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ABSTRACT

Plotting order-ranked data is a standard technique that is used in estimating the probability of extreme
weather events. Typically, observations, say, annual extremes of a period of N years, are ranked in order of
magnitude and plotted on probability paper. Some statistical model is then fitted to the order-ranked data
by which the return periods of specific extreme events are estimated. A key question in this method is as
follows: What is the cumulative probability P that should be associated with the sample of rank m? This
issue of the so-called plotting positions has been debated for almost a century, and a number of plotting
rules and computational methods have been proposed. Here, it is shown that in estimating the return
periods there is only one correct plotting position: P � m/(N � 1). This formula predicts much shorter
return periods of extreme events than the other commonly used methods. Thus, many estimates of the
weather-related risks should be reevaluated and the related building codes and other related regulations
updated.

1. Introduction

The return period of a weather event of a specific
large magnitude is of fundamental interest in applied
meteorology and climatology. All evaluations of the
risks of extreme weather events, such as high winds and
heavy rain, require methods to statistically estimate
their return periods from the measured data. Such
methods are widely used in building codes and regula-
tions concerning the design of structures and commu-
nity planning, as examples. Furthermore, it is crucial for
the safety and economically optimized engineering of
future communities to be able to estimate the changes
in the frequency of various natural hazards with cli-
matic change, and analyzing trends in the weather ex-
tremes (Zhang et al. 2004). For that purpose, corre-
sponding statistical analysis needs to be made to the
data simulated by climate models (Meehl et al. 2000;
Zhang et al. 2004; Kharin and Zwiers 2005).

The return period R (in years) of an event is related

to the probability P of not exceeding this event in one
year by

R �
1

1 � P
. �1�

A standard method to estimate R from measured
data is the following. One first ranks the data, typically
annual extremes or values over a threshold, in increas-
ing order of magnitude from the smallest m � 1 to the
largest m � N and associates a cumulative probability P
to each of the mth smallest values. Second, one fits a
line to the ranked values by some fitting procedure.
Third, one interpolates or extrapolates from the graph
so that the return period of the extreme value of inter-
est is estimated.

Basically, this extreme value analysis method, intro-
duced by Hazen (1914), can be applied directly by using
arithmetic paper (see also Castillo 1988, 129–131).
However, interpolation and extrapolation can be made
more easily when the points fall on a straight line, which
is rarely the case in an order-ranked plot of a physical
variable on arithmetic paper. Therefore, almost invari-
ably, the analysis is made by modifying the scale of the
probability P, and sometimes also that of the random
variable x, in such a way that the plot against x of the
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anticipated cumulative distribution function P � F(x)
of the variable appears as a straight line. Typically, the
Gumbel probability paper (Gumbel 1958) is used be-
cause in many cases the distribution of the extremes,
each selected from r events, asymptotically approaches
the Gumbel distribution when r goes to infinity. In
modern analysis, graphs based on the Pareto distribu-
tion and the generalized extreme value distribution are
also used (e.g., Pickands 1975; Brabson and Palutikof
2000). The transformed variable � that replaces P on
such plots is called the reduced variate. Figure 1 shows
an illustrative example of the extreme value analysis.

In this paper, an important problem of the extreme
value analysis—how to assess the correct cumulative
probabilities to the ranked values—is solved. It is first
shown that there exists a unique plotting formula when

P, as such, is being plotted to estimate return periods.
Furthermore, it is pointed out that the so-called modi-
fied Gumbel method, in which the plotting is made
through an initial transformation to a reduced variate
(e.g., Kimball 1960; Cunnane 1978; Harris 1996), pro-
duces a probability parameter that cannot be used to
estimate the return periods.

2. The history of plotting positions

Over the last 90 years, a number of plotting formulas
and related computational methods for the extreme
value analysis have been proposed and supported by
empirical justification. A summary of the most com-
monly used plotting formulas is shown in Table 1. Re-
views on this subject are available in Cunnane (1978),

FIG. 1. Example of the extreme value analysis of 50 annual extremes on Gumbel probability paper. The dots represent the probability
plotting positions from Castillo (1988) by using Hazen’s (1914) formula P � (m � 1⁄2)/N. The effect of erroneous plotting positions to
extrapolating toward extreme events is illustrated by plotting the 10 largest extremes also by Eq. (3), that is, P � m/(N � 1). These
correct plotting positions are marked by crosses. Linear extrapolation using the 10 largest maxima to the wind speed of 35 m s�1 results
in approximate return periods of 200 yr based on Hazen’s formula and 90 yr based on Eq. (3).
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Castillo (1988), Folland and Anderson (2002), and
Jordaan (2005).

The extensive and controversial discussions on the
subject of plotting formulas are not repeated here, but
it is noted that many of them have lacked theoretical
basis and that, consequently, a rather fatalistic attitude
toward selecting a proper formula has been common
historically. For example, Langbein (1960) considered
the selection “like taking a stand on a political ques-
tion” and Benson (1962) wrote that the selection “can-
not be made by comparing the principles on which each
is based.” The same uncertainty is reflected in the more
recent literature. Jordaan (2005), as an example, writes
on the plotting positions that “there appear to be al-
most as many opinions as there are statisticians.”

On the other hand, order ranking and the plotting
positions have been under rigorous mathematical
analysis (e.g., Gumbel 1958; Castillo 1988), so that the
theoretical foundations are well known in principle. It
is perhaps the long and controversial history of the plot-
ting formulas and the many different types of probabil-
ity papers that have hampered the transformation of
the mathematical theory into a correct and generally
accepted practice. The latest reflection of this rather
confusing situation is the paper by Folland and Ander-
son (2002) in which a mathematical analysis originating
from Gumbel (1958) is presented, but the “proof” of
the resulting plotting formula, the so-called Jenkinson’s
method (Beard 1943),

P �
m � 0.31
N � 0.38

, �2�

is based on “the idea that a natural estimate for the
plotting position is the median of its probability density
distribution.” No justification is given by Folland and
Anderson (2002) for this idea. They recommend Eq. (2)
and deem the so-called Weibull formula (Weibull 1939)

P �
m

N � 1
�3�

as being “not recommended” because “it gives esti-
mates of return period that are smaller than the other
methods.” The statement by Folland and Anderson
(2002) is striking in that the Weibull formula in Eq. (3)
is generally used and may be considered as an essential
part of the standard Gumbel extreme value method
(e.g., Gumbel 1958; Cook 1982, 1985; Cook et al. 2003).
Obviously, more convincing arguments to support a
plotting formula and, indeed, a unique solution of the
problem are in demand.

3. The correct probability positions for estimating
return periods

Consider a variable x that has a probability density
function f(x) and cumulative distribution function F(x).
Then, a new variable F(xm) related to x by order ranking
from the smallest (m � 1) to the largest (m � N) value
will have the probability density fm[F(xm)] given by

fm�F �xm�� �
N!

��m � 1�!�N � m�!�
�F �xm��m�1

	 �1 � F �xm��N�m, �4�

where F(xm) is the cumulative distribution function of the
order-ranked values [0 � F(xm) � 1]. Thus, fm[F(xm)] is
the probability of observing the mth-order statistic, and
F(xm) is the probability that x takes a value less than
or equal to a value xm associated with m. Equation
(4) can be derived by several approaches (Gumbel
1958; Castillo 1988; Harris 1996; Folland and Ander-
son 2002). The notations used here are those used by
Folland and Anderson (2002), except that the order-
ranked variable is denoted by F(xm) instead of ym.

As shown by Gumbel (1958), the expected value E of
the variable F(xm), which has the probability density
given by Eq. (4), is equal to

E�F �xm�� �
m

N � 1
. �5�

The expected value E[F(xm)] is the mean of F(xm).
Thus, the plotting position for a rank m, as given by the
Weibull formula Eq. (3), is the mean value of the par-
ent probability distribution F(xm) associated with the
rank m. It is the mean in the following sense. When
there are L independent sets of N samples taken from
the same parent distribution, then there will be L indi-
vidual mth-ranked values of xm. Equation (5) derived
above shows that the mean value of F(xm) taken over
the ensemble of L values converges, for a large L, to
the value of m/(N � 1).

For the reason above, the expected value E[F(xm)]
given by Eq. (5), that is, the mean, has been widely

TABLE 1. Return period R of the largest value in a sample of 21
annual extremes as given by the commonly used plotting methods.
The error is given as the percentage in R when compared with that
given by the Weibull formula. All other formulas overestimate R,
that is, underestimate the risk.

Method Proponent R (yr) Error (%)

m/(N � 1) Weibull (1939) 22.0 0
(m � 0.31)/(N � 0.38) Beard (1943) 31.0 41
(m � 0.44)/(N � 0.12) Gringorten (1963) 37.7 71
(m � 0.5)/N Hazen (1914) 42.0 91
Numerical method Harris (1996) 37.9 72

336 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 45

Unauthenticated | Downloaded 12/05/21 09:35 PM UTC



considered as the unbiased estimate for the plotting
position (e.g., Cunnane 1978; Harris 1996). Folland and
Anderson (2002), however, suggested that the median
of F(xm) should be used instead. A mathematical proof
is given in the following for the mean of F(xm) as the
correct estimate for the plotting position in the extreme
value analysis of return periods.

Let us define Pe � 1 � P as the probability of ex-
ceedance of the mth smallest observation in the past N
trials. Then, following Castillo (1988, 13–14), the prob-
ability w of observing r exceedances in the future n
trials is given by

w�N, N � m � 1, n, r�Pe� � �r
n�Pe

r�1 � Pe�
n�r. �6�

The mean of the binomial variable in Eq. (6) is nPe.
Therefore, the mean number of exceedances r is

r�N, N � m � 1, n� � �
0

1

nPef �Pe� dPe. �7�

Taking into account the total probability rule, and that
the mean of the mth-order statistics F(xm) is given by
Eq. (5), the mean number of exceedances in Eq. (7)
becomes

r �
n�N � m � 1�

N � 1
. �8�

Let us now return to the exact definition of the return
period R. Let A be an event and T be the random time
between consecutive occurrences of A events. Then, the
mean value of the random variable T is called the return
period R of the event A. It follows from this definition
that the mean number of events A in an observation
period that is equal to T is 1. An event A is here defined
so that a random observation, say an annual extreme
value, exceeds a value of x. Then, for the mean number
of exceedances r,

r � 1 when n � R. �9�

Combining Eqs. (8) and (9) gives

R �
N � 1

N � m � 1
. �10�

In terms of the probability of exceedance Pe � 1 � P,
the return period in Eq. (1) becomes R � 1/Pe, and one
gets from Eq. (10)

Pe �
N � m � 1

N � 1
. �11�

The notations of Folland and Anderson (2002), where
the ranking is done is ascending order and the plotting
position is defined as the probability of nonexceedance

P, have been followed above. Solving P � 1 � Pe from
Eq. (11) yields

P �
m

N � 1
, �12�

which is Eq. (3). Equation (12) also results if, instead,
the order ranking is done in descending order and the
probability of exceedance is considered, the combina-
tion of which is a common practice in many applica-
tions. It is noteworthy that the result derived above is
independent of the underlying distribution f(x).

In summary, it was shown above that when estimat-
ing the return period R, the correct plotting position is
obtained by the mean of F(xm), that is, by using Eq. (3).
Hence, in the analysis of the return period the other
suggested plotting formulas, such as Eq. (2), are incor-
rect.

4. Plotting positions involving a reduced variate

Most of the plotting formulas suggested historically
are, however, not intended to be used for plotting the
cumulative probability or the related return period R
on arithmetic paper. Instead, they are used when plot-
ting on paper where the probability scale is transformed
in order to obtain a linear fit that is convenient to ex-
trapolate. For example, on a Gumbel plot (Fig. 1), the
probability scale is transformed into the reduced vari-
ate � � �ln(�lnP) � �ln[�ln(1 � 1/R)].

In the classical Gumbel analysis, Eq. (3) is used so
that the probability P is approximated by its mean. A
nonlinear transformation is then applied to that mean.
Kimball (1960), Gringorten (1963), Cunnane (1978),
and Harris (1996) have argued that when the plotting
involves a reduced variate, a more correct procedure
would be to apply the transformation first and then plot
the mean value E(�m) of the reduced variate �m de-
fined that way. This results in plotting formula of the
type

P � ��1�E��m��, �13�

where ��1 is the inverse function of the transformation
that gives �. The plotting positions based on Eq. (13), in
contrast to those based on Eq. (12), depend on the
transformation and, hence, on the postulated parent
probability distribution function f(x). The various dis-
tribution-tailored plotting formulas and methods pre-
sented in the literature reflect this situation, that is, it is
believed that the plotting positions for estimating the
return periods depend on the underlying distribution
when a reduced variate is involved in the analysis.

It was shown above in section 3 that Eq. (12) asso-
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ciates the cumulative probability P to the mth rank in N
samples. This fundamental relationship can be ex-
pressed in terms of the return period R as Eq. (10).
Suppose that we have N years of observation of, say,
annual extremes, then in the analysis of these N
maxima Eq. (10) provides a unique relationship g. Let
us denote this relationship by g, so that

R � g�m�. �14�

As shown in section 3 by deriving Eq. (10), the rela-
tionship g is independent of the underlying distribution.
Thus, Eq. (14) underlines that there exists a fundamen-
tal connection between the rank of an observation and
the estimate of its return period. This relationship is pre-
sented in quantitative form in Eq. (10). To estimate the
return period, we may plot the N maxima on arithmetic
paper using R as the ordinate by applying R � g(m) and
try fitting some curve to the points thus plotted. As
discussed above, the alternative and more commonly
used method is to transform the scale on the ordinate
axis so that the points plotted would better fall on a
straight line.

Clearly, the fundamental distribution free relation-
ship g that associates the return period R with a rank m
cannot be affected by the fitting method. In other
words, the plotting positions given by Eq. (10) must not
be manipulated based on an arbitrary choice of the
scale on the ordinate axis of the graph that is devised to
merely alleviate the analysis of the data. Hence, in es-
timating R, any deviation from the use of the Eq. (10)
by applying a plotting formula other than Eq. (12),
based on some presumed statistical model, is misuse of
the data. The fitting procedure may reflect the scale
used, but the probability positions of the data must be
the same regardless of the method of fitting. In other
words, the plotting formula P � m/(N � 1) is valid
regardless of the transformation made.

It is, therefore, concluded that the approach leading
to the distribution-specific plotting formulas through
Eq. (13) is both unnecessary and incorrect when ana-
lyzing return periods. Because this concept has been
persistent in the literature for many decades, it is of
interest to discuss in detail the origins and nature of the
errors involved.

First, confusion has been caused by the temptation to
obtain a good linear fit for easy extrapolation on prob-
ability paper. This has misled many researchers to ma-
nipulate the plotting positions to that end. The com-
ments by Blom (1958, 68–75) that “a condition to be
satisfied by any plotting formula is that the points must
lie on the average on a line which deviates only little
from a straight line,” and by Castillo (1988) that “the
plotting position formulas can affect the linear trend of

the cumulative probability distribution so that a careful
selection must be made,” illustrate this confusion. Ma-
nipulation of the plotting positions in order to obtain a
linear fit can be identified as a failure to properly sepa-
rate the two different procedures required in the data
analysis; one must first determine the probability posi-
tions, which are independent of the distribution, and
only then make transformations hoping to obtain lin-
earity in relation to some model distribution and a good
fit to the plotted data. In other words, one should not fit
the observations to a model, but fit a model to the
observations.

Second, the argument given to justify Eq. (13)—“It is
not the probability ordinate that is plotted but the re-
duced variate” (Harris 1996)—is misleading. This is so
because transforming to the reduced variate is merely a
method to manipulate the probability scale of the
graph, so that a parameter � that appears linear on the
ordinate is obtained. In the classical Gumbel analysis it
is the probability P that is being plotted, but now on
another scale. The transformation then associates
E[F(xm)] to m. Kimball (1960), Gringorten (1963),
Cunnane (1978), and Harris (1996, 1999, 2000), on the
other hand, plot the reduced variate � by making the
transformation before plotting, that is, by associating
E(�m) to m. However, it was shown in section 3 that the
foundation for the use of the mean E[F(xm)] is merely
that the return period R is defined as the mean time
period T between events that exceed F(xm). There exists
no justification for the use of the mean of the cumula-
tive probability function of the mth-ranked value as the
plotting position when the variable is something else
than F(xm). To be useful at all in estimating R, that
parameter must be a result of an operator that retains
the fundamental relationship in Eq. (14). Hence, it
must be such that its application to the distribution of
�m rescales to the mean of F(xm), that is, to P. This
redirects the plotting to the use of P and Eq. (3) in the
first place.

Third, in the approach of plotting the reduced variate
the transformation is from F(xm) to E(�m). This is dif-
ferent from that of the classical Gumbel analysis, in
which the transformation is from E[F(xm)] to �m be-
cause the result of taking a mean and making a nonlin-
ear transformation depends on the order in which these
operations are applied. Consequently, the linearity,
shown by Gumbel (1958) to exist as a result of plotting
E[F(xm)] by Eq. (3), is lost when E(�m) is being plotted.
This linearity can be returned if one knows the under-
lining distribution, as shown empirically by Cunnane
(1978) and theoretically by Harris (1996). However,
this can only be done by manipulating the plotting po-
sitions, that is, by violating Eq. (12). Such manipulated
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plotting positions no more correspond to the probabil-
ity P that is required to estimate the return period. The
error thus made can be described in mathematical
terms as follows. By an axiom of probability calculus, a
sample probability P is additive. Consequently, its non-
linear transformation � is nonadditive. The best esti-
mate of a sample parameter is its mean value only if
that parameter is additive. Hence, keeping in mind that
P is being estimated, the transformation must be made
in such a way that the mean is taken over P, not over �,
that is, the transformation to a reduced variate must not
be made before taking the mean.

In summary, in order to use Eq. (1) in the case of
order-ranked data, the cumulative probability P in it
must be defined as the mean of F(xm) in an infinite
ensemble of ranked observations, each including N
samples. The variable ��1[E(�m)] in Eq. (13), which is
a retransformation of the mean of the nonlinearly
transformed F(xm) values, does not meet this definition.
Thus, estimation of return periods based on order-
ranked data is not possible by interpreting the reduced
variate as being transformed before plotting. Conse-
quently, the concept of distribution-specific plotting
formulas in analyzing return periods should be aban-
doned. This causes no problems to the analysis, how-
ever, because the Weibull plotting formula P � m/(N �
1) is to be used regardless of the underlining distribu-
tion.

5. Discussion and conclusions

It was shown above in section 3 that the Weibull
plotting formula P � m/(N � 1) directly follows from
the definition of the return period R. Thus, proof was
given for Eq. (3) as the correct plotting formula when
the return periods are being analyzed by the extreme
value method. The proof is valid for any underlying
continuous distribution f(x).

It was further pointed out in section 4 that, because
P � m/(N � 1) associates the mth-ranked value of x
with the cumulative probability and the related return
period R in a fundamental way, this relationship holds
regardless of the transformations made in the extreme
value analysis. Consequently, the various other meth-
ods for determining the plotting positions, suggested
during the last 90 years, such as the formulas by Blom,
Jenkinson, and Gringorten, the computational methods
by Yu and Huang (2001), as well as the modified Gum-
bel method, are incorrect when applied to estimating
return periods.

As can be seen in Fig. 1 and in Folland and Anderson
(2002), the errors resulting from the use of such incor-
rect methods are very large. The error resulting from

the use of Hazen’s formula [used, for example, by
Castillo (1988)] can be approximated by Fig. 1. For the
wind speed of 35 m s�1 Hazen’s formula predicts R of
approximately 200 yr instead of the 90 yr predicted by
the correct plotting formula, that is, Eq. (3). Jenkin-
son’s formula, supported by Folland and Anderson
(2002), predicts R of 35 m s�1 to be about 130 yr in the
case of Fig. 1.

An implication of the overall error that results at
high extremes is obtained by simply considering the
return period R that is predicted through Eq. (1) by the
different plotting formulas for the largest extreme in
the sample, that is, when m � N. In Table 1 such a
comparison is shown for a sample of 21 annual maxima
[this period is chosen because for that the numerical
result by Harris (1996) is available]. Table 1 shows that
an error of more than 70% in the return period of the
largest observed extreme is obtained by using both the
Gringorten formula, which has been used in the analy-
sis, particularly when utilizing the generalized Pareto
distribution (Hosking et al. 1985; Hosking and Wallis
1995; Linacre 1992; Brabson and Palutikof 2000) and
the modified Gumbel analysis method (Harris 1996,
1999, 2000).

From the point of view of estimating the risks of
extreme weather phenomena in the present and future
climates these errors are very serious because overes-
timating the return period equals underestimating the
risk. Because the present estimates of many important
weather-related risks are partly based on the conven-
tional methods that have been shown here to be invalid,
comprehensive reanalysis of them is suggested. This
may make it worthwhile to reevaluate the related build-
ing codes and regulations.
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