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ABSTRACT

This study presents a multicomponent rainfall estimation algorithm, based on weather radar and rain gauge
network, that can be used as a ground-based reference in the satellite Tropical Rainfall Measuring Mission
(TRMM). The essential steps are constructing a radar observable, its nonlinear transformation to rainfall, in-
terpolation to rectangular grid, constructing several timescale accumulations, bias adjustment, and merging of
the radar rainfall estimates and rain gauge data. Observations from a C-band radar in Darwin, Australia, and a
local network of 54 rain gauges were used to calibrate and test the algorithm. A period of 25 days was selected,
and the rain gauges were split into two subsamples to apply cross-validation techniques.

A Z–R relationship with continuous range dependence and a temporal interpolation scheme that accounts for
the advection effects is applied. An innovative methodology was used to estimate the algorithm controlling
parameters. The model was globally optimized by using an objective function on the level of the final products.
This is equivalent to comparing hundreds of Z–R relationships using a uniform and representative performance
criterion. The algorithm performance is fairly insensitive to the parameter variations around the optimum. This
suggests that the accuracy limit of the radar rainfall estimation based on power-law Z–R relationships has been
reached. No improvement was achieved by using rain regime classification prior to estimation.

1. Introduction

An essential element of the satellite Tropical Rainfall
Measuring Mission (TRMM) is validation of the rainfall
estimates that are based on observations taken from
space (Simpson et al. 1988). This will be accomplished
using ground-based systems consisting of weather ra-
dars and rain gauge networks at several locations around
the world. Data collected at these sites will be processed
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using consistent processing and estimation algorithms
to produce reliable rainfall accumulation estimates at
different spatiotemporal scales. The ground-based es-
timates will be used as a reference in evaluation of the
tropical rainfall estimates based on the TRMM space-
craft observations.

This paper describes developmental efforts leading to
a candidate ground-based rainfall estimation algorithm
to be used as a reference in TRMM. The conversion of
radar signal into a field of rainfall accumulations is a
complex process consisting of many intermediate steps.
The most important of them are constructing appropriate
observables based on radar volume scan data, nonlinear
transformation of the observables into rainfall rates, in-
terpolation from polar to rectangular grid, constructing
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accumulations for different timescales, and overall bias
adjustment. As a result, maps of rainfall intensity, as
well as of hourly, daily, 5-day, and monthly accumu-
lations are produced. The grid maps have resolution 2
km 3 2 km and cover the range at 150 km centered at
the radar location. Several additional procedures are in-
cluded in the algorithm. These are classification of the
rainfall regime into convective and stratiform types,
merging of the radar and rain gauge data on the daily
and higher accumulation level to minimize the esti-
mation variance, and attenuation correction for the
C-band radars.

There are several features that distinguish our ap-
proach to radar rainfall estimation from the existing pro-
cedures. One of them is a new parameterization of the
Z–R relationship, with continuous range dependence.
This study also organizes many radar rainfall estimation
steps, that so far were investigated separately, into an
integral data processing system. However, the most in-
novative feature is the methodology used to estimate
the parameters that control the algorithm performance.
The main algorithm contains several parameters, and
their values are calibrated by minimizing a selected cri-
terion on the final product level. This global optimi-
zation approach justifies our use of the term ‘‘estima-
tion’’ in our methodology because a crucial element
defining every legitimate statistical estimation method
is optimization of some representative criterion (Bickel
and Doksum 1977). Effectively, the above approach is
equivalent to investigating a large number (hundreds)
of Z–R relationships using a uniform, objective set of
criteria for their evaluation. Also, this seems to be a
natural way to directly control those properties of the
radar rainfall final products that are most important for
the users.

Observations from a C-band radar in Darwin, Aus-
tralia, together with the local rain gauge network data,
were used to calibrate and test our algorithm. A period
of 25 days from December 1993 and January 1994 was
selected for the study presented in this paper. Radar
volume scans were performed every 10 min and com-
plementary data from 54 rain gauges were available in
the range of the radar rainfall map. The rain gauge mea-
surements were split into two subsamples. The first,
called a calibration sample, was used in parameter es-
timation and bias adjustment of the algorithm. The sec-
ond, a validation sample, was used for the relatively
independent validation of the algorithm performance.

The paper is organized as follows. In section 2, the
structure of the algorithm and description of its com-
ponents are presented. Then the algorithm parameter
estimation technique is described, and some of its results
are discussed. Section 4 presents briefly our implemen-
tation of a cokriging technique for merging of radar and
rain gauge data. A section with discussion and conclu-
sions completes the paper.

2. The radar rainfall estimation algorithm

a. The algorithm summary

The purpose of the estimation algorithm described
here is to produce instantaneous, hourly, 1-day, 5-day,
and monthly rainfall accumulation maps based on radar
reflectivity volume scans and accompanying rain gauge
data. The maps cover the range of 150 km from the
radar site and have resolution 2 km 3 2 km. The al-
gorithm can be summarized as a sequence of the fol-
lowing processing steps.

1) Read the volume scan radar reflectivity (Z) infor-
mation, the system parameter file, and, optionally,
apply attenuation correction.

2) Construct radar reflectivity map and classify the ech-
oes into convective and stratiform classes.

3) Integrate vertically the radar reflectivities above a
specified threshold up to selected levels, which might
be different for different rain regimes. Convert the
integral into rainfall (R) estimates using nonlinear
regression relations. The relations are different for
convective and stratiform classes and include con-
tinuous distance from radar as another predictor.

4) Transform the rain rates in polar coordinates onto a
Cartesian grid, with resolution 2 km 3 2 km.

5) Calculate velocity vectors of the precipitation pat-
terns using cross-correlation technique. Calculate
hourly accumulation maps correcting for the advec-
tion effect.

6) Produce 1-day, 5-day, and monthly accumulation
maps. Read available rain gauge data, calculate av-
erage monthly residual bias, remove the bias on each
accumulation level.

7) Optionally, apply cokriging algorithm to merge radar
rainfall and rain gauge accumulations for 1-day,
5-day, and monthly accumulation maps.

The algorithm can use rain gauge data with different
temporal resolution. For example, it can assimilate tip-
ping bucket (or optical) high resolution (on the order
of 1 min) data, hourly data, and daily data for estimation
of daily, 5-day, and monthly rainfall. The algorithm has
a modular design and thus is easy to modify. This im-
plies operational flexibility of the algorithm as it is ap-
plied to different radar sites, radar–rain gauge network
configurations and the user demands.

More detailed descriptions of the most important el-
ements of the radar rainfall estimation system are pre-
sented below.

b. Attenuation correction

The preliminary data processing step in the rainfall
estimation algorithm is an attenuation adjustment for
the 5-cm radar data. The adjustment was performed us-
ing an iterative procedure that is an implementation of
the algorithm by Hildebrand (1978). Mathematically,
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the attenuation correction along the radar beam can be
formulated as a recursive system of three equations:

1/b
Z (r)aR(r) 5 (1)[ ]a

bK(r) 5 aR(r) (2)
r21

Z (r) 5 Z (r) 1 2 K(x)Dr, (3)Ocor a
x51

where R is the radar rainfall estimate, Za is the initial
radar reflectivity factor, Zcor is the corrected reflectivity
factor, K is the specific attenuation, r is the distance
from the radar, and Dr is the distance step. The specific
attenuation K is defined as the attenuation of the elec-
tromagnetic wave passing through the unit distance of
a medium, usually expressed in logarithmic scale (dB
km21).

The values of the parameters a and b come from a
power-law Z–R relationship based on a preliminary
analysis of the data. They were adjusted in a traditional
way by simple regression of radar reflectivities (in dBZ
units) and 5-min rain gauge intensities (in dBR units).
For the purpose of the attenuation correction, this sim-
plified Z–R conversion is considered to be sufficient.
The parameters a and b are from an appropriate K–R
relationship, chosen based on the results by Delrieu et
al. (1991). The above procedure is repeated until suc-
cessive iterations do not produce significant changes in
the estimated total attenuation. The results of the cor-
rection application in this study are preliminary and
indicate mainly that it does not diverge. No quantitative
evidence of a statistically significant improvement in
the radar rainfall products has been obtained, although
visual assessment of individual maps suggests that in
some cases it can have a positive effect. Unfortunately,
at the distances where the benefits were apparent, only
very few gauges were available. Thus, this algorithm
step requires further study and has been left as an op-
tional choice for the user.

c. Rainfall regime classification

The next step, prior to rainfall estimation, is classi-
fication of the precipitation type into convective and
stratiform classes based on radar reflectivity data. The
microphysical properties and vertical structure of rain
associated with the two precipitation regimes are often
quite different (Houze 1993; Short et al. 1990). There-
fore, the radar-based classification is applied prior to the
rainfall estimation step.

A modified version of the method presented by Stein-
er et al. (1995) was used here. In summary, the technique
uses the relative peakedness of the horizontal radar re-
flectivity patterns on a 2 km 3 2 km rectangular grid
and the reflectivity value as predictors of the echo type.
The peakedness is defined as a difference of the reflec-
tivity in the classified grid point and the average of the

nonzero reflectivities within a radius of 11 km around
the point. Then, the algorithm defines a convective zone
around a point that has been classified as a convective
echo. The size of the surroundings is a nonlinear func-
tion of the reflectivity at the maximum and is referred
to as convective radius. Information about vertical struc-
ture of the radar echo, as well as Doppler radar data on
the vertical motions, has been used for calibration and
verification of this algorithm. For a detailed description
of the classification technique and its validation, the
reader is referred to Steiner et al. (1995).

The modification of the above technique used herein
consists of application of the classification results to the
radar data in polar coordinates. First, reflectivities on
the map for which the algorithm by Steiner et al. (1995)
was calibrated are classified into the convective and
stratiform classes. Then, a polar pixel for which the
center vertically projected onto a horizontal plane falls
into a classified rectangular bin is attributed its class.
The inverse of the coordinate transformation algorithm
that will be described later is used here.

d. Conversion of radar observables into rain rates

This is the major part of the algorithm that defines
most of its properties. Conversion of radar observables
into rain rates is performed on the radar volume scan
data in polar coordinates and consists of two operations.
First, the radar reflectivities that exceed an assumed
threshold are integrated in an atmospheric column up
to a specified altitude. These upper levels depend on the
precipitation type and are defined as parameters and
easily modified. The earth’s curvature and standard at-
mospheric refraction conditions are taken into account
in determining the radar bins to be included in the ver-
tical integration column. The following expression was
applied to calculate the height of the radar beam center:

2S
h 5 S sin(u) 1 , (4)

2Reff

where S is the distance of the bin from the radar, u is
the elevation angle of the radar antenna, and Reff 5 8500
km is the effective radius of the earth accounting for
the standard atmospheric refraction (Doviak and Zrnić
1993). This vertical integration applies only to the
regions where data from more than one radar sweep are
within the upper altitude limit. Practically, it is limited
to the distance 60–70 km from the radar, and, beyond
this range, only the lowest scan is taken into account.
The concept behind the vertical integration is to incor-
porate into the rainfall estimator as much relevant radar
information as possible. The random error of the re-
flectivity measurement in a single radar bin is significant
and it propagates to the rainfall estimates. Averaging of
all the relevant signal available in a volume scan is an
inexpensive and natural way to increase the signal-to-
noise (S/N) ratio. A criterion of this relevance is the
improvement of the final products.
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The vertically averaged reflectivities are converted
into rainfall rates on the ground using a nonlinear, pow-
er-law transformation given by the following expres-
sion:

21[B (11b S/S )]x x o
ZvR 5 B , (5)0[ ]A (1 1 a S/S )x x o

where Zv is vertically averaged reflectivity over a hor-
izontal polar bin; S is the distance of the bin from the
radar; So 5 150 km is the range of the radar rainfall
estimation area; Ax, ax, Bx, and bx are the model param-
eters that depend on the precipitation regime (index x);
and B0 is an overall bias adjustment parameter. Equation
(5) is a straightforward rearrangement of the traditional
form of the Z–R power-law relationship, in which radar
reflectivity is a function of rainfall (Z 5 ARb), into the
rainfall estimator form. Although our relationship ex-
ponent and multiplier are, in general, range dependent,
for fixed distance their estimates can be compared to
typical values of those parameters reported in the lit-
erature. This comparison is presented in section 3.

The above relation was chosen as the parsimonious
nonlinear regression model for the rainfall estimation.
The range dependence is often dealt with by construct-
ing separate relationships for several distance ranges
(e.g., Rosenfeld et al. 1994), which in some cases leads
to artificial jumps of the rainfall estimates at the bound-
aries of the regions. In (5), the range dependence is
included in the model as a continuous variable. Param-
eters ax and bx, which depend on the rain regime, control
the range behavior of the multiplier and the exponent
of the power-law Z–R relationship.

There is a certain degree of redundancy in the mul-
tiplication coefficients in (5). Adjusting the absolute val-
ues of the multipliers Ax, specific for the rain regimes,
can be replaced by adjusting the coefficient B0. This
organization of the model parameters, however, proved
to be convenient from the point of view of the imple-
mentation practice. The Ax parameters control the rel-
ative impact of different rain regimes, whereas B0 ad-
dresses the overall estimation bias.

e. Transformation from polar to Cartesian
coordinates

At this point, the radar volume data have been con-
verted to rainfall rates at the ground in the form of a
polar coordinate map that has to be transformed into a
rectangular grid required both by the next processing
steps and by the users of the final products. An effort
to address the radar measurement geometry in the trans-
formation algorithm was made because numerical noise
introduced by inadequate spatial interpolation scheme
can negatively affect the system performance. The trans-
formation algorithm divides a radar sampling volume
into 10 discrete subazimuths to pick up the spatial pat-
tern of the radar sampling volumes. Based on this dis-

cretization, the average of the rainfall rates from the
elementary subdivisions of all the radar sampling vol-
umes that project into a Cartesian grid pixel is com-
puted.

The implementation of the algorithm is fully param-
eterized to handle any combination of radar character-
istics and Cartesian field specifications. The transfor-
mation from polar to Cartesian coordinates and the re-
verse are performed using look-up tables, which is a
very fast method.

f. Rainfall accumulation and bias adjustment

The next stage in the algorithm is preparation of hour-
ly rainfall accumulation maps. Typically, this is done
by averaging all the instantaneous intensity maps that
fall into a specific hourly interval. However, there is
evidence (Bellon et al. 1991; Liu and Krajewski 1996)
that temporal sampling effect of the radar observations
combined with high advection velocity of the rainfall
patterns can lead to significant errors in the spatial dis-
tribution of the radar estimated rainfall accumulations.
These errors can be partially corrected using a temporal
interpolation scheme that accounts for the shift of the
radar field between the observations (Fabry et al. 1994).
Therefore, our estimation scheme includes an advection
correction procedure that converts two consecutive
maps of radar rainfall intensities into accumulation over
the time interval between the observations.

First, the average advection vector Duo is determined
using the well-known cross-correlation method. The ad-
vection vector is defined as a spatial shift of the first
field that maximizes the cross-correlation coefficient be-
tween the fields:

1
r(Du) 5 [R (u 2 Du) 2 m ][R (u ) 2 m ], (6)O 1 n 1 2 n 2s s n1 2

where Du is the field shift, R1 and R2 are first and second
radar rainfall fields, mi and si are the average and stan-
dard deviation of the rainfall in the ith field, and the
summation is over all the pixels un for which the ex-
pression under the sum is defined.

Then, the advection vector is used to calculate the
time-interpolated fields every 1 min between the first
and the second observation considered. The interpolated
rainfall field at the time t since the first observation is
calculated as a weighted average of the appropriately
shifted first (forward) and second (backward) fields
from

T 2 t t
R (u, t) 5 R u 2 Duint 1 o1 2T T

t T 2 t
1 R u 1 Du , (7)2 o1 2T T

where T is the time difference between the first and
second observation.
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TABLE 1. Estimated optimal values of the parameters of our radar
rainfall estimation algorithm, together with their short descriptions.
The subscripts s and c of the parameter symbols stand for stratiform
and convective, respectively.

Z0

Hs 5 Hc

Bs 5 Bc

bs 5 bc

As 5 Ac

as 5 ac

B0

12.0 dBZ
1.5 km
1.5
0.4

50.0
0.0
1.74

reflectivity threshold
upper integration boundaries
exponents in Eq. (5)
range dependence of the exponents
multipliers in Eq. (5)
range dependence of the multipliers
overall bias adjustment in Eq. (5)

The field of rainfall accumulation over some time
period T is then calculated from every minute rain in-
tensities (mm h21) using the following expression:

t5T1
R (u) 5 R (u, t), (8)OT intT t51

which is also used to create hourly accumulation maps.
The above interpolation scheme can also be effective
in filling the gaps in radar observations that sometimes
arise for technical reasons. The applicability of the
scheme may depend on the dynamics of the precipitation
system and the length of the temporal gap. The quan-
titative criteria for situations where advective interpo-
lation can be applied were not investigated in this study.

The hourly rainfall maps are then used as the basis
to obtain daily, 5-day, and monthly accumulation maps.
These are simply calculated as sums of the hourly ac-
cumulations within the desired period. A problem that
arises at this step is accounting for missing data. There
were very few gaps in the dataset that were too long to
fill using the advection interpolation scheme. The lon-
gest gap was 3 h. To obtain daily accumulation for a
day with missing hours, those hours were substituted
with the average hourly accumulation from the available
hours on this day. The longer-term accumulations were
then calculated from the daily results.

The last step in the basic version of our radar rainfall
estimation algorithm is the adjustment of B0, the overall
bias coefficient. This is done by balancing the radar and
rain gauge daily accumulations averaged over all avail-
able rain gauges and all days in the monthly period
considered. Only the radar pixels that contain the rain
gauge sites are taken for this comparison, and B0 is
estimated as a value for which radar and rain gauge
average daily accumulations are equal. The TRMM
ground validation is an off-line task in which the anal-
ysis of a monthly period is performed after all the data
for this period are completed. In this setup, operational
removal of the overall residual bias, based on the current
data, is a part of the rainfall estimation process. Another
possibility to include current rain gauge information will
be discussed in section 4.

3. Parameter estimation, results, and discussion

a. Optimization methodology

Estimation of the parameters of our radar rainfall al-
gorithm is formulated as an optimization problem based
on the model described in the previous section. The
optimization criterion is the minimization of the root-
mean-square (rms) difference between radar based and
rain gauge accumulations:

1/2N Nt g1
2rms 5 [R (i, j) 2 R (i, j)] , (9)O O r g5 6N N i51 j51t g

where Rg is the rain gauge accumulation at the jth gauge,

Rr is the radar accumulation around this gauge, both for
the ith time period, Ng is the number of rain gauges and
Nt is the number of time periods.

This objective function is applied on the final product
level to allow for integral optimization and assessment
of the algorithm. The rationale behind this approach is
straightforward: if good quality of the radar rainfall final
products is to be obtained, why not use this quality as
a criterion for the algorithm optimization. Our experi-
ence indicates that, due to the complex spatial and tem-
poral averaging and the nonlinear transformations in-
volved, separate optimization of selected steps, which
is traditionally applied, cannot assure that the final prod-
uct would also be optimal.

The choice of the accumulation period and the radar
space domain associated with a gauge for this criterion
is flexible and depends on the available data and the
final product requirements. For the purpose of this study,
the daily accumulations were used as the primary cri-
terion. Five-day and monthly accumulation rms radar–
rain gauge differences were also evaluated for control
purposes. A reason for selecting the daily time interval
for the primary criterion is the utilization of the daily
rain gauge data for calibration and validation of the
algorithm. However, physical considerations are also
important. Extreme spatial variability of rainfall is a
source of fundamental problems when direct compari-
sons of spatially averaged radar estimates and near-point
rain gauge measurements are attempted (Seed and Aus-
tin 1990; Crane 1990). This is especially true for short-
term accumulations. Using daily accumulations signif-
icantly reduces the effect of spatial rainfall variability
on the comparison statistics.

The basic algorithm contains several parameters, most
of them determined separately for convective and strat-
iform regimes. They are the reflectivity threshold, the
lower and upper vertical averaging limits, and the co-
efficients of the Z–R conversion given by Eq. (5) and
parameterized as linear functions of the distance from
the radar. Thus, calibration of the model consists of
simultaneous adjustment of 12 parameters. Their opti-
mal values and short definitions are given in Table 1.

Due to the size of the optimization problem, em-
ployment of a global optimization algorithm, such as
gradient based methods, would be prohibitively expen-
sive. Thus, a trial-and-error procedure was applied here.
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FIG. 1. The rms criterion [Eq. (9)] as a function of the reflectivity
threshold Z0. The rest of the model parameters are as in Table 1.

FIG. 2. The rms criterion [Eq. (9)] as a function of both range
correction coefficients. The first one (b) is a linear correction of the
exponent B and the second one (a) is a linear correction of the mul-
tiplicative coefficient of the power-law Z–R relationship. The rest of
the model parameters are as in Table 1. The labels of the rms dif-
ference contours are in millimeters.It is based on a large number of iterations including

careful analysis of the shape of the rms objective func-
tion in several cross sections of the parameter space. As
an illustration of this process and of the final results,
we present in Figs. 1–7 several representative cross sec-
tions of the parameter domain containing the optimal
point. The contour plots of the rms difference for chosen
pairs of the parameters are especially useful to illustrate
the parameter estimation process. They also show the
sensitivity of the rainfall estimates to the parameter de-
viations.

It is important to note that the rms difference between
radar estimates and rain gauge measurements cannot be
interpreted as the error of the radar rainfall. The radar
samples a spatial integral of the rainfall, and its domain
is approximately 2 km 3 2 km for the final products.
The difference between this spatial average and point
rain gauge sampling creates a permanent background
that cannot be reduced by any improvement of the radar
rainfall estimation algorithm (Ciach and Krajewski
1997). Nevertheless, if the spatial discretization of the
radar products is fixed, this background is constant, and
one can use the rms criterion to optimize the algorithm,
to compare its different versions, and to test its sensi-
tivity to the parameter variations.

b. Discussion of the optimization results

The first step of our processing is removing the sig-
nals that are below a certain threshold. On several oc-
casions, weak residuals of ground clutter were observed
and the purpose of the threshold was to clean the data
of that noise. The effects of different threshold values
on the rainfall estimates in terms of our daily rms cri-

terion are shown in Fig. 1. The minimum is in the range
of 12–16 dBZ. The dependence is very weak below this
range, but the error increases sharply for higher thresh-
olds. This means that all the radar signals higher than
16 dBZ contain information useful for rainfall estima-
tion and applying higher threshold is unjustified. On the
other hand, lower signals practically do not affect the
estimation error, even if they are caused by clutter.

An important part of our model is the continuous
range dependence expressed by the parameters ax and
bx in the relation (5). These parameters proved to be
practically independent of the rainfall regime but highly
dependent on each other. This is demonstrated in Fig.
2 by the elongated contours of the daily rms difference
versus the range dependence parameters a and b (com-
mon for convective and stratiform classes). This colin-
earity is evidence that the model is overdetermined and
the change of one parameter over a broad range can be
compensated by an appropriate adjustment of the other,
without significant change of the algorithm perfor-
mance. In this situation it was reasonable to remove one
of the parameters to simplify the model. Figure 2 in-
dicates that the algorithm performance is much more
sensitive to changes of the b parameter than to variations
of a. It also shows that removing the range dependence
of the multiplier A by fixing as 5 ac 5 0 does not
increase the rms criterion by more than 0.2%. Based on
this evidence, the decision was made to keep only the
range dependence of the exponent B. This also simplifies
the optimization process by reducing the number of pa-
rameters to adjust.

From Fig. 2, one can obtain an estimate of the range

Unauthenticated | Downloaded 07/25/21 07:53 AM UTC



JUNE 1997 741C I A C H E T A L .

FIG. 3. The rms criterion [Eq. (9)] as a function of the exponent
B of the power-law Z–R relationship and its range correction coef-
ficient b. The rest of the model parameters are as in Table 1. The
labels of the rms difference contours are in millimeters.

FIG. 4. The rms criterion [Eq. (9)] as a function of the upper
boundaries of vertical integration for convective (Hc) and stratiform
(Hs) regimes. The rest of the model parameters are as in Table 1. The
labels of the rms difference contours are in millimeters.

dependence parameter b, but only for a fixed value of
parameter B 5 1.5. In general, it is reasonable to es-
timate the parameters b and B simultaneously because
in (5) they work together as a combined range-depen-
dent exponent. The result of this joint optimization is
presented in Fig. 3. It demonstrates a well-defined min-
imum of the rms radar–rain gauge differences around
the values of the parameters shown in Table 1. The table
reports the values of B 5 1.5 and b 5 0.4 for the optimal
exponent parameters in (5), which results in the change
of the effective Z–R conversion exponent ranging from
1.5 near the radar to 2.1 at the distance of 150 km.
These numbers are in the range of the Z–R exponent
values reported in the literature (Battan 1973). What
might be surprising, however, is the magnitude of the
distance correction effect caused by the exponent
change with distance. For example, radar reflectivity of
40 dBZ at the distance of 150 km will be converted to
about six times lower rain rate than the same signal at
close distances. This effect is opposite the effect of radar
beam attenuation, which would force the algorithm to
increase the impact of the distant reflectivities in order
to compensate for it. However, this is a result of ob-
jective algorithm optimization, and no reports are
known that would contradict it, with regard to the dis-
tance parameterization presented here. It is not obvious
what the physical interpretation can be for such strong
range effect. The study by Rosenfeld et al. (1992) shows
qualitatively similar impacts of the reflectivity gradients

on rainfall estimation if combined with large radar vol-
ume sample size. These results might suggest a possible
explanation, but the effect certainly requires more ex-
perimental research.

Figure 4 shows the contour plots of the daily rms
difference as a function of the upper limits of the vertical
reflectivity integration for stratiform (Hs) and convective
(Hc) rain regimes. The first conclusion is that there exists
a well-defined minimum of the upper boundary at the
level of about 1.5 km. This means that the vertical in-
tegration can increase the S/N ratio of the radar data
with respect to rainfall estimation. It was also checked
(not shown here) that introducing a lower boundary to
reject that part of the signal that is most influenced by
ground clutter does not help and in fact increases the
rms criterion. This means that, for the optimization of
the final product, integration from the lowest available
level up to 1.5 km works better than limitation to the
lowest radar sweep only, and better than any CAPPI
cross section.

We are aware that operational estimation of the ver-
tical profile of reflectivity (VPR) like, for example, in
Joss and Lee (1995) would certainly work better than
our simple integration, however, it was not explored in
this study in which a simplified approach was assumed.
On the other hand, our result suggests that in the climatic
region investigated here the VPR gradients in the rain
layer up to 1.5 km are generally weak. Thus, the impact
of the cases with vertical gradient strong enough to neg-
atively affect the vertical averaging of the radar signal
implemented in our algorithm is insignificant from the
climatological perspective.

Discussing the optimal parameter values in Table 1,
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FIG. 5. The rms criterion [Eq. (9)] as a function of the exponent
coefficients for convective (Bc) and stratiform (Bs) regimes. The rest
of the model parameters are as in Table 1. The labels of the rms
difference contours are in millimeters.

FIG. 6. The rms criterion [Eq. (9)] as a function of the exponent
B range correction coefficients for convective (bc) and stratiform (bs)
regimes. The rest of the model parameters are as in Table 1. The
labels of the rms difference contours are in millimeters.

we finally want to comment on the multipliers of the
Z–R conversion (5). They control the systematic bias of
the radar rainfall estimation and consist of two parts.
One is a set of Ax parameters associated with different
rain regimes, and the other is the overall bias adjustment
B0. The Z–R relationship (5) is range dependent, but for
a fixed distance it has constant coefficients and can be
rearranged into the commonly quoted traditional form
of Z 5 ARb. For example, it is Z 5 21.8R1.5 near the
radar, Z 5 18.4R1.8 at the 75-km distance, and Z 5
15.6R2.1 at 150 km. The values of the A parameter seem
to be surprisingly low, but these are the values required
to balance rain gauge and radar long-term accumulations
for the data sample used in this study. We made a thor-
ough investigation to explain the huge difference be-
tween our results and the Z–R multiplier values usually
reported in the literature (between 100 and 400). To the
best of our knowledge, it does not depend much on the
details of the Z–R conversion and is certainly a specific
feature of the radar reflectivity data used in this study.
Most likely, the unusually low values of the effective
A parameter originate from the particular calibration of
the Darwin radar system during that period. Thanks to
the operational overall bias removal, which is an in-
herent part of our algorithm, the final rainfall products
are independent of the specific radar calibration.

c. Effect of rain regime classification

A large part of our analysis was devoted to testing
the significance of the rain regime classification for the
radar rainfall estimation. Several researchers have re-
ported systematic differences of the rainfall microphys-

ical properties and their influence on the Z–R relation-
ship (Atlas and Chmela 1957; Short et al. 1990). How-
ever, it is not obvious whether there exists a simple
association between these differences and the morpho-
logical properties of the observable radar patterns. The
effects of the radar-based classification of the rain into
convective and stratiform regimes can be analyzed in
terms of the differences of the optimal algorithm pa-
rameters, which are class dependent. The question here
is whether this differentiation can result in a noticeable
reduction of the rms criterion (9).

Figure 4 indicates that the optimal upper boundary
for the vertically integrated reflectivity is practically the
same for both precipitation classes. In fact, our results
suggest slightly lower integration boundary for the con-
vective echoes. One possible explanation of this effect
might be that a substantial part of rainfall accumulations
in the Tropics originates from very shallow warm con-
vective cells. It can be also noticed that the rms depen-
dence on Hc is much weaker than on Hs (Fig. 4) and
that simplification of the model by assuming a common
upper integration boundary for both classes does not
reduce the algorithm performance significantly.

The differences between stratiform and convective
exponent parameters (Bs and Bc) and between their range
dependence parameters (bs and bc) can be assessed from
Figs. 5 and 6. Again, the conclusion is that the differ-
ences, from the point of view of rainfall estimation at
daily scale, are insignificant. The lack of stratiform–
convective difference in the range dependence does not
agree with what one could expect based on the theo-
retical analysis by Rosenfeld et al. (1992). Their study
suggests the crucial effect of horizontal reflectivity gra-
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FIG. 7. The rms criterion [Eq. (9)] as a function of the exponent
coefficient B and the ratio of the multiplicative coefficients for con-
vective (Ac) and stratiform (As) regimes. The rest of the model pa-
rameters are as in Table 1. The labels of the rms difference contours
are in millimeters.

dients, which should be quite different for stratiform
and convective precipitation systems, on the Z–R rela-
tionship range dependence. One possible explanation is
that Rosenfeld et al. (1992) investigate the range effect
on the level of radar sampling volume, whereas our
algorithm treats the effect on the final product level,
which is on a uniform grid. Another possibility is that
classic concepts based on differentiable geometrical
structures do not necessarily lead to valid results when
applied to a stochastic field with complex multifractal
properties. However, further investigation of the causes
of this disagreement is beyond the scope of this study.

The last step concerns a simultaneous search for an
optimum of the exponent (B 5 Bc 5 Bs, the same for
convective and stratiform) and the ratio of the multi-
pliers Ac/As for the convective and stratiform rainfall
regimes. The use of multiple Z–R relationships for rain-
fall estimation improvement has been discussed (Joss
and Waldvogel 1970; Austin 1987). The specific sce-
nario described above was motivated by recent reports
(Short et al. 1990) suggesting that when the variability
of the power-law Z–R relationship versus types of pre-
cipitation is considered, the exponent often does not
change systematically, whereas the multiplier exhibits
large and systematic differences between classes. As
pointed out in the previous section, the overall bias pa-
rameter B0 takes care of the absolute values of the mul-
tipliers, so only their ratio has to be estimated by min-
imization of the rms difference. The result of this op-
timization is presented in Fig. 7. Again, the contours
are elongated and exhibit a line of minima rather than
one definite minimum. The existence and character of
this colinearity is most likely explained by the properties
of the classification algorithm, which generally asso-
ciates the convective class with the highest values of
reflectivity in the radar field. Thus, Ac/As primarily
changes the relative impact of higher versus lower re-
flectivities in the rainfall estimate, and, while the ex-
ponent B in (5) works basically the same way, no ad-
ditional performance improvement can be achieved
from the multiplier differentiating.

Our results show that the stratiform–convective rain
regime classification does not improve the performance
of our radar rainfall estimation algorithm. This is in
contrast with the results of Short et al. (1990), who
found a strong shift between the stratiform and con-
vective Z–R relationships based on analysis of point
rainfall. However, our finding is in good agreement with
qualitative observation by Steiner et al. (1995), which
has been further confirmed by Steiner and Houze (1997)
and by Yuter and Houze (1997). The conclusions of
these studies should not be interpreted to mean that
rainfall regime classifications are worthless for the radar
rainfall estimation purposes, but rather that the dicho-
tomic classification investigated here is not sufficient.
Indirectly, our outcomes confirm the results of Rosen-
feld et al. (1995), who propose much more complex
classification to improve radar rainfall products.

d. Summary of the algorithm performance

The performance of our algorithm is summarized in
Table 2. The table contains a list of both the bias error
and the rms radar–rain gauge differences for daily,
5-day, and monthly (25 days) estimates. The rain gauge
accumulations, also shown in the table, allow for the
assessment of the relative importance of the factors.
Apart from this summary statistic, the results for each
day are included to demonstrate large variability of the
rain conditions within the period analyzed. Note that
the summary daily bias for the calibration sample is
exactly zero as a result of the general bias adjustment.
This does not hold for the 5-day and 25-day summaries
because they are based only on such subsamples for
which a full rain gauge record existed during the period.
For example, the monthly summary for validation sam-
ple is based on accumulations from 13 gauges because
the other gauges have gaps in their records. As a result
of this sample difference, small biases of the order of
1% of the average totals occur, even for the calibration
summaries. Results for both calibration and validation
subsamples are presented together in Table 2 to assess
stability of the algorithm. The stability is very good
and, for the validation data, the bias increased to about
4% only (except for the 25-day result for which the 13
gauges are most likely not representative) and the rms
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TABLE 2. Summary statistics of the radar rainfall estimation al-
gorithm. Average gauge values, bias, and rms differences are pre-
sented for daily, 5-day, and 25-day accumulations. For the daily ac-
cumulations, the statistics for each individual day are also presented.
Both calibration and validation subsamples are compared. All values
are in units of millimeters.

Date

Calibration data

Mean Bias rms

Validation data

Mean Bias rms

24 Dec
25 Dec
26 Dec
28 Dec
29 Dec
30 Dec

2.12
20.05
25.93
72.83

5.00
23.97

0.64
21.70
25.92

210.28
0.58
2.05

2.42
8.02

12.77
27.18

5.09
12.04

4.42
24.52
29.68
67.87

5.17
25.77

23.15
20.45
24.97

210.31
0.28
2.69

12.33
12.42
14.17
33.63

7.13
9.53

31 Dec
01 Jan
02 Jan
03 Jan
04 Jan

0.42
6.26
0.00
0.00

13.27

20.11
0.39
0.01
0.01
2.62

1.84
5.91
0.07
0.03
9.42

1.39
5.93
0.00
0.00

13.85

1.04
0.73
0.00
0.00
3.10

6.23
5.43
0.00
0.00
9.48

05 Jan
06 Jan
07 Jan
08 Jan
09 Jan

0.00
0.59

25.92
3.44
2.34

0.67
0.91

24.29
2.44

20.79

2.49
1.84

15.01
4.59
2.44

0.00
1.38

23.65
2.26
4.85

0.10
0.65

23.18
1.20
0.30

0.30
2.52

11.19
3.51
5.77

10 Jan
11 Jan
12 Jan
18 Jan
19 Jan

6.44
13.47

5.94
3.70
4.77

20.26
2.77
3.52
2.10
1.30

4.85
8.56
7.01
4.15
4.11

3.19
11.96
10.52

6.93
5.85

1.59
3.38
5.43
1.82
0.95

7.96
9.58
8.98
5.48
3.85

20 Jan
21 Jan
22 Jan
23 Jan

1.41
9.31
1.78
5.23

0.72
4.88

20.63
0.51

2.27
10.84

4.92
3.49

0.63
5.62
1.62
5.26

1.30
4.61

20.26
0.31

2.67
6.71
1.45
4.08

ALL 10.44 0.00 8.62 9.92 0.43 9.39

5-day accumulations:
52.86 20.38 20.69 50.53 2.28 25.88

25 day accumulations:
254.71 23.33 42.94 257.67 28.48 54.08

FIG. 8. Daily rainfall spatial correlation function in Darwin. The
points represent correlation coefficients for pairs of rain gauges. The
heavy continuous curve is the least squares fit of the exponential
function. The correlation distance estimated from this fit is 55 km.
The light continuous curve joins average values of the correlation
coefficients for all points within 10-km distance increments. The light
vertical lines indicate one-sigma confidence intervals for each av-
erage.

differences did not increase dramatically. This optimis-
tic assessment might be influenced by the fact that the
validation gauges are placed in the vicinity of the cal-
ibration gauges, and thus are not fully independent.
However, designing and carrying out a full cross-vali-
dation experiment with various scenarios of the data
sample split is a nontrivial and time-consuming task
(Efron and Gong 1983; Efron and Tibshirani 1993) that
is beyond the scope of this paper. The relative rms cri-
terion, defined as the rms radar–rain gauge difference
divided by the corresponding average total, depends on
the accumulation time. It is about 100% for daily, about
50% for 5-day, and about 20% for monthly accumu-
lations, based on the validation sample. A major part of
this effect is associated with the increased smoothness
of the rainfall field with the accumulation time, which
implies better representativeness of the rain gauge for
the 2 km 3 2 km radar rainfall area.

4. Cokriging adjustment procedure
An optional element of our radar rainfall estimation

system is a spatial adjustment of daily, 5-day, and

monthly accumulation maps to the corresponding rain
gauge data. This presents an opportunity for using op-
timal interpolation techniques such as those described
by Krajewski (1987), Seo et al. (1990a), Seo et al.
(1990b)), or Seo and Smith (1991). Feasibility of such
an adjustment depends on the rainfall accumulation vari-
ability in space at a given temporal scale and on the
density and configuration of the rain gauge network.

In this work, cokriging was used for the optimal merg-
ing of radar and rain gauge rainfall accumulations at the
daily scale. The cokriging equation used in our system
is

N NG R

V̂(u ) 5 l G (u ) 1 l R (u ), (10)O Oo G i i R i ii i
i51 i51

where V̂(uo) is the estimate of the mean area precipi-
tation over grid square uo, Gi(ui) are the rain gauge
rainfall values, Ri(ui) are the radar rainfall values, and

and are the corresponding coefficients (weights)l lG Ri i

that are estimated by solving of the cokriging system,
as described by Krajewski (1987). The number of 2 km
3 2 km radar pixels around uo that are taken into ac-
count is NR and the number of rain gauge observations
is NG. In our application, NR 5 5 and the effective NG

is determined for each location by the spatial rainfall
correlation function, which is based on the climatolog-
ical data. Figure 8 shows the daily rainfall correlation
function based on long-term rain gauge records. Each
point is based on a minimum of 30 data pairs. The plot
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FIG. 9. Calibration curve of one of the cokriging procedure pa-
rameters. The rms difference is calculated using the cross-validation
technique described in the text. The parameter rt is the correlation
between the radar rainfall estimate and the true area rainfall.

TABLE 3. Comparison of the error statistics of radar rainfall ac-
cumulations estimated without and with cokriging adjustment. Results
are based only on validation sample. Both rms and bias error statistics
are presented for daily, 5-day, and monthly accumulation periods.

rms (mm) Bias (mm)

1-day
No cokriging
With cokriging

9.39
7.53

0.43
0.12

5-day
No cokriging
With cokriging

25.88
18.54

2.28
0.97

25-day
No cokriging
With cokriging

54.08
20.57

28.48
10.31

indicates that the correlation distance, defined in terms
of exponential decay (e21), is about 55 km.

For optimal performance, the cokriging parameters rt

and gt have to be determined, where rt is the correlation
between the radar estimate and the true mean area pre-
cipitation over the radar grids, whereas gt is the cor-
relation between the rain gauge and the true mean area
precipitation over the grid squares containing the gaug-
es. These coefficients can be interpreted in terms of the
measurement precision of rain gauge and radar sensors
(Krajewski 1987). Calibration was performed to deter-
mine the optimal values of rt and gt, after all the other
parameters of our algorithm had been fixed in the way
described in the previous section. The performance cri-
terion for this optimization was the same rms radar–
rain gauge difference (9). The calibration was performed
using a cross-validation approach based on the calibra-
tion sample only. Each gauge value was compared with
the field value at the rain gauge location estimated by
cokriging of the radar rainfall with other rain gauges.
Figure 9 shows results from this cross-validation tuning.
The minimum rms was obtained using rt 5 0.6 and gt

5 0.9, although for this value of rt, the rms was not
sensitive to different values of gt.

Table 3 compares results obtained with and without
cokriging using the validation sample only. There is a
significant quantitative improvement in all error statis-
tics after cokriging. For example, daily rms difference
for the validation locations drops from about 9.6 mm
to about 7.5 mm, after its application. This rms criterion
reduction is much bigger than what could be obtained
using the basic estimation model (5). These results show

that the cokriging technique is a promising statistical
tool to improve the radar rainfall estimates.

A part of the rainfall estimation improvement dem-
onstrated in Table 3 might be attributed to the proximity
of the validation gauges to the gauges used in estimating
the daily fields. This unfortunate choice of the validation
sample brings up an interesting problem. What should
be a configuration of calibration/validation network for
a meaningful evaluation of the performance of cokrig-
ing? If the validation network is located far away from
the calibration network, the technique, by construction
based on spatial correlation function, will not show any
benefit. On the other hand, if the two networks are too
close to each other, it casts a shadow of doubt on the
real benefit, giving a perception of an artificial fit. The
best approach seems to be full cross-validation through
subsequent withholding of all the individual gauges,
combined with modern estimation error analysis (Efron
and Tibshirani 1993).

5. Summary and concluding remarks

A multicomponent radar rainfall estimation algorithm
and a method of its parameter estimation are presented.
Their practical implementation provide statistically and
physically based tools for ground validation of the
space-based rainfall estimates. They also create an ex-
cellent base for systematic studies of climatological and
operational radar rainfall estimation schemes and for
their intercomparison. Several features make our ap-
proach distinct from other algorithms known from the
literature. It cannot be represented simply in terms of
applying an arbitrary Z–R relationship. The procedure
is formulated in terms of a multiparameter statistical
model where distance from radar is treated as one of
the continuous estimation predictors. This can be easily
extended to include more rainfall predictors.

The model is optimized by using an objective function
(9) on the level of the final radar rainfall products. For
the purpose of this study, the rms radar–rain gauge dif-
ference of the daily accumulations was selected as an
optimization criterion. This global optimization ap-
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proach enables interpretation of the results in terms of
statistical estimation theory. It also allows for an as-
sessment of the relative importance of various parts of
the algorithm in the full context of the rainfall esti-
mation. This assessment was only partially explored in
this paper as our goal was to present the algorithm and
its main features first.

The general conclusion from the contour plots of the
rms radar–rain gauge differences presented in section 3
is that our model is fairly insensitive to the parameter
change around the optimal point. The rms minimum in
the parameter space exists, but its vicinity is rather flat.
This means that the potential for the improvement of
the radar rainfall estimation based on direct reflectivity
transformation (Z–R relationships) is limited. Probably,
based on radar reflectivity only, further reduction of the
radar estimate error variance cannot be very successful.
One attempt at utilizing additional radar-derived infor-
mation was to apply rainfall regime classification based
on radar pattern morphology. Our analysis suggests that
no significant improvement can be achieved from this.
From the point of view of radar rainfall estimation, the
classification used here seems to be equivalent to sep-
aration of weaker and stronger echoes only. Another
conclusion is that the radar-based rainfall regime clas-
sification, and the one considered by Short et al. (1990),
which is based on the features of the rainfall drop size
distribution, are apparently not as close as is sometimes
expected. This direction, although by no means unim-
portant, is not explored here.

To reduce the temporal sampling error, an interpo-
lation scheme that accounts for the advection effects
was applied. Verification of the scheme performance
was done by comparison of the estimation error statistics
in Table 2 with the same statistics calculated without
the advection interpolation. No significant improvement
was detected this way. It is very likely that, on the daily
and longer scales, the temporal radar sampling error is
negligible since the sampling time interval of 10 min
is relatively very short. On the other hand, visual effects
of the discrete temporal sampling, which were more
pronounced for shorter accumulation periods, were ob-
served in some cases. The investigation of the advection
correction scheme is continuing to get more insight into
its performance at different timescales.

Finally, an important result of the optimization of our
algorithm is the simplification of the model. The two
sets of parameters for the stratiform and convective
classes was reduced to one set. To grasp the effects of
the distance from the radar, one parameter describing a
linear dependence of the exponent B in (5) proved to
be sufficient. As a result, the final algorithm is easier
to calibrate and more stable when applied to indepen-
dent data.
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