67 0.80 41.8 69.9 0.85 0.92
WCC 0.83 0.99 17.8 50.1 0.85 091
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ination” (Morrissey 1986) increases the value of the
GPI but does not contribute to the monthly rainfall
value. Since the SPCZ is a major rain producer in the
Pacific, the overall effect on the GPI is a lowering of
the 3 mm h ™! calibration coefficient for the tropical
Pacific region. This effect is directly related to the size
of the averaging area and the climatological mean
spacing between convective systems. The microwave
algorithms do not suffer from this source of bias since
cirrus is relatively transparent to microwave radiation
emitted or scattered by raindrops. However, the low
temporal sampling rate of polar-orbiting satellites does
contribute to error in the regression parameters and is
probably responsible for the small amount of bias ob-
served for the WCC algorithm.

Since the GPI is based upon a threshold of 235 K,
it cannot detect rain falling from relatively warm
clouds. Thus, the intercept value of 55.8 mm month ™!
for the GPI suggests that a significant amount of warm
rain occurs in the tropical Pacific.
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APPENDIX A
The Frequency Function

The frequency function f(») of the distance v be-
tween two randomly selected points within a square of
area A is given by

1 v
f(v) = Z(Eg(;a;)’
where
g(a) = 2ag\(a) + 4aga(a)
r+a’—4a, O<a<V2
gi(a) = .
0, otherwise
1
2(a®> - 1?2 =2 cos"(;) —(a— 1),
&(a) = 0<a<V2

0, otherwise.

APPENDIX B
Estimation of the Spatial Correlation Function

Equation (1) in the text requires that the expected
value of the conditional correlation E[p,|A] between
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two rain gauges randomly located within a square sur-
face 4 (5° X 5° area) be computed. A different value
for this quantity is required for each quantized satellite
rainfall estimate. For open ocean regions, there are
generally insufficient observations to adequately esti-
mate this quantity for each satellite value. In this case,
E[ps]| A] may be estimated using a rainfall correlation
function representing several different satellite values.
This replacement will not affect the computed slope of
the relationship nor the correlation coefficient com-
puted between the model and satellite rainfall values
(Morrissey and Greene 1993).

The averaged expected value of correlation over all
satellite values E[p|A] is computed as follows. Let
r«(x;, t) equal the rainfall measurement located at x;,
representing time ¢ and associated with satellite value
s. Let covy(x;, x; + v) equal the covariance between
two stations with separation distance » conditional on
satellite value s. Under the homogeneous assumption,
we can define that

E[r(xi, )] = E[r(x; +»,1)]

(i.e., the mean rainfall rate associated with a given sat-
ellite rainfall value is same as all rain gauge stations).
Thus,

COV[rs(X,-, t)a rs(xi + v, [)]
1 T NP(»)

- . . - 2
- TNP(V) [z Z rs(xn t)rs(xt + v, l)] rs(”) s

i=1 =1

where NP (») equals the number of pairs of values sep-
arated by ». Note that NP(») may be a function of ¢ if
some rainfall values are missing, and 7,(») is the mean
rainfall rate from pairs separated by ». The conditional
spatial correlation is

pslrs(x;, t), ri(x; + v, )]

_ cov![rs(xi, z)y rs(-xi + v, t)]
ai(v) ’
where o2(») is the conditional variance associated
rainfall measured at gauges separated by ». Now an
expression exists for the correlation at each separation
distance and each quantized satellite value. An average
over all s values is taken and a weight applied based

upon the number of rainfall pairs at each separation
distance s;

o5 [r(xi, 8), rx; + v, 1)]
S
= 2 Ws(”)ps[rs(xia [): rs(xi + v, Z)],

s=1

where S is the number of satellite categories, and w,(v)
is weight function defined by
H(v)

wy(v) = —7—=

H(v)’
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where H,(v) is total number of rainfall pairs associated
with satellite value s and separated by distance v, and
H(v) is total number of rainfall pairs separated by dis-
tance ».
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