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ABSTRACT

The behavior of a numerical cloud model is investigated in terms of its sensitivity to perturbations with two
kinds of lateral boundary conditions: 1) with cyclic lateral boundary conditions, the model is sensitive to many
aspects of its structure, including a very small potential temperature perturbation at only one grid point, changes
in time step, and small changes in parameters such as the autoconversion rate from cloud water to rainwater
and the latent heat of vaporization; 2) with prescribed lateral boundary conditions, growth and decay of per-
turbations are highly dependent on the flow conditions inside the domain. It is shown that under relatively
uniform (unidirectional) advection across the domain, the perturbations will decay. On the other hand, con-
vergence, divergence, or, in general, flow patterns with changing directions support error growth. This study
shows that it is the flow structure inside the model domain that is important in determining whether the
prescribed lateral boundary conditions will result in decaying or growing perturbations. The numerical model
is inherently sensitive to initial perturbations, but errors can decay due to advection of information from lateral

boundaries across the domain by uniform flow. This result provides one explanation to the reported results in

earlier studies showing both error growth and decay.

1. Introduction

Growth and decay of perturbations in initial con-
ditions of numerical models are important in numerical
weather forecasts. Predictability is a measure of the
evolution of such perturbations. Traditionally, two
methods have been used in predictability studies. One
is the dynamical-empirical method, which is based on
turbulence theory; the other is a dynamical method in
which two numerical simulations, called the control
run and the perturbed run, respectively, are started
from slightly different initial conditions. The evolution
patterns of model variables in the two runs are then
compared and the divergence of solutions from one
another is evaluated. The following expression defines
the root-mean-square difference between the control
and perturbed runs:

1 N 1/2
rms2(t) = [‘ﬁ Z [Xpi(t) - Xcl(t)lz] ’ (l)
i=1 .

where X,;(¢) and X,;(t) denote the values of var-
iable X at grid point i and time ¢ for the re-

Corresponding author address: Dr. Qihang Li, Civil and Environ-
mental Engineering, Massachusetts Institute of Technology, Rm 48-
208, Cambridge, MA 02139.

E-mail: hang@athena.mit.edu

© 1995 American Meteorological Society

spective control and perturbed runs; N is the total
number of grid points used in the calculation of
rms2(¢).

The measure rms2(#) can reveal the divergence of
two solutions started from slightly different initial
conditions. Early estimates of predictability with
numerical global models using this measure (e.g.,
Charney et al. 1966; Kasahara 1972) indicated a
limited predictability and show continuous growth
of initial perturbations until saturation. More re-
cently, attention has also been directed to mesoscale
predictability. Early studies using limited-area mod-
els (e.g., Anthes et al. 1985) revealed no significant
growth for rms2(¢). Subsequent studies (e.g., Errico
and Baumhefner 1987; Paegle and Vukicevic 1987;
Vukicevic and Paegle 1989; Berri and Paegle 1990;
Vukicevic and Errico 1990), however, showed both
growth and decay on various occasions. Some ex-
planations have been given to account for such pe-
culiar behavior of limited-area models. Among other
things, the prescription of lateral boundary condi-
tions is believed to be the most important cause for
this behavior.

Anthes et al. (1985) found no significant error
growth during a 72-h forecast period with their meso-
a-scale limited-area model. With a global model, how-
ever, they found exponential error growth over the
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same mesoscale region. They speculated that the lack
of error growth in the limited-area model is caused by
the imposition of identical lateral boundary conditions
on both the control and the perturbed runs. But further
verification of this speculation was not given.

Errico and Baumbhefner (1987) tried to analyze and
explain the Anthes et al. (1985) results by adopting a
new experiment design using new algorithms that did
not exist in Anthes et al. (1985), such as the specifi-
cation of initial perturbations in terms of two-dimen-
sional spectra. Through a series of experiments with
perturbations of different wavelength characteristics,
they concluded that factors that may be responsible
for the limited growth include lateral boundaries, the
spatial scale modeled, the numerical methods used
(horizontal diffusion), and the length of forecast. They
speculated that fixed lateral boundary conditions may
result in flows that advect perturbations out of the do-
main. However, they mentioned that this advective
process is slower than the other two processes, namely,
gravity wave propagation and horizontal diffusion.

Vukicevic and Paegle ( 1989) investigated the lateral
boundary effect using a barotropic model that can be
applied to a global domain as well as to local domains
with one-way interacting boundary conditions. They
found that the error evolution is dependent on the do-
main size and to a lesser extent on the domain location.
The main conclusion is that if the domain is small
enough (about the size of a typical mesoscale model
domain), the forecast is insensitive to small initial un-
certainties.

In their study of the predictability of a sea-breeze-
type circulation over South America, Berri and Paegle
(1990) observed error decay for a relatively large do-
main (45° X 45°, Ax ~ 200 km) and error growth for
smaller domains (320 km X 420 km, Ax ~ 20 km).
They speculated that the error growth in smaller do-
mains might be a consequence of fast small-scale in-
stabilities that are not resolved and therefore do not
contribute to error growth, in the larger-scale experi-
ments.

Vukicevic and Errico (1990) extended the analyses
of Vukicevic and Paegle (1989) to a complex baroclinic
limited-area model and concluded that the one-way
interacting boundaries constrained the evolution of
initial perturbations in the same way as observed in
the barotropic case of Vukicevic and Paegle (1989).
Namely, the initial perturbations grow only in domains
larger than a critical size (approximately a 4500-km
square for the mesoscale model they were using) and
damp in smaller domains. Based on spectral analysis
of the error field in the largest domain (8880 km X 6400
km), they concluded that the one-way interacting lat-
eral boundary conditions constrain the evolution of
perturbations by imposing an upper limit upon the
horizontal scales that are free to evolve in accordance
with the model dynamics. Another conclusion is that
the small-scale perturbations contribute to synoptic-
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scale error growth through an initial upscale transfer
of perturbation energy. Therefore, initial error at
wavelengths shorter than 1000 km appears to influence
synoptic-scale flow evolution, although these shorter
scales are not themselves sensitive to initial error.
However, they recognized that the latter conclusion
was limited to their specific model only and referred
to the results of Berri and Paegle (1990), which showed
error growth for scales much smaller than 1000 km.
Thus, they commented that mesoscale predictability
results were case- and model-dependent.

Zeng and Pielke (1993 ) studied the error-growth dy-
namics of thermally induced surface circulations using
a limited-area model with fine resolution (Ax = 2 km
and 100 m were used in separate experiments). They
studied, among other things, the model sensitivity to
initial conditions, model parameters, and boundary
specifications. One of their findings is that the error
growth (at least at the stage when the surface forcing
is strong) is not sensitive to the characteristics of the
initial perturbations.

Another measure that quantifies the natural vari-
ability of a model variable is the root-mean-square dif-
ference between the field of the variable at time ¢ and
its initial field; namely,

1 N 1/2
I'ms1(t) = {—1\—7 z [Xci(t) - Xc:(o)]z] . (2)

i=1

The rms1(¢) is also referred to as the signal, and rms2(¢)
1s correspondingly called the noise. It is a common
practice among researchers to determine the predict-
ability of a system based on the signal-to-noise ratio.
Namely, the system is defined as predictable if the ratio
rmsl(z)/rms2(¢) is larger than unity, and unpredict-
able if the ratio is smaller than unity.

The definition of predictability based on the signal-
to-noise ratio has been used in some studies (e.g., Berri
and Paegle 1990; Zeng and Pielke 1993). However,
one thing worth noting is that, with such a definition
of predictability, a system tends to be more predictable
in a transient state than in an equilibrium state. In a
transient state, the values of model variables increase
or decrease continuously for a relatively long duration,
reaching much larger or smaller values relative to the
beginning than if the system is in an equilibrium state.
Remembering that the signal rms1(¢) is the root-mean-
square difference between the variable field at time ¢
and the initial field, one can see that the signal tends
to reach a larger amplitude in a transient state than in
an equilibrium state (since in the equilibrium state,
the initial field is also located inside the equilibrium
regime). As the noise rms2(¢) is the difference between
the control run and the perturbed run, if both the con-
trol and the perturbed runs can follow the transient
trend to some extent, the noise will usually be smaller
than the signal, leading to better predictability. Indeed,
in a strong transient regime, a small difference in the
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initial condition can do little in changing or reversing
the trend. For example, 4 small change in the surface
temperature will not severely affect a developing thun-
derstorm. Such an event, with a strong trend, is rela-
tively more predictable due to its larger signal. In an
equilibrium state, however, model variables evolve, or
fluctuate, around their equilibrium levels. The signal
rmsl(¢) in this case is smaller. The model evolution is
strongly dictated by the model’s nonlinear dynamics.
If the model is inherently sensitive to initial pertur-
bations due to nonlinearity, the noise rms2(¢) can in-
crease very quickly and reach or exceed the signal in
a much shorter time. Thus, it can be said that in a
transient state, the role of nonlinearities in the pre-
dictability context is masked. If one is interested in the
role of nonlinearities, then, it is best to perform the
numerical experiments in equilibrium states.

Islam et al. (1993) investigated the predictability of
space-time averages of mesoscale precipitation using
a numerical cloud model. Numerical experiments in
their study were performed in a convective-radiative
equilibrium state that was achieved by requiring a bal-
ance between the surface heat fluxes and radiative
cooling. In this equilibrium state the effect of transients
1s eliminated, and the predictability in this context is
mainly a result of nonlinearities. The model domain
was 60 km X 60 km in the horizontal and 20 km deep,
with resolutions of 2 km and 250 m in the respective
horizontal and vertical directions. Cyclic lateral
boundary conditions were used, a major departure
from other studies. In their study, only one perturbation
experiment was performed in which a random pertur-
bation uniformly distributed between —0.25 and +0.25 K
was added to the potential temperature at every grid
point. Surface rainfall rates averaged over various space
scales and timescales are compared for the control ver-
sus perturbed runs to see the quantitative dependence
of predictability on these scales. It was shown that the
prediction error tended to grow and reach a saturation
level, but the time required to do so depended on the
space-time averaging scale. As expected, larger aver-
aging scales led to longer predictability time. Since only
one perturbation experiment was performed, however,
it remains to clarify how the error evolution depends
on the characteristics of the perturbation. For example,
the perturbation amplitude and location are of partic-
ular interest.

This study uses the same numerical cloud model of
Islam et al. (1993) to study two additional issues:

o the effect of perturbation characteristics and model
parameters on the model evolution;

¢ the effect of prescribed lateral boundary conditions
on predictability; specifically, we address the question
of why limited-area models with prescribed lateral
boundary conditions show both error growth and decay
on various occasions.
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Asin Islam et al. (1993), we perform our experiments
in a convective-radiative equilibrium state in order to
focus on the effect of nonlinearities. In addressing the
first issue we use cyclic lateral boundary conditions to
eliminate the boundary effect for the moment and
concentrate on the model dynamics. Cyclic boundary
conditions are common in cloud models and have been
used in many earlier studies (e.g., Clark and Hall 1979;
Tao and Simpson 1989; Zeng and Pielke 1993). Since
the predictability measures are only an average of pre-
diction errors at many grid points in the domain, it is
important, when evaluating the growth or decay of a
measure, to examine the spatial shape and temporal
evolution of the error field. This approach is particu-
larly effective in addressing the second issue.

In the rest of this paper, sections 2 and 3 address the
first and the second issues, respectively, and our con-
clusions are provided in section 4.

2. Perturbation experiments with cyclic lateral
boundary conditions

This section discusses the sensitivity of the model to
perturbation characteristics and other model aspects.
Specifically, we want to see whether and how the error
will grow if the initial perturbation is very small and
localized, and how the model responds to small changes
in model parameters. Since cyclic lateral boundary
conditions are used, attention will also be paid to see
whether the error will grow until saturation as seen in
early studies with global models. A brief description of
the model is presented first, followed by perturbation
experiments.

a. The model and the quasi-equilibrium state

A numerical cloud model developed by Clark (1977,
1979) and his collaborators (e.g., Clark and Hall 1979;
Clark and Farley 1984 ) at NCAR was used in our study.
The model is a finite-difference approximation to the
anelastic, nonhydrostatic fluid dynamics equations
with expansion of the system variables around profiles
of an idealized atmosphere with constant stability (lin-
ear potential temperature profile). The finite-difference
formulation employs the Arakawa (1966) and Lilly
(1965) second-order algorithm for the conservation of
momentum combined with the second-order-accurate,
positive-definite advection transport algorithm of
Smolarkiewicz (1984 ) for conservation equation of all
thermodynamical variables. The subgrid-scale turbu-
lent processes are parameterized using the first-order
closure of Lilly (1962) and Smagorinsky (1963). The
phase change of water substance is evaluated with the
assumption that 100% humidity is maintained within
the cloud, and precipitation development is restricted
to warm rain through the Kessler (1969 ) parameter-
ization.

To focus on the effect of the model equation’s non-
linearities and to carry out valid statistical analyses of
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the evolution of model variables, we need these vari-
ables to be in an equilibrium state. In our study, this
is achieved by maintaining a constant forcing (sensible
and latent heat flux from the surface) and running the
model sufficiently long. The model then enters a sta-
tistical equilibrium state where the model variables
fluctuate around their mean values corresponding to
the forcing. We call this a quasi-equilibrium state.

All simulations were performed in a two-dimen-
sional framework. Topography is not considered here.
We choose a model domain of 240 km horizontally
and 20 km vertically, using the uppermost 5-km layer
as a Rayleigh friction absorber to reduce the reflection
of vertically propagating gravity waves. As shown by
Islam (1991) and in our present simulation, this do-
main size is large enough for a characteristic mesoscale
cloud system to develop. A grid size of 1 km (horizon-
tal) X 0.25 km (vertical) is employed. A sounding
(Jordan 1958) typical of the tropical atmosphere—in-
cluding pressure, wind, temperature, and water vapor
profiles—was used as the initial environment. For sim-
plicity, however, zero wind was assumed in some of
our experiments and a uniform wind of 10 m s~! was
used for the rest. A radiative-convective equilibrium
model atmosphere is simulated by providing a constant
sensible heat flux Q; = 166 W m™2 and latent heat flux

, = 332 W m™2 from the surface. This corresponds
to a total heat flux of O = O, + @, = 498 W m™2 and
an evaporation rate of 11.5 mm day ! or 0.48 mm h™!
into the model domain. To balance this heat and mois-
ture flux, a constant cooling rate of 6°C day ! is applied
to the potential temperature field below tropopause.
We expect that, in the quasi-equilibrium state, the sur-
face rainfall rate will balance the evaporation rate. The
model is started from rest, and the initial motion is
created by adding a noise to the linearly increasing
surface sensible heat flux during the initial 30 min; that
is, the sensible heat flux at a grid point has the form
0,(1) = (¢/1800)166¢ W m~ for ¢ < 1800 s, where ¢
is a random variable uniformly distributed between
0.9 and 1.1. For time greater than 1800 s the sensible
heat flux Q, is 166 W m? everywhere. The time step is
set to 10 s and cyclic lateral boundary conditions are
used in this first set of experiments.

Under these initial and boundary conditions, the
model was run for 60 h. A look at the evolution of
various model variables, particularly the domain-
averaged surface rainfall rate, reveals that they vary
violently at the beginning, but, after about 40 h, grad-
ually subside to a relatively stable state where the vari-
ables fluctuate around what seem to be their mean val-
ues. In the case of domain-averaged surface rainfall
rate (see Fig. 1), for example, the fluctuation is large
before 40 h, ranging from 0 to 8 mm h~! (based on
5-min accumulated amount), but it becomes relatively
stable afterward and fluctuates around the constant
surface evaporation rate of 0.48 mm h™!. The typical
surface rainfall pattern can be seen in Fig. 3b, where
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FIG. 1. Domain-averaged surface rainfall series
(based on 5-min accumulated amount).

the x~t diagram of surface rain rate is shown. The time
span is from 60 to 65 h (notice that, in all figures except
Fig. 1, the time indicated is relative to 60 h). The only
contour level used here is 1 mm h™!, which is intended
to delineate the rain cell boundaries. It can be observed
that at any instant there are several rain cells distributed
over the 240-km domain. A typical rain cell, as defined
by the | mm h™! contour, is a few kilometers wide and
lasts about half an hour. However, a relatively long-
lasting cell appears along the cyclic boundary. It is not
clear whether or not this happens by chance. Such phe-
nomenon was not observed by Islam (1991), where
the same model was used.

b. Perturbation experiment design and results

We want to see how the model responds to small
perturbations in its initial conditions and model pa-
rameters under cyclic lateral boundary conditions. We
will show how the model evolution is affected by small
changes in the initial value of a particular variable, in
a parameter, or in time step. The objective of perturbing
model parameters is to verify the speculation that if
the model is sensitive to initial conditions, it must be
sensitive to changes in model parameters too. Each
experiment is composed of two simulations that start
from slightly different initial conditions or possess
slightly different values for a particular parameter. All
simulations were run for 20 h (from 60 to 80 h). The
state at 60 h is taken as initial condition for the control
run, and perturbations in model parameters or initial
conditions are introduced for perturbed runs. Specifi-
cally, the following six experiments were performed.

Experiment 1. A perturbation [—0.025°C,
+0.025°C] is introduced into every grid point of the
initial potential temperature field; here [—0.025°C,
+0.025°C] denotes a random perturbation uniformly
distributed in the interval from —0.025°C to +0.025°C.
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FIG. 2. (a) Error evolution of potential temperature field for the six experiments with
cyclic lateral boundary conditions. (b) Domain-averaged surface rainfall.

Experiment 2. A perturbation of [—0.025°C,
+0.025°C] 1s applied to grid points at the 5-km level
only.

Experiment 3. A fixed perturbation of +0.025°C is
applied to one grid point only, which is located at the
5-km level and in the middle of the domain.

Experiment 4. The control run and the perturbed
run are exactly the same except that the integration
time step is 10 s for the control run and 5 s for the
perturbed run. N

Experiment 5. The control run and the perturbed
run are exactly the same except that the latent heat of
vaporization is 2.5 X 10 J kg~! for the control run
and 2.525 X 105 J kg~! for the perturbed run, a 1%
difference.

Experiment 6. The same as experiment 5 except that
the parameter changed is the autoconversion rate, AO1,
which represents the rate at which cloud water is con-
verted into rainwater. We set AO1 = 0.001 s™! for the
control run and AO1 = 0.00101 s™! for the perturbed

run, also a 1% difference.

Since all the perturbed runs share a common control
run, we apply the measure rmsl (the signal) to that
common control run only. The measure rms2 (the
noise) is applied to every perturbed run and is com-
pared with rmsl. In computing rms! and rms2, those
grid points above the tropopause (13 km) are excluded
because most of them are inside the gravity wave filter.
The model variables whose evolutions are studied in-
clude horizontal and vertical velocities, potential tem-

perature, vapor mixing ratio, cloud water mixing ratio,
rainwater mixing ratio and domain-averaged surface
rainfall rate. Comparisons between rms] and rms2 for
each of these variables show that error growth occurs
in all of them. To save space, plots are shown only for
the potential temperature and domain-averaged surface
rainfall rate and for the initial 10 and 3 h, respectively
(see Fig. 2). Fig. 2a contains one rmsl curve for the
control run and six rms2 curves for the six perturbed
runs, and Fig. 2b contains domain-averaged surface
rainfall series for experiments 2, 3, 5, and 6. In Fig. 2b
we do not use rmsl and rms2 to evaluate the diver-
gence. Because there is only one value for the domain-
averaged rainfall rate at any instant, it is more straight-
forward to directly compare the rainfall series.

The rmsl measure (the signal) for every variable
reaches a saturation value sooner or later, led by vertical
velocity (not shown ), which takes only 15 min to reach
its saturation value of about 0.5-0.6 m s™'. Some other
variables, such as potential temperature shown in Fig.
2a, take 1-2 h to attain saturation. In Fig. 2b, domain-
averaged surface rainfall for different experiments di-
verges after 2 h. The rms2 (the noise) grows at roughly
the same rate for all perturbation runs, and approaches
the rms1 curve in a few hours. It is important to note
that, even though the initial perturbation in experiment
3 can be considered very small (only 0.025°C at one
point), it nevertheless grows at a rate not materially
slower than in experiments 1 and 2, although it does
have a smaller magnitude during the first few hours.
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This shows that the system is very sensitive to initial
perturbations, and the error will grow to saturation
regardless of the characteristics and location of pertur-
bation (for the cyclic lateral boundary conditions). It
is also interesting to note that rms2 for experiments
4-6, with perturbed model parameters, grows faster
and larger than those for the initial condition experi-
ments (experiments 1-3). These features, we speculate,
imply that changing the values of model parameters
makes the system slightly different dynamically with
also a slightly different equilibrium level.

The divergence between the control and perturbed
runs in experiment 4, in which time steps of 10 and 5
s were used, is interesting. A valid question is whether
this divergence might have been caused by unsuspected
instabilities due to the use of a 10-s time step rather
than a smaller one. To clarify this issue, a separate
experiment was performed with time steps halved—
that is, 5 s for the control run and 2.5 s for the perturbed
run. Surface rainfall rate produced from the two runs
are compared in Figs. 3a-d. Figure 3a shows domain-
averaged surface rain rates for the control run (first 10 h,
i.e., from 60 to 70 h, solid curve) and the perturbed
run (first 5 h, i.e., from 60 to 65 h, dashed curve).
These rain rates begin to diverge after about 2 h. Figures
3b and 3c are HovmoHer diagrams (x~ section ) of the
surface rain rate, where the only contour level is 1
mm h~! (to delineate the boundary of the rain cells).

(@

N
(3]

—_
-t [44) N

RAINRATE (MMHR)
o
[4)]

(=}

H

N (]
<>
—

TIME (HOUR)

-
=3

=}

<

[ —
-

50 100 150
X (KM)

200

LI ET AL.

1627

Figure 3d represents the absolute differences between
Fig. 3b and 3c. Thus, Figs. 3b—d show the spatial and
temporal differences in surface rainfall between the two
runs. During the first 1-2 h the two rainfall fields are
similar spatially and temporally (see Figs. 3b and 3c)
and the differences are small (see Fig. 3d), but greater
differences begin to emerge afterward. This result in-
dicates that the divergence is not caused by instabilities,
but is indeed the result of the model’s nonlinearities.

Experiments in this section serve to demonstrate the
extreme sensitivity of the model to changes in initial
conditions or parameters. With regard to predictability,
it can be said that a limited-area model with cyclic
lateral boundary conditions is not fundamentally dif-
ferent from a global model in terms of its error dy-
namics.

3. Perturbation experiments with prescribed lateral
boundary conditions

This section focuses on the question of why error in
limited-area models with prescribed lateral boundary
conditions grows on one occasion and decays on an-
other. By analyzing results from many experiments
with prescribed lateral boundary conditions, we have
come to the realization that the flow pattern inside the
model domain is the controlling factor through which
the lateral boundaries exert their limiting effect. To

4 IO 8 ‘0
gV
3
27l OO 00
w2
s
=3 : 0 I
n 0 ] 0 v
0 50 100 150 200
X (KM)
(d)

<
4

-
25
-
-
<

TIME (HOUR)
OJ v

N
S
="
=

s

50 100 150
X (KM)

200

FIG. 3. (a) Domain-averaged surface rain rate; solid: control run, 5-s time step; dashed: perturbed
run, 2.5-s time step. (b) and (c) The x~f sections of surface rainfall field for control and perturbed
runs; the only contour level shown is 1 mm h™!. (d) Absolute differences between (b) and (c).
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show this we discuss three experiments with different
flow patterns.

a. Flow pattern without prevailing wind direction

In this experiment the cloud model was run with
two nested domains, with the outer domain providing
lateral boundary conditions to the inner one. The outer
domain itself still maintains cyclic lateral boundaries.
This is a one-way interacting mode—that is, the outer
domain is not influenced by the inner domain. The
outer domain size is 240 km X 20 km, as in the cyclic
boundary condition case, with a resolution of 4 km
(horizontal ) by 1 km (vertical). The inner domain is
120 km X 15 km with a resolution of 1 km by 0.25
km, and is located in the middle of the outer domain.
As in the cyclic boundary condition case, the model
uses the data at 60 h as its initial condition. It should
be remembered here that in establishing our equilib-
rium state we have started the model from rest, so that
the resulting flow field inside the model domain has
no prevailing directions due to uniform energy fluxes
from the surface.

In the variation experiment, a uniformly distributed
perturbation of [ —0.25 K, +0.25 K] was added to the
potential temperature field at every grid point of the
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inner domain. Results are shown in Fig. 4. Figure 4a
shows continuous error growth, indicating that in this
case the imposed boundary conditions fail to constrain
error growth due to the absence of prevailing wind di-
rection within the domain as shown in Fig. 4b, where
the heavily contoured areas indicate left-to-right flows
and the white areas represent right-to-left flows. The
prescribed lateral boundary conditions fail to constrain
error growth because errors cannot be effectively ad-
vected out of the domain. Figures 4c and 4d show po-
tential temperature error fields at 5 and 15 h, respec-
tively. It can be seen that errors spread over the whole
domain.

To confirm the effects of prevailing wind direction
on error growth, we performed further experiments as
described in sections 3b and 3c.

b. Flow pattern with a prevailing wind direction and
a portion of return flow

To create a wind field with a prevailing direction,
we set the initial horizontal velocity to 10 m s~} from
left to right everywhere and reran the model for 60 h
to reach equilibrium. A perturbation experiment was
performed whereby a very small initial error of +0.025 K
was introduced at only one point located at the middle

Z (KM)

» ERROR (K)
(=] N H »

200

FIG. 4. (a) Error evolution of potential temperature field: prescribed lateral boundary conditions plus flow
without prevailing directions. (b) Horizontal velocity pattern at 15 h. Heavily contoured areas show left-to-
right flow (ranging from 0 to 10 m s™"), white areas are right-to-left flow. (c) and (d) Potential temperature

error fields at 5:and 15 h.
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of the inner domain and 5 km from the ground. The
simulation was run from 60 to 80 h. The rms2 for the
potential temperature field in the inner domain is
shown in Fig. Sa (only for the initial 10 h) where curve
1 i1s for the whole inner domain and curve 2 is for a
portion indicated by a rectangle in Fig. 5b. Curve 2 in
Fig. Sa is intended to show that error growth rate may
be different for different regions of the domain. Curve
2 grows more slowly and to a smaller amplitude than
curve 1, because the region represented by curve 2 is
located immediately downstream from the left bound-
ary and the flow in it is almost unidirectional, enabling
the prescribed boundary conditions to be advected
across and eliminate the initial perturbations. However,
curve 2 does not decay to zero because a unidirectional
flow has not been maintained for that region through-
out the experiment. The fact that curve 1, which rep-
resents the whole inner domain, does not decay indi-
cates that the prescribed boundary conditions also fail
to constrain the error growth in this case. This is due
to the presence of return flows in the domain, as in-
dicated by dashed contours in the horizontal velocity
pattern of Fig. Sb. Comparing curves 1 and 2 illustrates
how the lateral boundary exerts its limiting effect
through the flow pattern. It is helpful to visualize the
above argument by looking at Fig. Sc and 5d, where
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the error fields (absolute differences between the po-
tential temperature fields of the control and perturbed
runs) at 5 and 9 h are plotted. Since we introduced a
small error of 0.025 K at only one point at the begin-
ning, Fig. 5¢ and 5d show how quickly errors spread
all over the domain. However, the distribution of errors
over the domain is not uniform, as evident from a strip
of relatively smaller error in the upper-middle part of
the domain (see arrows). Such a distribution is closely
related to the flow field. The horizontal velocity field
at 9 h is shown in Fig. 5b, in which solid contours
represent left-to-right motions and dashed contours
indicate right-to-left motions (which we call return
flows). It can be observed that the main flow is from
left to right, but there are some return flows at the top
and the lower-middle part of the domain. The strip of
smaller error is collocated with the main flow, which
obviously has been able to advect the boundary con-
ditions across its path, making the errors there small.
However, although errors can be reduced along the
path, they cannot be completely removed, because they
are carried back to the left by the return flows adjacent
to the main flow, and then join the main flow again.
To further demonstrate the effects of flow pattern,
we have performed another experiment in which the
entire inner domain is located inside the above-men-
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F1G. 5. (a) Error evolution of potential temperature field: prescribed lateral boundary conditions plus flow
with a prevailing direction and some return flows. Curve 1: whole domain; curve 2: partial domain. (b)
Horizontal velocity pattern at 9 h showing areas of different flow directions. Dashed contours indicate return
flows. (¢) and (d) Error fields of potential temperature at 5 and 9 h.
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FiG. 6. (a) Error evolution of potential temperature field: prescribed lateral boundary conditions plus flow
with a prevailing direction and a very small portion of return flow. (b)-(d) Error fields of potential temperature
at 1, 10, and 19 h, respectively.
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showing areas of different flow directions. For the same case as Fig. 6.
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F1G. 8. (a) Error evolution of potential temperature field: prescribed lateral boundary conditions plus
unidirectional flow. (b) Horizontal velocity pattern at 1 h showing unidirectional flow; maximum velocity
is 28 m s™". (c) and (d) Error fields of potential temperature at 0.5 and 3 h.

tioned smaller-error strip, occupying the region of 60
km < x< 120 km and 11 km < z < 15 km, while the
outer domain remains the same as before. We hoped
to create inside the inner domain a flow pattern that
is much more uniform, that is, unidirectional. In this
case we expect to see much weaker error growth or
even error decay. A relatively big random perturbation
of [-1.0 K, +1.0 K] was introduced at every point
and the model was run for 20 h. The rms2 for the
potential temperature field is shown in Fig. 6a. Error
decays to nearly zero at about 10 h and then grows,
because the flow is quite uniform at the beginning, but
during later hours there are larger return flows at the
top, making the error grow (see horizontal velocity
patterns in Figs. 7a~d). Figures 6b-d show the error
fields of potential temperature at 5, 10, and 19 h, re-
spectively (note the different vertical scales). It is ob-
vious that error decays initially due to nearly unidi-
rectional flow but grows later when more return flows
appear at the top.

¢. Unidirectional flow pattern

To make the error decay to zero, the return flow at
the top of the inner domain must be removed. This is
demonstrated in the following experiment in which
the position of the inner domain is shifted 1 km down-

ward to occupy the region of 60 km < x < 120 km
and 10 km < z < 14 km. In this case there is no return
flow in the domain, as shown in Fig. 8b. Again, a per-
turbation of [—1.0 K, +1.0 K] is introduced at every
point. The rms2 for the potential temperature is shown
in Fig. 8a. As expected, the error decays. The error
fields at 0.5 and 3 h are plotted in Fig. 8c and 8d, which
vividly show how the errors are removed from the do-
main. At ¢ = 0.5 h, only about the left-hand quarter
of the domain is free of error. At ¢t = 3 h, the whole
domain is virtually free of error except in the rightmost
quarter. (Note, however, that the magnitude of the er-
ror is very small.)

4. Conclusions

Perturbation experiments have been performed us-
ing a numerical cloud model in equilibrium state, un-
der both cyclic and prescribed lateral boundary con-
ditions. It is shown that the model is very sensitive to
initial conditions and some of the model parameters
under cyclic boundary conditions. The fact that a very
small perturbation (0.025°C) to the potential temper-
ature at only one grid point can lead to rapid divergence
of solutions (particularly in precipitation ) suggests that
the model is inherently sensitive to initial conditions.
The model is also sensitive to model parameters such
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as the cloud-to-rain conversion rate and the latent heat
of vaporization. This study also addresses the question
of why the initial perturbations can both grow and de-
cay when prescribed lateral boundary conditions are
imposed. It is shown that the prescribed lateral bound-
ary conditions constrain error growth through the flow
pattern in the domain. Errors decay when advected by
unidirectional flow patterns resulting from the exter-
nally imposed lateral boundary conditions. Flow pat-
terns with changing directions trap perturbations and
lead to error growth. Neither domain size nor the pre-
scription of lateral boundary conditions, taken alone,
is sufficient to predict divergence or convergence of
errors in the variables of the cloud model under study.
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