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ABSTRACT

This paper describes the development of a satellite precipitation algorithm designed to generate rainfall
estimates at high spatial and temporal resolutions using a combination of Tropical Rainfall Measuring Mission
(TRMM) precipitation radar (PR) data and multispectral Geostationary Operational Environmental Satellite
(GOES) imagery. Coincident PR measurements were matched with four-band GOES image data to form the
training dataset for a neural network. Statistical information derived from multiple GOES pixels was matched
with each precipitation measurement to incorporate information on cloud texture and rates of change into the
estimation process. The neural network was trained for a region of Brazil and used to produce half-hourly
precipitation estimates for the periods 8–31 January and 10–25 February 1999 at a spatial resolution of 0.12
degrees. These products were validated using PR and gauge data. Instantaneous precipitation estimates dem-
onstrated correlations of ;0.47 with independent validation data, exceeding those of an optimized GOES Pre-
cipitation Index method locally calibrated using PR data. A combination of PR and GOES data thus may be
used to generate precipitation estimates at high spatial and temporal resolutions with extensive spatial and
temporal coverage, independent of any surface instrumentation.

1. Introduction

There are numerous applications in meteorology and
hydrology for which accurate estimation of rainfall at
small spatial and temporal scales (daily or subdaily es-
timates at resolutions of 25 km or better) would be
invaluable. Such information is available for limited ar-
eas using combinations of ground-based radar and dense
networks of rain gauges. For large areas of the globe,
however, the in situ infrastructure necessary for this
form of precipitation-monitoring network is not in place.

Satellite-based precipitation-monitoring techniques
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are well established. However, their ability to generate
products at high spatial and temporal resolutions is lim-
ited [see Barrett and Beaumont (1994) for a general
view]. Continuous, high–temporal resolution satellite
data are, of course, only available from instruments
mounted on geostationary platforms. This restriction
currently limits the available wavelengths to those in
the infrared (IR) and visible (VIS) parts of the electro-
magnetic spectrum. The lack of VIS data at night has
generally restricted geostationary precipitation-moni-
toring techniques to the use of IR data alone. Although
satellite IR algorithms benefit from high temporal sam-
pling, IR radiances from cloud tops have only an indirect
relationship with surface rainfall, resulting in weak sta-
tistical relationships between cloudiness and precipita-
tion. The most commonly employed techniques count
cloudy pixels that are colder than a given threshold tem-
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perature. It is assumed that such pixels are associated
with probably precipitating cumulonimbus clouds pos-
sessing cold, high tops. High-level cirrus and other non-
precipitating cloud forms interfere with this simple re-
lationship. Further difficulties are introduced by the lack
of any direct information on rain rates beneath precip-
itating clouds. Accordingly, many simple IR algorithms
rely on the effects of substantial scale averaging to im-
prove accuracy, for example the Geostationary Opera-
tional Environmental Satellite (GOES) Precipitation In-
dex (GPI; Arkin and Meisner 1987).

The relationships between IR-derived cloud indices
and rainfall are variable in both space and time (Bellerby
and Barrett 1993). An acknowledgement of this vari-
ability has lead to the development of continuously cal-
ibrated IR precipitation algorithms. Todd et al. (1995,
1999) describe an IR rainfall estimation technique, de-
signed for operational hydrological applications, in
which IR rain–no-rain thresholds and rain rates are op-
timized in space and time through a comparison with
real-time rain gauge observations. It was observed that
optimum IR thresholds over East Africa are variable in
time and space as a result of variability in local-scale
rainfall and cloud characteristics. The resulting opti-
mized IR threshold fields identified rainfall events more
accurately than did fixed threshold fields. Herman et al.
(1997) describe another technique whereby 10-day IR
estimates of rainfall are corrected using gauge data. Un-
fortunately, all of these methods are sensitive to the
density and spatial distribution of the gauge network
and are applicable only to regions where high-quality
real-time gauge data are available.

Satellite passive microwave (PMW) sensors such as
the Special Sensor Microwave Imager (SSM/I) and,
more recently, spaceborne precipitation radar systems
(PR) are able to provide significantly more accurate es-
timates of instantaneous rain rates but suffer from the
poor temporal sampling associated with platforms in
low Earth orbit. This low sampling rate makes these
instruments most suitable for estimation of accumulated
rainfall over periods of one month or greater. To account
for limitations in the accuracy of rainfall estimates from
both polar-orbiting PMW and geostationary IR satellite
data, a number of methods have been developed that
combine these two data types. Adler et al. (1993) de-
veloped an adjusted GPI in which a correction factor is
derived from the comparison of PMW and GPI estimates
for coincident time slots over some extended period
(e.g., one month). This correction is then retrospectively
applied to all the hourly GPI estimates during that pe-
riod. Xu et al. (1999) have recently extended this work
to develop the Universally Adjusted GPI (UAGPI)
method in which both the monthly IR threshold and IR
conditional rain rate are optimized using coincident
PMW and IR data, again over an extended period. Todd
and Kniveton (1999) developed this principle further by
calibrating the IR–rain rate relationship at each 18 grid
cell using coincident IR and PMW data. This method

has been successfully tested over the global Tropics and
subtropics. However, all these combined IR–PMW
methods rely to some extent on scale averaging in the
calibration of IR parameters. More important, when us-
ing PMW SSM/I data for calibration, estimates pro-
duced at the temporal frequency of the geostationary IR
imagery are likely to retain the bias associated with
inadequate sampling of the diurnal rainfall cycle by
SSM/I.

It is well known that rainfall estimates from sun-
synchronous polar-orbiting satellites are subject to bias
in regions for which the diurnal cycle of rainfall is pro-
nounced. Morrissey and Janowiak (1996) show that for
pentad and monthly estimates of tropical rainfall, the
temporal subsampling associated with satellite estima-
tion introduces a conditional bias in which the algorithm
overestimates high rainfall and underestimates low rain-
fall. The magnitude of this conditional bias is dependent
on a number of factors, including sampling rate, inte-
gration area, and study region. For a 3-hourly sampling
scheme, the conditional bias is very close to zero, but
it increases markedly for a 12-hourly scheme. Li et al.
(1996) assessed the errors in estimation of monthly rain-
fall associated with a variety of sampling schemes using
data from the Darwin, Australia, rain radar. It is shown
that, as a result of the diurnal rainfall cycle, estimates
are sensitive not only to the rate of sampling but to the
starting time of the scheme. Again, a 3-hourly scheme
shows minimal bias in comparison with a 12-hourly
scheme, for which bias ranged from 120% to 220%,
depending on sampling starting time. Soman et al.
(1995) produced very similar results using the Darwin
radar data from two 20-day periods. It is likely, there-
fore, that sampling errors will be larger over land, for
which the diurnal cycle is more pronounced.

The Tropical Rainfall Measuring Mission (TRMM)
provides a significant new platform for precipitation
monitoring studies (Kummerow et al. 1998). The
TRMM satellite is in a non sun-synchronous orbit and
thus, over some extended period, provides sampling of
the complete diurnal cycle of rainfall. The TRMM PR
is the first spaceborne precipitation radar and is believed
to provide the most accurate estimates of instantaneous
rain rate available to date. A combination of high spatial
resolution, high accuracy, and the absence of sun-syn-
chronicity make the TRMM PR an ideal candidate for
use in combination with geostationary data in a mul-
tisourced satellite precipitation algorithm. Given the
quality of the PR data source, it seems reasonable to
attempt to extract the maximum information possible
from the geostationary imagery. The GOES-8 and -9
sensors have four channels in the mid- and thermal IR
wavelengths in addition to a VIS channel (Table 1), each
of which contains information on cloud characteristics
and/or atmospheric moisture. The European Organisa-
tion for the Exploitation of Meteorological Satellites
(EUMETSAT) Meteosat Second Generation system to
be launched in 2001 will provide an extended range of
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TABLE 1. Characteristics of GOES-8 and EUMETSAT Meteosat Second Generation image data.

GOES
Channel
Wavelength (mm)

1
0.65

2
3.9

3
6.7

4
11

5
12

Meteosat Second Generation
Wavelength (mm) 0.6 0.8 1.6 3.8 6.2 7.3 8.7 9.7 10.8 12.0 13.4

channels (Table 1). Image textures and rates of change
have additionally been shown to be of value in precip-
itation estimation.

Hsu et al. (1999) demonstrated the utility of using
artificial neural networks (ANN) to generate functions
linking IR and VIS image characteristics (including im-
age texture characteristics) to precipitation. Training
their network against an extensive radar–rain gauge net-
work, they generated daily, monthly (both at 0.258 res-
olution), and hourly (1.258 resolution) precipitation
products that demonstrated high correlations (;0.7–0.9)
against validation data. These results suggest that a rel-
atively strong, if transient, relationship does exist be-
tween VIS/IR satellite image characteristics and precip-
itation. The TRMM PR provides a means to determine
and to update dynamically this kind of empirical rela-
tionship to produce precipitation estimates at high tem-
poral and spatial resolutions independent of a surface
rainfall-measuring infrastructure. This paper describes
the development of an empirical algorithm that com-
bines TRMM PR data with both VIS and multichannel
IR GOES data using an ANN approach.

2. Methodology

a. Neural networks

ANN provides a convenient and powerful means of
performing nonlinear classification and regression
(Freeman and Skapura 1991; Skapura 1996). An ANN
operates by partitioning its input space into subdomains,
which may then be associated with a desired set of
output values. The most common network structures in
current use are multilayer feed-forward networks
(MFFN). These networks divide their input space using
a set of hyperplanes:

wi · x 5 ci. (1)

Here x is a vector of input values, wi is a vector normal
to hyperplane i, and ci is a scalar constant defining the
location of the plane with respect to the origin. The
actual classification is performed using nonlinear func-
tions based on (1), the most common form being the
sigmoidal function:

1
n (x) 5 f (w · x), where f (s) 5 . (2)i i 2s1c1 1 e

Each expression ni(x) responds to a given input pat-
tern by changing its output state. By analogy to bio-
logical systems, these expressions are known as artificial

neurons. A sufficiently large collection (or layer) of ar-
tificial neurons may be used to define an arbitrarily com-
plex partition of the input space. To complete the map-
ping, the vector n(x) 5 [ni(x)] must be associated with
a desired output value. If the possible outputs form a
discrete set, this mapping may be achieved using a sec-
ond layer of sigmoidal functions. To generate a contin-
uous output, however, it is preferable to use the linear
combination S ni(x) for an appropriate set of coef-oW i

ficients (known as a linear artificial neuron). TheoW i

artificial neurons directly providing output values are
said to form the output layer of the network. Each layer
of artificial neurons before the output layer is known as
a hidden layer. Mathematically, a feed-forward network
with two hidden layers may be expressed as

h h h h1 1 2 2n 5 f (W x) n 5 f (W n )1 2 1

o o l lo 5 f (W n ), where f : (s ) → [ f (s )]. (3)2 i i i

Here o is the vector of output values, nl is the vector
of outputs from hidden layer l, x is the vector of input
values, , , and are matrices whose rows con-h h o1 2W W W
tain the normal vectors w for each neuron in the hidden
and output layers, respectively, and (s) is the functionlf i

describing the behavior of the ith neuron in layer l. This
formulation may be trivially extended to any number of
hidden layers.

b. An artificial neural network for precipitation
estimation

The configuration of the MFFN constructed for this
study is shown in Fig. 1. Forty-five input values (defined
below) define the essential characteristics of the GOES
image data. These input values are scaled to a range
approximating [0, 1] and connected to each of 200 sig-
moidal artificial neurons in the first hidden layer. The
first hidden layer is connected to a further 100-neuron
hidden layer, and precipitation estimates are formed
from a linear combination of the outputs from this sec-
ond layer. Both zero and negative outputs from the final
linear combination are taken to indicate zero precipi-
tation; a decision that provides considerable advantages
from the point of view of the network training process.

Satellite precipitation estimation poses a considerable
challenge to a simple neural network approach because
of presence of many contradictory exemplars in the
training data. These exemplars are cases for which sim-
ilar inputs are associated with very different outputs and
occur particularly around the edges of rain areas where
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FIG. 1. The structure of the neural network used in this study.

cloud features may vary only marginally across the rain–
no-rain boundary. In many cases these problems were
found to prevent a single-layer feed-forward network
from effectively training against the example data. The
addition of a second hidden layer effectively overcame
this problem by allowing sufficient additional complex-
ity in network functionality to resolve the contradictions
inherent in the training data. A two-layer network is an
effective means of providing considerable additional
complexity for a relatively modest additional compu-
tational cost and is generally most effective when the
input data cluster within the hyperspace they define.

New-generation GOES data in the visible, shortwave
IR, and thermal IR wavelengths can provide useful in-
formation on cloud characteristics related to rainfall pro-
cesses. The relationship of the visible channel to cloud
thickness and rainfall has long been established (Love-
joy and Austin 1979), and the 3.9-mm channel contains
information on the state of cloud water (Scorer 1989)
that, in conjunction with the 10.7-mm channel, can help
to distinguish nonraining clouds (Vicente 1996). Ra-
diances recorded in the 6.7-mm channel are strongly
related to upper-level moisture. The longwave IR chan-
nel (10.7 mm) provides information on cloud-top tem-
perature. The 12.0-mm channel was not available for
this study, which is unfortunate because the split thermal
IR window channels have been used to aid cirrus cloud
identification (Inoue 1987) and for estimation of low-

level moisture (Chesters et al. 1987). Future work will
include both thermal IR channels and can only be ex-
pected to improve rainfall estimation. Visible data are
affected by the solar zenith angle and are unavailable
at night; 3.9-mm data are partially affected by solar
radiation and will change their meaning according to
time of day and between day and night. To account for
day–night differences, missing nighttime visible data
were represented by a zero input. This input was suf-
ficiently different from other valid visible pixel values
to enable the neural network to separate day and night.
Including local time as an additional input augmented
this separation. In addition to assisting with day–night
discrimination, the local-time input allowed the network
to make a first-order allowance for solar zenith angle
to the extent that this angle remained a constant function
of local time throughout a training period.

Previous work has suggested that additional infor-
mation on rainfall intensities can be obtained from the
texture and rate of change of cloud-top temperatures
(Griffith et al. 1978; Wu et al. 1985; Adler and Negri
1988), and this approach is a key component of oper-
ational rainfall estimation schemes (Scofield 1987).
Convective cloud systems tend to produce greater rain-
fall during their developing stage rather than during the
mature or decaying stages, such that rapidly decreasing
cloud-top temperatures can be indicative of rapid ver-
tical uplift and intense rainfall. Similarly, a ‘‘coarse’’

Unauthenticated | Downloaded 05/16/21 10:13 AM UTC



DECEMBER 2000 2119B E L L E R B Y E T A L .

TABLE 2. Inputs to the neural network.

Inputs Description

1 Time of day
2–4 Brightness temperature for the pixel centered on the

precipitation measurement for each of the three
available IR bands

5 Visible albedo for the pixel centered on the precipi-
tation measurement or zero if no visible image is
available

6–8 Mean pixel value over a 3 by 3 pixel square for
each available IR band

9 Mean pixel value over a 3 3 3 pixel square for the
visible band, or zero if no visible image is avail-
able

10–12 Std dev of pixel values over a 3 by 3 pixel square
for each available IR band

13 Std dev of pixel values over a 3 by 3 pixel for the
visible band, or zero if no visible image is avail-
able

14–16 Mean pixel value over a 5 by 5 pixel square for
each available IR band

17 Mean pixel value over a 5 by 5 pixel square for the
visible band, or zero if no visible image is avail-
able

18–20 Std dev of pixel values over a 5 by 5 pixel square
for each available IR band

21 Std dev of pixel values over a 5 by 5 pixel square
for the visible band, or zero if no visible image is
available

22 No. of IR band-4 pixels in a 3 by 3 pixel square
with a brightness temperature less than 220 K

23 No. of IR band-4 pixels in a 5 by 5 pixel square
with a brightness temperature less than 220 K

24–45 Inputs 2–23 calculated for the previous GOES im-
age (one-half hour previous to the current image)

texture can indicate the presence of convective cloud
‘‘turrets’’ often associated with high rain rates. In this
study, we included inputs relating to the local texture
and rate of change in each of the four GOES channels.
After, Hsu et al. (1999), information on cloud texture
was incorporated by computing statistics (mean and var-
iance) for 3 3 3 and 5 3 5 pixel rectangles surrounding
the measurement location. Given that cloud-fraction in-
formation has been proven useful by the GPI, the num-
ber of 10.7-mm pixels colder than 220 K were also
computed for these rectangles. A threshold of 220 K is
more severe than the 235-K threshold used in the GPI.
However, because this input is intended to provide sup-
plemental information, not to derive the rain–no-rain
boundary, it is reasonable to screen for somewhat colder
cloud tops, more likely to be associated with convective
storms.

A combination of pixel data and textural statistics
from four channels and cloud fractions for two different
rectangles gives rise to 22 input values. To incorporate
temporal change into the scheme, these 22 values were
computed both for the image corresponding to the pre-
cipitation event and for the previous image, transmitted
30 min earlier. Each precipitation measurement thus was
derived from 45 different inputs, including local time
(Table 2).

c. Training data

Multispectral satellite IR imagery was obtained every
30 min from the GOES-8 satellite for a window covering
central Amazonia for the two periods 8–31 January 1999
and 10–25 February 1999, inclusive. The original data
had a spacing of 4 km and were remapped to a linear
latitude–longitude projection with a grid spacing of
0.048. These data were then combined with coincident
TRMM precipitation radar data to form a training set
for the neural network.

The TRMM PR operates at 13.8 GHz with a swath
width of 215 km and horizontal and vertical resolutions
of 4.3 km (at nadir) and 0.25 km (at nadir), respectively.
The observable range within the atmosphere is from the
surface to 15-km altitude (Kummerow et al. 1998). The
PR provides an excellent source of training data. How-
ever, it is not without disadvantages and cannot be taken
fully to represent ground truth, especially for the exact
delineation of the edges of rain areas. Although an ex-
tensive validation program has been established, we cur-
rently are awaiting the full results of this program. Pre-
liminary studies suggest that the PR is performing to
expected standards (Oki et al. 1998). In a comparison
with ground-based radar (rain gauges) the PR tended to
underestimate the rainfall range (total), although distin-
guishing satellite and ground radar (gauge) errors
proved to be problematic. There are a number of po-
tential problems with PR estimates of rain rate that can
explain some of the observed errors. First, the accuracy
of the TRMM PR is very much dependent upon the
ability to identify the correct cloud droplet distribution.
The current processing measures rely upon a limited set
of parameters that may not be optimal for all cloud
microphysical conditions. Second, the design specifi-
cation for the rain–no-rain boundary was 0.7 mm h21,
but the operational use of the PR suggests that the sig-
nal-to-noise ratio is better than predicted, such that a
lower rain–no-rain threshold (0.5 mm h21) can be
achieved (Kummerow et al. 1998). Third, the effects of
surface backscatter (exacerbated toward the edge of the
PR swath) mean that the PR estimates of rainfall used
in this study are for an atmospheric layer extending from
2000 to 4000 m. Under certain conditions, processes of
evaporation and/or orographic enhancement may occur
below this layer, which may introduce errors when com-
pared with direct surface observations. Last, the radar
beam can undergo attenuation as it passes through the
rain system, and this attenuation may be severe where
significant ice exists aloft, leading to an underestimation
of lower-level rainfall.

The radar data are available at a number of stages of
processing. For this study, level 2A25 PR profile data
were chosen. At this stage, power and noise values have
been converted via an apparent reflectivity to give an
estimate of vertical rainfall rate profile for each beam
at each resolution cell of the radar (TRMM Science Data
and Information System 1999). For the training dataset,
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the average rain rate between the heights of 2 and 4 km
in the atmosphere was calculated for each 0.048-reso-
lution cell from the level-PR2A25 products. The 2–4-
km average data were chosen to remove the influence
of residual surface contamination. These data range in
value from 0.0 to 3000 mm h21 and are associated with
a rain flag that indicates rain or no-rain status and the
rain type assumed in the rain-rate retrieval. For the pur-
poses of this study, all potentially rainy pixels (both
possible and certain) were included as nonzero rainfall
estimates.

In theory, it should be possible to train a neural net-
work to produce precipitation estimates at the spacing
of the GOES image data. In practice, however, the re-
lationship between image data and precipitation field at
this resolution proved too noisy to allow an effective
training of the neural network structures investigated in
this study. For this reason, the remapped 0.048 PR pre-
cipitation data were reduced in effective spacing to 0.128
through the application of a three-by-three averaging
filter. The filtered product was computed on the original
0.048 grid to avoid reducing the size of the training set.
The network was thus trained to estimate precipitation
over a 0.128 rectangular area centered on a given pixel
location.

Because the relationship between rainfall and cloud
patterns is known to vary over space and time with
changing meteorological conditions, it is important to
allow for this variation in the training process. One ap-
proach would be to incorporate location and date as
additional inputs, augmenting the time-of-day parameter
already present. This approach proves to be infeasible,
however. With date, time, and location all present in the
input dataset, there is a risk that the network will for-
mulate a relationship between just these temporal and
locational parameters and precipitation, to the exclusion
of the satellite inputs. Such a relationship might be very
efficient at reproducing the precipitation patterns present
within the PR swaths but would not necessarily be at
all effective at estimating precipitation beyond the swath
coverage.

Given the undesirability of including date and loca-
tion as inputs, the alternative solution is to restrict that
spatial extent over which the training set is generated
and periodically to retrain the network. The choice of
training area and retraining period is a trade-off between
the need to provide the widest possible variety of ex-
amplars effectively to train the network and the need to
capture the changing nature of the precipitation–cloud-
cover relationship. For example, it was found that the
network would very effectively train to datasets gen-
erated using single PR swaths, encapsulating the pre-
cipitation–cloudiness relationship for single storm sys-
tems to a very high degree of accuracy. However, the
resulting functions proved to be not sufficiently general
to generate effective precipitation estimates between
overpasses.

Successful satellite precipitation methods such as

UAGPI recalibrate on at least a monthly basis. It thus
was decided to train separately the network for each of
the two periods of data availability: 8–31 January and
10–24 February. The training area was then selected to
be as small as possible while still including a sufficient
number of PR swaths to cover all parts of the diurnal
cycle and thus to represent effectively the diurnal var-
iation in the visible and 3.9-mm channels. The 3.18
square (80 by 80 0.048 pixels) training area selected to
meet these criteria is shown as area A in Fig. 2.

Coincident PR and GOES image data were collected
for PR swaths intersecting the training area during each
training period. The training set for 8–31 January con-
tained 9766 points from 11 individual swaths; the 10–
25 February training data comprised 9177 points from
12 swaths.

d. Training the network

An MFFN may be trained using a simple gradient
descent approach. Given an input vector x and a known
output vector y, it is possible to define errors for the
outputs o from each layer of neurons in the network,
with the absolute errors defined for output neurons back-
propagated to hidden layer neurons according to the
interconnection weightings defined by the coefficients
W:

o h o T o2d 5 y 2 o, d 5 (W ) d , and
h h T h1 2 2d 5 (W ) d . (4)

Here do denotes errors in the output of the output
layer, denotes errors in the output of the secondh2d
hidden layer, and denotes errors in the output of theh1d
first hidden layer. The WT denotes the transpose of W,
Wo denotes the weights for the output layer, and h2W
denotes the weights for the second hidden layer. These
absolute errors are used as the basis of a first-order
estimate of the gradient of the instantaneous sum-square
error |y 2 o| with respect to the coefficient matrices Wh

and Wo. These matrices are then updated by moving a
short distance h along the estimated gradient vector to
effect a small reduction in sum-square error:

odf (s)
o9 o o TW 5 W 1 hd n21 ) 2ds os5W n2

h2df (s)
h9 h h T2 2 2W 5 W 1 hd n11 ) 2ds h2s5W n1

h1df (s)
h9 h h T1 1 1W 5 W 1 hd x . (5)1 ) 2ds h1s5W x

This procedure is repeated for every example map-
ping (x, y) in the training dataset, and the whole pro-
cedure is iterated until the sum-square error (or the in-
cremental improvement in the same) reduces to an ac-
ceptable level.
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FIG. 2. The geographical areas used for network training (A) and for validation (B). The smaller box within area A delineates the extent
of Fig. 4.

TABLE 3. Correlations between model outputs and PR measure-
ments computed for each of three models: linear regression, a simple
neural network with a single hidden layer of 200 neurons, and the
full two-layer neural network.

8–31 Jan 10–25 Feb

Correlations with training data (area A)
Linear regression
Single-layer ANN
Two-layer ANN

0.55
0.51
0.58

0.37
0.54
0.59

Correlations with validation data (area B)
Linear regression
Single-layer ANN
Two-layer ANN

0.51
0.51
0.55

0.38
0.40
0.46

As noted above, the function that links satellite im-
agery to precipitation is relatively complex and must be
derived from noisy data. Training time may be greatly
improved by setting the error do associated with a par-
ticular example output to zero if that output is either
zero or negative and the observed precipitation value is
zero. This procedure removes a considerable restriction
on the particular function that the network must rep-
resent. Only the positive parts of the function are spec-
ified. The parts of the function corresponding to zero
rainfall may take on any negative value.

3. Results

a. Comparison with simple multispectral precipitation
estimation methods

The satellite precipitation neural network was trained
separately for the January and February data, respec-

tively. When training a complex neural network against
noisy input data, it is essential to ensure that the non-
linear function it represents has general applicability.
This generality may be achieved by testing network out-
puts against a second set of exemplars not employed in
the training process. For this purpose additional coin-
cident TRMM and GOES input data were extracted for
a smaller (40-by-80 pixel) training area adjacent to the
primary training area (area B in Fig. 2). In addition to
covering a different geographical area, these validation
datasets contained a different set of PR swaths and thus
represented a different temporal as well as spatial dis-
tribution of example data. Training was continued until
the correlation of network products to PR data for the
independent validation dataset (area B) ceased to im-
prove by more than 1% in 1000 iterations. The network
converged in 8000 iterations for the January training
period and 13 000 iterations for February. In each case,
the value of the training rate parameter h was initially
set at 0.001 and was decreased to 0.0005 after 5000
iterations and to 0.0001 after a further 2000 iterations.

The performance of the two-layer neural network
model was compared with two simpler models: linear
regression of precipitation against all 45 input param-
eters and a simplified neural network containing 200
neurons in a single hidden layer. Table 3 lists both de-
pendent correlations (for the ‘‘area-A’’ training datasets)
and independent correlations (for the ‘‘area-B’’ vali-
dation datasets) for each of these models. The two-layer
neural network outperfoms linear regression for both
training periods, indicating the successful identification
of nonlinear functions in the training data. The single-
layer network fares considerably less well and is sig-
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FIG. 3. Example hourly precipitation estimates for 1215 local time (LT) on 25 Jan 1999 from (left) PR (1219 LT overpass), (center) ANN,
and (right) optimized GPI. The grayscale indicates rainfall rates in tenths of a millimeter. The grayscale has been truncated at 4 mm h21 to
enable detail to be seen in all three images. Some points in the PR image actually exceed 30 mm h21.

nificantly outperformed by the linear regression tech-
nique for the January training period.

b. Comparison with more-conventional satellite
precipitation techniques

The neural network was used to produce gridded half-
hourly precipitation estimates for the two periods 8–31
January 1999 and 10–25 February 1999 using the
weights derived from training the network against the
PR data for each respective period. To provide some
measure of independent validation of ANN estimates
against PR data, a second set of products was produced
for 10–25 February using the weights derived from
training over the longer period of 8–31 January.

To compare the performance of the ANN against a
more conventional satellite precipitation technique,
equivalent estimates were also produced for an opti-
mized GPI modeled after the UAGPI (Xu et al. 1999).
At present, cloud fraction is the most common indicator
of rainfall rate used in IR satellite precipitation algo-
rithms. By optimizing the temperature threshold and
rainfall rate for the GPI over the study area for local
conditions using the available PR data, it would be pos-
sible to assess the additional precipitation information
present in multispectral data over and above cloud frac-
tion. Separate temperature thresholds and conditional
rain rates were derived for each training period using
coincident 0.048 PR and GOES IR data. The brightness
temperature threshold was chosen to produce the same
number of raining pixels (as defined by a 0.5–mm h21

cutoff ) from the coincident dataset as did the PR. These
pixels might not be the same ones—only the total num-
ber was optimized. Dividing the total PR-observed rain-
fall in the coincident dataset by the number of pixels
colder than the threshold yielded a conditional rainfall
rate (Xu et al. 1999). This process gave rise to tem-
perature thresholds and conditional rain rates of 225 K
and 3.1 mm h21 for January and 228 K and 3.6 mm h21

for February. The UAGPI typically derives parameters

over 18 squares. However, a PR swath is much narrower
than an SSM/I swath and would leave 18 calibration
areas with insufficient overpasses (none at all in many
cases). Although mathematically the optimized GPI and
UAGPI are identical, we refer to the optimized GPI as
such because the calibration is conducted at a different
scale than that specifically suggested for the UAGPI by
Xu et al. (1999).

Figure 3 compares near-simultaneous instantaneous
rainfall estimates from the PR, the ANN, and the op-
timized GPI for 25 January 1999. The ANN and opti-
mized GPI estimates were produced from the 1215 local
time (LT) GOES image (and its predecessor in the for-
mer case); the PR overpass occurred at 1219 LT. The
higher-rainfall areas identified by the ANN bear some
resemblance to those identified in the PR swath, espe-
cially on the southeast side of the rain system. However,
the ANN estimates for these areas are much smaller in
magnitude (37–mm h21 peak intensity as opposed to 4
mm h21).

The ANN and optimized GPI products were com-
pared with the available PR data at 0.128 spacing (Table
4). Five error statistics were computed for each training
period: root-mean-square error (rmse) mean bias, cor-
relation, correlation for PR-identified raining points, and
skill. For precipitation algorithms, the skill score is de-
fined as the combined fraction of correctly identified
rain and correctly identified ‘‘no rain’’ expressed as a
percentage of the total number of estimates made. Be-
cause of uncertainty in PR rainfall estimates at very low
rain rates, the rain–no-rain threshold was set at 0.5 mm
h21. Table 4 additionally lists error statistics for Feb-
ruary products generated using models trained to the
January dataset. The ANN demonstrates higher corre-
lations with PR data than does the optimized GPI, al-
though for the January training period it shows a higher
bias and consequently a higher rmse. Possible reasons
for this are discussed later in this section with the results
from the validation against ground data. In the case of
the validation using February data of January-trained
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TABLE 4. Error statistics for instantaneous 0.128 ANN and optimized (Opt.) GPI precipitation estimates validated against dependent and
independent PR data.

Correlation
Correlation

(rainfall . 0.5 mm) Rmse (mm) Bias (mm) Skill

Jan (4187 points)
ANN
Opt. GPI

0.53
0.44

0.27
0.19

1.57
1.48

20.19
20.002

0.77
0.89

Feb (3097 points)
ANN
Opt. GPI

0.56
0.33

0.52
0.25

1.09
1.30

20.004
20.11

0.91
0.91

Feb trained against Jan data (3097 points)
ANN
Opt. GPI

0.41
0.34

0.41
0.29

1.16
1.24

20.03
20.06

0.86
0.92

TABLE 5. Error statistics for the ANN and optimized (Opt.) GPI
techniques compared at a range of spatial scales.

Correlation Rmse (mm) Bias (mm)

0.128

Jan (3126 data points)
ANN
Opt. GPI

0.53
0.44

1.57
1.48

20.19
20.002

Feb (2710 data points)
ANN
Opt. GPI

0.56
0.33

1.09
1.30

20.004
20.11

0.488

Jan (157 data points)
ANN
Opt. GPI

0.75
0.69

1.00
0.93

20.30
20.10

Feb (156 data points)
ANN
Opt. GPI

0.80
0.53

0.58
0.80

20.06
20.07

18

Jan (39 data points)
ANN
Opt. GPI

0.89
0.83

0.60
0.60

20.24
20.03

Feb (40 points)
ANN
Opt. GPI

0.93
0.81

0.17
0.35

20.06
20.07

models, although the overall correlations are somewhat
reduced, the advantages of the ANN method over the
optimized GPI remain evident.

Table 5 lists validation statistics computed at three
different spacings: 0.128 (as in Table 4), 0.488, and 1.08,
estimates for the lower spatial resolutions being created
by averaging the high-resolution 0.128 product. The
ANN method produces consistently better correlations
than does the optimized GPI at all three spatial scales.

A second validation exercise was conducted using
independent rain gauge data, obtained from a subregion
in the central zone of the study window. The gauge
network was established as part of the TRMM–Large-
Scale Biosphere–Atmosphere (LBA) Experiment in
Amazonia and provides a high density of gauges over
a number of small regions, each approximating the size

of a single satellite IR or PR footprint (Rutledge 1999).
In total, 40 gauges are distributed over the subregion
(Fig. 4) covering 13 individual cells in the 0.048 grid.
The gauges are of a tipping-bucket design and provide
estimates of rain rate with a maximum resolution of 1
min. These data were used for validation of instanta-
neous rain rate and have been accumulated over 24-h
periods for validation of satellite daily rainfall estimates.
Observations were averaged over all 13 0.048 cells, pro-
viding a quantity effectively averaged over a single grid
cell with a spacing of 0.148. When comparing validation
results at this scale with previously published statistics,
it is instructive to note that this area approximates that
of a single SSM/I 85-GHz footprint. Instantaneous es-
timates of rainfall rate were derived from gauge data by
averaging over a 15-min period either side of the sat-
ellite imaging time and then averaging over all gauges.
Because the gauge data did not form a contiguous 0.128
square, it was not possible to compare directly an av-
erage of gauge values with a single ANN output. Sep-
arate ANN outputs were computed for the 0.128 squares
surrounding each of the 13 0.048 grid squares containing
at least one rain gauge. These values were then averaged
to supply an estimate for the mean areal precipitation
for the area covered by the gauges. This process would
be expected to introduce some loss in the variability of
the ANN precipitation estimates. Optimized GPI outputs
were available at 0.048 spacing and were simply aver-
aged over the 13 0.048 cells containing rain gauges.

The results of the gauge validation are presented in
Table 6. For instantaneous estimates produced from 30-
min imagery, ANN outperforms the optimized GPI sub-
stantially in terms of both correlation and correlation
while raining. The optimized GPI shows a slightly high-
er skill at identifying the rain–no-rain boundary. This
result is unsurprising, because the optimized GPI bright-
ness temperature threshold was selected to optimize this
discrimination. Rain–no-rain delineation is a problem-
atic process, because a very small change in estimated
precipitation may move a considerable number of mea-
surements from one category to the other.

The rmse and biases for both techniques are domi-
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FIG. 4. TRMM–LBA rain gauge network. Figures shown are the number of gauges in each
0.048 cell.

TABLE 6. Error statistics for precipitation estimates produced using the ANN and optimized (Opt.) GPI method by comparison with rain
gauge data.

Correlation
Correlation

(rainfall . 0.5 mm) Rmse (mm) Bias (mm) Skill

30 min.
Jan

ANN
Opt. GPI

0.46
0.39

0.46
0.28

1.56
1.66

20.07
20.25

0.81
0.86

Feb
ANN
Opt. GPI

0.48
0.41

0.48
0.33

1.69
1.62

20.37
20.19

0.84
0.85

1 h
Jan

ANN
Opt. GPI

0.54
0.46

0.58
0.41

1.30
1.35

20.04
20.24

0.81
0.84

Feb
ANN
Opt. GPI

0.60
0.46

0.59
0.29

1.36
1.38

0.33
0.18

0.86
0.86

3 h
Jan

ANN
Opt. GPI

0.62
0.59

0.55
0.56

2.62
2.79

20.08
20.61

0.70
0.78

Feb
ANN
Opt. GPI

0.66
0.61

0.63
0.45

2.73
2.52

20.81
20.45

0.77
0.84

1 day
Jan

ANN
Opt. GPI

0.82
0.84

0.72
0.78

5.28
7.04

20.12
23.21

0.91
0.83

Feb
ANN
Opt. GPI

0.94
0.85

0.93
0.78

6.85
6.97

23.65
22.50

0.96
0.96
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FIG. 5. A comparison of instantaneous rainfall estimates from the satellite neural network algorithm and rain gauge data for the combined
period 8–31 Jan and 10–25 Feb 1999. Estimates produced were averaged over all 13 grid cells that contain gauge data. The line of equality
is also included for clarity.

nated by high rainfall events in the data. Although nei-
ther technique produces high values for rainfall, the
presence of such events in the training data will increase
the optimized GPI conditional rainfall rate while having
relatively little effect on the trained neural network. This
effect is particularly noticeable in February, when the
negative bias for the ANN technique is considerably
higher than the optimized GPI; this high bias pushes the
rmse for the former above that for the latter, even though
the ANN displays a higher correlation with the gauge
data. It is, of course, questionable to what extent higher
rainfall rates from even a relatively dense surface net-
work truly represent mean areal precipitation over a
large area. It is notable that 33% of the total rainfall
observed in the gauge data was supplied by events with
rainfall intensities over 10 mm h21, but the equivalent
statistic for the PR training data was only 20%. The
bias of the ANN technique with respect to gauge data
does not seem to be related directly to the representation
of high rainfall events in the training data: 16% of rain-
fall in the January training dataset was provided by
events in excess of 10 mm h21 and 29% was provided
by such events in the February training data. The frac-
tion of higher rainfall events in the gauge data was the
same (33%) for both periods.

Table 6 also supplies statistics for 1-h, 3-h, and daily
time steps. As expected, temporal aggregation improves
the results from both techniques and reduces the relative

advantage of ANN over an optimized GPI, until for
daily estimates it is unclear which is the better tech-
nique. If an ANN technique were to be used to produce
data on a daily time step, it might be better specifically
to train the neural network using data with that temporal
resolution.

Figure 5 plots instantaneous precipitation estimates
against gauge data. This plot clearly shows the differ-
ence in the relationship between ANN estimates and
gauge measurements at low and high rainfall rates. The
data points corresponding to lower intensity rainfall
events are reasonably uniformly scattered about the 1:
1 line; higher rainfall events are scattered much more
randomly. Events with intensities between 5 and 20 mm
h21 may be particularly difficult for ANN to character-
ize. However, the three highest rainfall events are char-
acterized as being associated with above-average rain-
fall.

Figures 6 and 7 plot time series of 30-min precipi-
tation estimates for the two training periods. Although
both methods clearly recognize high rainfall events to
some degree, they underestimate their magnitude. A few
high rainfall events (especially those occurring at the
start of 28 January and at the start of 23 February) were
missed entirely by both techniques. The ANN technique
may be more responsive to low rainfall, tracking a num-
ber of low-intensity events that are missed entirely by
the optimized GPI.
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FIG. 6. Time series of instantaneous rainfall for 8–31 Jan 1999 produced by ANN (upper) and the optimized GPI (lower).

4. Conclusions

A combined TRMM-PR–GOES-8 precipitation esti-
mation algorithm has been developed and validated
against both independent PR data and gauge data. Rain
rates were estimated at very high spatial and temporal
resolutions that have historically posed the greatest
problems for satellite precipitation methods. Instanta-
neous precipitation estimates at 0.128 resolution dem-
onstrated correlations of ;0.4–0.5 with respect to in-
dependent validation data. The ANN technique per-
formed consistently better than an optimized GPI in
terms of correlations with validation data. This result
indicates that multispectral geostationary satellite im-
agery contains information pertaining to low-to-mod-
erate rainfall rates over and above that provided by sim-
ple cloud fraction. The validation statistics compare
very well with previous studies conducted at similarly
small scales and demonstrate the potential of this meth-
od for applications where such high-resolution estimates
are required.

The ANN method shared with the optimized GPI
problems with identifying high rain rates. This problem
could be due to the lack of example high rainfall rates
in training data but seems at least in part to be due to
a lack of characteristic information pertaining to high
rainfall events in the image data itself. ANN did not

directly account for missing high rainfall by adjusting
rainfall estimates across the board, in the manner of
algorithms such as UAGPI. This lack of direct account-
ing meant that any improvement in bias and rmse sta-
tistics for ANN over the optimized GPI was either mar-
ginal or favored the optimized GPI. For applications
(such as operational hydrology) that require a zero long-
term bias, a simple multiplicative correction factor could
be derived from the training dataset and uniformly ap-
plied to the precipitation estimates. This approach would
reduce long-term bias but would not, of course, over-
come the nonlinear underestimation of high rainfall
events.

Unlike ground-based radar and dense gauge net-
works, TRMM PR data are routinely available over the
global Tropics and subtropics, enabling the potential
application of the ANN technique throughout this re-
gion. In addition, the ANN method incorporates mul-
tispectral VIS and IR satellite information, in contrast
to most existing empirical algorithms that combine
PMW and IR data. Thus, the method makes full use of
the range of spectral channels on board of recent and
future geostationary satellite systems. If real-time es-
timates were required, a rolling calibration window
could be employed (e.g., the last eight days including
the current day.) A further improvement would be to
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FIG. 7. Time series of instantaneous precipitation for 10–25 Feb 1999 produced by ANN (upper) and optimized GPI (lower).

incorporate data from GOES channel IR-5. These data
form part of an IR split window that could be very
helpful in discriminating cloud thickness.

Note that MFFN is not the only network structure
that may be used for this kind of problem. For example,
Hsu et al. (1999) used a modified version of the counter-
propagation network. Network structures differ most
significantly in training time. Given the complexity of
the network design employed in this study, the choice
of an optimum network structure to represent image–
rainfall relationships best warrants further investigation.

The authors are currently undertaking further refine-
ment of the neural network approach and more extensive
validation of estimates. We are also testing the method
in a range of contrasting climatic zones.
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