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ABSTRACT

Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from

the 11-mm brightness temperature due to non-blackbody effects. This paper presents an algorithm for esti-

mating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer

(MODIS)] and active [CloudSat 1 Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting

function of the MODIS 11-mm band is explicitly calculated by feeding cloud hydrometer profiles from

CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into

a radiation transfer model. Among 16 837 tropical deep convective clouds observed byCloudSat in 2008, the

averaged effective emission level (EEL) of the 11-mm channel is located at optical depth ;0.72, with

a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is

shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation

between230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then

developed between the CTF and the difference between MODIS 11-mm brightness temperature and

physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody

effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the

convective cores observed by CloudSat in the height range of 6–10 km have positive buoyancy near cloud

top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot

observations.

1. Introduction

Cloud-top temperature and cloud-top height are two

important parameters to retrieve in the remote sensing

of clouds. Passive IR remote sensing techniques are
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sensitive to a finite layer near cloud tops. The thickness

of the layer varies from case to case. Thus, solely using

IR measurement is not enough to accurately locate

the physical cloud top and to estimate the corre-

sponding cloud-top temperature. Yet, precise knowl-

edge of cloud-top temperature (CTT1) and cloud-top

height (CTH) is crucial for analyzing certain cloud

processes. For example, estimation of convective

buoyancy and entrainment rates as described by Luo

et al. (2010) requires a high degree of accuracy of si-

multaneous measurements of CTT and CTH. Several

attempts have been made in the past to address the

problem. Minnis et al. (1990) assumed a linear relation-

ship between visible cloud top and the infrared cloud

emission level and derived an empirical relationship to

estimate physical cloud-top temperature using emittance

derived from the equivalent radiating temperature. In a

follow-up study, Minnis et al. (2008) analyzed observa-

tions from the Cloud–Aerosol Lidar and Infrared Path-

finder Satellite Observation (CALIPSO) and thermal

infrared satellite imagery of the Moderate Resolution

Imaging Spectroradiometer (MODIS), and concluded

with an expression for the cloud-top altitude of opti-

cally thick ice clouds as a function of the emission level.

Along a similar line, Sherwood et al. (2004) examined

the relationship between thermal cloud-top heights

derived from geostationary satellite infrared imageries

and direct measurements using airborne lidar obser-

vations and showed that the thermal cloud top is con-

sistently ;1 km lower than the lidar cloud top. The

aforementioned studies heavily rely on lidar and in-

frared brightness temperature. Lidar cannot penetrate

deep into clouds. Although it can accurately determine

the cloud top, lidar has difficulties in probing the in-

cloud structure, especially for the convective core and

thick anvils. Including simultaneous radar measure-

ments will be helpful because radar can better profile

thick clouds. Therefore, we pursue radar–lidar synergy

in this study.

A common approach for inferring the cloud-top

temperature of opaque clouds from IR passive remote

sensing is to use the brightness temperature in the IR

window region, typically over the 11-mm band (BT11).

The BT11 is a function of the temperature at cloud top as

well as temperatures within a layer below due to the

non-blackbody effect of clouds. However, the vertical

structure of cloud microphysics [such as cloud water

content (CWC)] near the cloud top varies from one

cloud to another, affecting the depth of the layer over

which IRmeasurements can penetrate. Some cloud tops

are fuzzy with small cloud water content (moderate

vertical gradient in optical depth) while others are

compact with large cloud water content (large vertical

gradient in optical depth). CloudSat, a spaceborne

94-GHz radar in operation since July 2006, is able to

profile cloud structure with high vertical resolution and

is also able to directly determine the cloud top. Its in-

ability to detect small cloud particles near the top is

complemented by the two-wavelength polarization-

sensitive lidar aboard CALIPSO (Winker et al. 2009).

Furthermore, CloudSat, CALIPSO, and MODIS aboard

Aqua as part of the A-Train constellation (Stephens et al.

2002) make almost simultaneous observations. These

facts motivate this study to explore how the vertical

structure near cloud top is related to BT11 and how pas-

sive and active remote sensing measurements (viz.,

CloudSat,CALIPSO, andMODIS) can be used together

to estimate CTT for optically thick clouds.

The motivation articulated in the previous paragraph

is illustrated by two convective clouds in Fig. 1 with

CloudSat radar reflectivity (dBZ) profiles in color scale

and the natural logarithm of ice water content (IWC)

derived from the combination of CloudSat and CALIPSO

in grayscale. The vertical profiles of optical depth for the

MODIS 11-mm channel are calculated using vertical

profiles of CWC retrieved by CloudSat and CALIPSO

(see section 2 for calculation details). From top to bot-

tom, the black contour lines show the 11-mm optical

depths (t11) of 0.5, 1, 5, and 20, respectively. The red plus

signs mark the effective emission levels (EELs), which

are defined as the altitudes corresponding to the peaks of

the weighting functions of the MODIS 11-mm channel.

Both radar reflectivity and cloud optical depth in Fig. 1

suggest that the convective cloud on the left has a more

compact top than the one on the right. For the convective

cloud on the right, the cloud-top fuzziness (as measured

by the vertical gradient of radar reflectivity or optical

depth) varies across the cloud. Consequently, the dis-

tance between the EEL (the red plus signs) and the radar

cloud top is larger where the cloud-top layer is fuzzier and

smaller where the cloud-top layer is more compact.

Hereinafter, cloud tops are always defined as the altitude

where the CloudSat radar reflectivity first reaches its

detection limit,;230dBZ. Such correlation between the

vertical gradient of CloudSat radar reflectivity and the

vertical gradient of 11-mm optical depth will be explored

quantitatively in this study to better estimate physical

cloud-top temperature. Current spaceborne cloud re-

mote sensing provides the capability to capture the ver-

tical profiles of radar reflectivity (e.g., CloudSat) and

lidar backscatter (e.g., CALIPSO) but not the profiles of

1Hereinafter, CTT refers to the physical temperature at cloud

top, not the brightness temperature, as is commonly the case in the

literature.
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11-mm optical depth; yet it is the latter quantity that is

most directly related to the IR determination of cloud-

top temperatures.

To complement the analysis of observational data,

three-dimensional (3D) cloud-resolving model simula-

tions are used to provide a more complete understanding

of the relationship. Specifically, the Goddard Cumulus

Ensemble model (GCE; e.g., Zeng et al. 2009) is em-

ployed to simulate clouds and precipitation, driven by

the large-scale forcing obtained from a field campaign.

The GCE simulations are analyzed for studying detailed

in-cloud structures that are elusive to satellite mea-

surements (e.g., in-cloud temperature profile), aiming at

a physically based understanding of the relationship

among cloud-top temperature, BT11, and CloudSat ra-

dar reflectivity.

The present paper is organized as follows. Section 2

introduces the datasets, GCE model, and radiative

transfer calculations used in the study. Section 3 describes

results obtained by examining collocated CloudSat,

CALIPSO, and MODIS observations and analyzing ra-

diative transfer model simulations. Section 4 analyzes the

results from the GCE model simulations. Section 5 dis-

cusses the application to the convective buoyancy study.

Section 6 presents a summary and conclusions.

2. Observations, models, and data processing

a. Observations

1) CLOUDSAT AND CALIPSO

The potential benefits of combining cloud-profiling

radar and lidar together to probe clouds have been well

recognized (Sassen et al. 2009; Luo et al. 2010, 2011;

Young et al. 2012). Because the lidar on CALIPSO and

the cloud-profiling radar (CPR) on CloudSat utilize

different wavelengths, they are sensitive to cloud parti-

cles of different sizes. The lidar is operating in the visible

wavelength and is able to detect thin cirrus cloud and

aerosols but its laser pulse is strongly attenuated by op-

tically thick cloud. The CloudSat radar, on the other

hand, can typically sense and penetrate nonprecipitating

cloud but can barely detect the thin cirrus with small

particle sizes. Therefore, combining information from

lidar and radar allows for a more complete description

of the geometrical and microphysical parameters of

clouds, given the wide varieties of size distribution of

cloud particles within clouds (McGill et al. 2004; Minnis

et al. 2012; Okamoto et al. 2003). For this reason, we

use a joint CloudSat–CALIPSO product, whenever pos-

sible, to study cloud-top properties in this study.CloudSat

and CALIPSO fly at an altitude of 705 km in a sun-

synchronous polar orbit and make equatorial passes

at approximately 0130 and 1330 local time (LT). The

94-GHz nadir-viewing CPR on board CloudSat profiles

clouds with a vertical resolution of 480m oversampled

to 240m and its ground footprint is approximately

1.7 km along track and 1.3 km cross track (Stephens et al.

2008). CALIPSO’s payload consists of an imaging in-

frared radiometer, a wide-field-of-view camera, and a

two-wavelength lidar with the ability to resolve the or-

thogonally polarized components of the 532-nm back-

scattered signal. The lidar backscatter signal can profile

clouds up to an optical depth of about 3 with a resolution

of 60m in vertical and 333m in horizontal.

The following CloudSat–CALIPSO data products are

used, all obtained from the CloudSat Data Processing

Center (http://www.cloudsat.cira.colostate.edu/): 1) 2B-

GEOPROF, the CloudSat geometric profile product,

provides the CPR radar reflectivity profiles and is used

in this study to identify cloud tops and to quantify the

fuzziness of cloud-top layer and 2) 2B-CWC-RVODand

FIG. 1.CloudSat radar reflectivity (dBZ) observed at 0637UTC 10Oct 2008 is shown (colors)

and the natural logarithm of cloud ice water (mgm23) content (grayscale). The black contour

lines (from topmost to the bottommost) are for IR optical depths of 0.5, 1, 5, and 20, re-

spectively. The red plus signs mark the levels with maximumweighting functions (the effective

emission levels). This is the same event as Fig. 3 in Wang et al. (2011).
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2C-ICE provide cloud microphysics parameters such as

CWC, which is used as the input for radiative transfer

model calculations. The 2C-ICE product is based on the

joint retrieval from collocated CloudSat and CALIPSO

measurements and provides ice water content (Deng

et al. 2010). The 2B-CWC-RVOD product has both

liquid water content (LWC) and IWC, but the infor-

mation content is largely derived from the CloudSat

CPR and constrained by MODIS visible optical depth

(Wood 2008). Deng et al. (2013) show that 2C-ICE

outperforms 2B-CWC-RVOD in cloud ice microphysics

retrieval, underscoring the importance of radar–lidar

synergy in ice cloud property retrievals. To take ad-

vantage of the radar–lidar synergy, we used the 2C-ICE

product for IWC profiles. The 2B-CWC-ROVODdata

are used only for its LWC profiles.

We define a parameter that will later be used to

measure the near-cloud-top conditions, which we call

cloud-top fuzziness (CTF):

CTF5CTH2ETH10dBZ , (1)

where CTH (cloud-top height) is defined based on the

CloudSat CPR corresponding to the height of230 dBZ,

and ETH10dBZ (echo-top height) is the highest altitude

reached by 10 dBZ. The 10-dBZ echo is an indicator of

the presence of large precipitation-size particles and

thus ETH10dBZ is a good proxy for convective strength

(Luo et al. 2008, 2011). CTF so defined thus measures

the extent to which precipitation-sized particles are

transported to near the cloud top. The smaller the CTF,

the more compacted the cloud top is, and vice versa. It

will be shown later that CTF is closely related to the

correction for the IR non-blackbody effect.

2) MODIS

MODIS aboard Aqua flies in close formation with

CloudSat, being separated from each other by a variable

time interval that is always less than 120 s. It measures

narrowband radiances in 36 spectral bands from 0.415

to 14.24mm with wavelength-dependent nadir spatial

resolutions from 250m to 1 km in a 2300-km-wide swath

(King et al. 1992; Platnick et al. 2003). The 11-mm

brightness temperature, BT11, from the Aqua MODIS

measurement is collocated to CloudSat observations

after the correction of the parallax shift following the

method depicted in Wang et al. (2011).

3) ANALYSIS OF OBSERVATIONAL DATA

The ambient temperature and relative humidity are

obtained from the CloudSat ECMWF-AUX dataset

and are inputted into the radiative transfer simula-

tion. ECMWF-AUX is based on European Centre for

Medium-RangeWeather Forecasts (ECMWF) operational

analyses, spatially and temporally interpolated to the

CloudSat track. Note that the optical depth in CloudSat

level-2 product, the CloudSat 2B-TAU, is for 0.55mm,

which is different from the 11-mm optical depth used

throughout this study. We calculate the 11-mm optical

depth using the Principal Component-Based Radiative

Transfer Model (PCRTM), a radiative transfer model

that is described in section 2c.

All CloudSat data and 2C-ICE retrievals collected

within the tropics (308S–308N) during 2008 are analyzed

here. We choose convective clouds by the criteria that

1) CTF is less than 4 km and 2) CTH is greater than

6 km such that boundary layer convective clouds are

excluded. As a result, 277 968 profiles (0.43% of total

CloudSat observations in the tropics) meet our criteria.

To best capture the behavior of the core of convection,

for each strong convective cloud that has consecutive

CloudSat radar echo profiles that meet our criteria, we

only use the one with the highest CTH considering that

it is likely to be closer to the actual convective core. This

reduces our selected profiles to a total of 16 837 for the

following analysis. Figure 1 shows two examples of

the selected convective clouds. More details related to

the selection of the convective clouds can be found in

Wang et al. (2011).

b. Goddard Cumulus Ensemble (GCE) model

The GCE model is a cloud-resolving model that has

been developed at the National Aeronautics and Space

Administration (NASA) Goddard Space Flight Center

over the past few decades (e.g., Tao and Simpson 1993;

Tao et al. 2003) and is extensively used to study cloud

processes and their interactions with the environment.

The model is nonhydrostatic and anelastic. Its subgrid-

scale turbulent processes are parameterized with

a scheme based on the work of Klemp and Wilhelmson

(1978) and Soong andOgura (1980). Themodel includes

solar and infrared radiative transfer processes, and ex-

plicit cloud–radiation interaction processes. The model

has five prognostic hydrometeor variables: the mixing

ratios of cloud water, rainwater, cloud ice, snow, and

graupel [see Tao and Simpson (1993), Tao et al. (2003),

and Lang et al. (2003) for details].

In this study, GCE simulations are used as a surro-

gate for real convective cloud development processes.

The model is driven by the large-scale tendencies ob-

served in the Tropical Warm Pool International Cloud

Experiment (TWP-ICE; May et al. 2008), and uses

256 3 256 horizontal grid points at 1-km resolution.

Its modeling results have been evaluated with C- and

W-band radar data, as well as satellite data (Zeng et al.

2013).
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The TWP-ICE simulation analyzed here lasts for 6

days (6;12 February 2006) and 2429 simulated con-

vective cores are identified in total. All the information

on those cores is fed into QuickBeam (see section 2c) to

simulate the 94-GHz radar reflectivity that mimics

CloudSat CPR from a nadir view. In addition, PCRTM,

a fast and accurate thermal radiative transfer model, is

used to simulate MODIS BT11, as well as the vertical

profile of the optical thickness for the same MODIS

viewing zenith angle. The emission level is then derived

by calculating the corresponding weighting function and

by locating its peak.

The cloud selection method for observational data

analysis is applied similarly to the model simulations.

Specifically, convective clouds are selected for analysis if

their CTH ranges from 6 to 18 km and is within 4 km of

the simulated ETH10dBZ. Similar to the data selection

process for satellite measurements, the simulated profile

at one model grid is used to represent the core of

a convective cloud. A convective core in the model is

defined based on the following criteria: 1) grid points are

classified as a convective region by GCE, 2) maximum

upward velocity exceeds 2m s21, 3) outgoing longwave

radiation is less than 210Wm22, 4) integrated water

path is greater than 0.5 cm, and 5) simulated MODIS

BT11 by PCRTM is less than 270K. Each convective

core is treated as one entity, and for a cluster of neigh-

boring cores, the one with the largest cloud water con-

tent is used to represent them for further analysis,

similar to the analysis as described in section 2a.

c. QuickBeam, PCRTM, and model-to-satellite
simulation strategy

GCE outputs such as mixing ratios of cloud hydro-

meteors are fed into the QuickBeam simulator (Haynes

et al. 2007) to derive synthetic CloudSat radar re-

flectivities. This ensures a consistent method of defining

the CTT and ETH between model simulations and ob-

servations. In this study, the mixing ratios of the five

kinds of hydrometeor species in GCE are specified for

the QuickBeam. To be consistent with the intrinsic size

distribution of the GCE (Tao and Simpson 1993), snow,

graupel, and rainwater are assumed to have an expo-

nential size distribution; cloud water and cloud ice are

assumed to be monodisperse in the QuickBeam

simulator.2 The scattering and absorption by atmo-

spheric gases and thus gaseous attenuation of the radar

beam are taken into account. Therefore, with the output

of the radar echo, CTT and ETH for clouds in GCE

simulations can be similarly defined, bridging the gap

between CloudSat observations and GCE simulations.

PCRTM (Liu et al. 2006) is now becoming a widely

used atmospheric radiative transfer model in the IR

remote sensing community thanks to its computational

efficiency and accuracy. Unlike channel-based radiative

transfer models, PCRTM computes the principal com-

ponent scores of the channel radiance, which greatly

improves the computational efficiency. The benchmark

comparison with a line-by-line radiative transfer model

also shows that PCRTM performs satisfactorily in

terms of accuracy. Further technical details about the

PCRTM can be found in Liu et al. (2006, 2009). Multiple

scattering is incorporated into PCRTM by including

a precalculated lookup table of the reflectance and

transmission of clouds using discrete-ordinate-method

radiative transfer (Stamnes et al. 1988). Single-scattering

properties are obtained fromYang et al. (2001),Wei et al.

(2004), and Niu et al. (2007) by averaging the single-

scattering properties The complex refractive indexes of

ice are taken from Warren (1984), with his 1995 update,

and that of water from Segelstein (1981).

The PCRTM is used here for two purposes: 1) to

calculate BT11 with inputs from vertical profiles of cloud

water content, temperature, and humidity, and 2) to

calculate the IR transmissivity of each discretized ver-

tical layer. For simulating BT11 using CloudSat and

CALIPSO observations, inputs into the PCRTM are

taken from the IWC profile from the CloudSat 2C-ICE

product, and temperature and humidity profiles from

the ECMWF operational analysis. For simulating BT11

using GCE simulations, the GCE output of the same

variables is directly fed into the PCRTM. PCRTM cal-

culation is done at a spectral resolution of 1 cm21 (full

width at half maximum) and the result is then convolved

with the spectral response function of the MODIS 11-mm

band (available online at http://mcst.gsfc.nasa.gov/

calibration/parameters). In this work, a sensor-viewing

zenith angle is set to match those of collocated MODIS

observations. To ensure enough vertical resolution to

accurately identify the peak altitude of the weighting

function, the transmissivity is calculated for every 50-m

interval in the troposphere. Temperature and humidity

profiles above the cloud top are taken from the

ECMWF-AUX data products. The relative humidity

was set to 100% whenever hydrometeors were present.

For CloudSat–CALIPSO–MODIS-related analyses,

treatment of the in-cloud temperature profiles in the

PCRTM modeling needs some further assumptions and

will be described in detail in the next section. For the

GCE simulation, no assumption is needed for in-cloud

2These size distributions are applied to maximize the consis-

tency with the GCE output. We note here that the size distribution

of hydrometeors in reality could be much more complicated than

the one assumed in the QuickBeam simulator.
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profiles since everything is available from the GCE di-

rect output. The BT11 at the top of atmosphere and the

corresponding transmissivity at 50-m vertical resolution

are obtained from PCRTM calculations. The latter is

then numerically differenced to derive the weighting

function. As mentioned in section 1, the EEL is then

defined as the altitude where the weighting function

attains its maximum.

3. Non-blackbody correction for the tropical deep
convection

a. Effective emission level and relation to cloud-top
fuzziness

We first numerically investigate the following ques-

tion: Where is the peak of the weighting function for the

IR window channel near 11mm? While it is often as-

sumed that the peak of the IR weighting function is lo-

cated at the altitude where optical depth t5 1, this exact

statement is either based on the assumption that the

Planck function varies linearly with respect to optical

depth with no scattering effect (Sherwood et al. 2004) or

is based on other approximations about the absorption

lines (Stephens 1994; Goody and Yung 1995). In this

study, we use a full-fledged radiative transfer model, the

PCRTM, to explicitly evaluate the peak of the weighting

function in the presence of scattering inside clouds.

Figure 2 shows the histogram of t11 where the weighting

function attains its maximum. Based on Fig. 2, the ex-

pected value of t11 is 0.72 with a standard deviation of

0.3. Among all cases examined here, 99.4% have their

weighting functions peaking at t11 , 2. The histogram

is largely symmetric, except a for small tail beyond

t11 . 2, which is found to be caused by interpolation

of the cloud optical depth in the presence of an ex-

tremely large vertical gradient of cloud water content

at the cloud top.

As shown in Fig. 1, the distance from cloud top

identified by CloudSat to the EEL changes with the

fuzziness of the cloud top. Figure 3 further demonstrates

this with a 2D histogram showing the relationship be-

tween CTF and the distance from CTH to the EEL

derived from the PCRTM calculation (denoted as x

hereinafter). The quantity x is critical to the non-

blackbody correction of the CTT. Figure 3 shows that

it is related to CloudSat radar reflectivity profiles and

thus can be parameterized using such measurements.

The composite result x5 x(CTF) is shown as a black line

with squares. The composite in Fig. 3 shows that, when

CTF is smaller than ;2 km (i.e., relatively compact

cloud top), x is nearly linearly proportional to CTF and,

when CTF is more than ;2 km, the x composite be-

comes constant at ;0.74 km. This can be expressed

mathematically as

x5min

�
CTF1 b

a
, 0:74

�
, (2)

where the values of a and b are determined by the linear

regression of the data. To assess the impact of the

CloudSat 2C-ICE retrieval uncertainty on the values

FIG. 2. Histogram of the effective emission level (the peak of the

weighting function) expressed in the 11-mm optical depth. The

histogram indicates the mean effective emission level is at an IR

optical depth of 0.72.

FIG. 3. The 2D histogram of the distance between CTH and the

EEL computed by PCRTM (abscissa) vs the distance between

CTH and ETH10dBZ (ordinate). The figure is normalized for each

CTH 2 ETH10dBZ interval. The black squares show the expected

distance between CTH and EEL from such probability distribu-

tions. The red line is the regressed results.
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of a and b, we randomly perturb IWC and LWC pro-

files with random numbers that follow normal distri-

butions in accordance with the corresponding 2C-ICE

retrieval uncertainties. Such perturbed profiles are

then fed to QuickBeam and PCRTM to generate figure

similar to Fig. 3, and then values of a and b are derived

for this set of perturbations. We repeat such random

perturbation calculations for 20 times and use them

to estimate the uncertainty due to the retrieval un-

certainty of IWC and LWC. In this way, a 5 2.83 with

a 1-s uncertainty of 0.069 and b 5 0.22 with a 1-s

uncertainty of 0.044.

b. Temperature at the effective emission level
versus BT11

To make the relation derived in Eq. (1) useful for

estimating CTT, knowledge of the in-cloud tempera-

ture at the EEL, TEEL, is needed. The value of TEEL

is slightly different from the actual BT11, which is a

weighted average of the in-cloud temperatures along a

layer near cloud top. However, current remote sensing

techniques cannot provide direct measurement of the

vertical profile of in-cloud temperature; in situ mea-

surements inside cumulonimbus are rare. So, we used

GCE model simulations to investigate the differences

between TEEL and BT11.

Results based on GCE simulations are presented in

Fig. 4 as a number density plot with the ordinate rep-

resenting the simulated CTF (5CTH – ETH10dBZ) and

the abscissa representing the difference between TEEL

and BT11. Figure 4 shows that the TEEL 2 BT11 differ-

ence has an appreciable spread largely independent

from CTF. The mean of the TEEL 2 BT11 difference is

0.11K with a standard deviation of 2.3K. Such spread

could be due to a variety of factors such as the inclusion

of multiple scattering in our radiative transfer calcula-

tion, the subtle variations of hydrometeor profiles near

the cloud top as simulated by theGCEmodel, and so on.

Based on a Student’s t test, the 0.11-Kmean difference is

statistically different from zero at a significance level of

0.04. This small positive difference can be understood in

the following way: ideally assuming temperature de-

creases linearly with altitude, the weighting function,

largely bearing the shape of a Chapman function

(Goody and Yung 1995, chapter 6), is slightly skewed to

its upper tail. Therefore, as long as the effective emission

level resides well below the tropopause, which is true for

most cases except overshooting convection, BT11 could

be considered to be slightly smaller than the tempera-

ture at the emission level. Nevertheless, it should be

noted that 0.11K is such a small difference when com-

pared with the uncertainty of satellite measurement for

cloud tops (Menzel et al. 2008) that BT11 can be treated

as a good approximation of the TEEL for convective

clouds.

Based on these calculations, we arrive at the following

expression to estimate cloud-top temperature based on

MODIS BT11 and CloudSat measurements:

CTT5BT11 2Gm min

�
CTF1 0:22

2:83
, 0:74

�
1 0:11K,

(3)

where CTF is the cloud-top fuzziness in kilometer and

Gm is themoist-adiabatic lapse rate around the top of the

cloud in kelvins per kilometer. In physical terms, Eq. (3)

states that the IR non-blackbody correction, namely

the difference between CTT and BT11, is proportional to

the CTF parameter defined in section 2a: the fuzzier the

cloud top (larger CTF), the greater the correction, and

vice versa. It is also proportional to the in-cloud lapse

rate Gm.

As far as uncertainties in Eq. (3) are concerned, the

measurement uncertainty of BT11 is ;0.34K (Xiong

et al. 2009). For the second term on the right side of

Eq. (3), its uncertainty is ;4K given Gm ; 8Kkm21 at

convective cloud top and the standard deviation of the

emission level estimation ;0.5 km. The standard de-

viation of the TEEL – BT11 difference [i.e., the third term

on the right side of Eq. (3)] is 2.3K. Since the histograms

in Figs. 3 and 4 can be viewed as empirical probability

distribution functions (pdf), the uncertainty can be as-

sessed in the followingMonte Carlo way: for any given y

FIG. 4. Number density plot of GCE-simulated cases. Outliers

beyond a 3-s range are not included. Histogram is shown by the

black bars. The red dotted line is the regression result, and the blue

line is TEEL 2 BT11 5 0.11K.
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in Fig. 3, obtaining an estimate of x in Fig. 3 according to

the empirical pdf determined by the histogram in Fig. 3.

Similar steps apply for the TEEL – BT11 difference with

the given standard deviation. Such an estimate will be

used in Eq. (3) in lieu of the regression formula to get an

estimate of the CTT. By repeating such an estimate

many times, an uncertainty for the CTT estimated by

Eq. (3) can be derived. The results using such a Monte

Carlo approach will be presented later (Fig. 7).

4. Simulated versus observed BT11

To gain more confidence in our non-blackbody cor-

rection for convective clouds, we compare BT11 from

the PCRTM simulation with the observed BT11 from

Aqua MODIS. The value of BT11 is simulated based on

our estimation of CTT. The approach adopted here is

backward in comparison with section 3; namely, we as-

sume that CTT is known and then start from there to

calculate BT11. The rationale is to see if we can solve the

problem both ways.

We compare two approaches in terms of estimating

the in-cloud temperature profiles. One approach as-

sumes no a priori knowledge of CTT and uses the am-

bient air temperature at the cloud-top level (taken from

the ECMWF-AUX product) to represent the CTT and

further assume the moist-adiabatic change of tempera-

ture inside the cloud. The color contours in Fig. 5a show

the 2D histogram of the simulated and the observed

BT11 following this assumption. The second approach

assumes BT1110.11K as the temperature at the EEL

and calculates CTT according to Eq. (3). Note that the

second approach does not require neutral cloud-top

buoyancy (i.e., CTT equal to the ambient tempera-

ture). Black contour lines in Fig. 5a show the results

from the second approach. The regressed slope of sim-

ulated BT11 versus MODIS BT11 is 0.995 for the first

approach with R2 of 0.96 and 1.004 for the second ap-

proach with R2 of 0.99. To better illustrate the im-

provement, Figs. 5b and 5c show the 2D histograms of

the differences between the simulated and measured

BT11 with respect to MODIS BT11, without and with

our non-blackbody correction method, respectively. In

contrast to Fig. 5b, Fig. 5c, with the correction, demon-

strates that the second approach yields a tighter distribution

and that the cases are better aligned at the zero-difference

line, especially for the lower cloud. Therefore, we con-

clude that BT11 is better simulated when CTT is com-

puted using our non-blackbody correction method, as

opposed to assuming CTT equals the ambient air tem-

perature. The small difference between CTT and the

ambient air temperature is proportional to the convec-

tive buoyancy, as will be discussed in section 5.

Figure 5c shows that tropical convective clouds above

the planetary boundary layer tend to cluster around two

temperature ranges, namely, 250–265 and 200–220K.

They correspond to two equally obvious modes of con-

vective clouds (Johnson et al. 1999): cumulus congestus

and deep convection, as noted in Luo et al. (2010).

Overall, Fig. 5 suggests that the observed BT11 can be

largely reproduced given our knowledge of CWC and

temperature profiles. This is encouraging and lends

support to the validity of our method. There are also

some noticeable biases. For example, there is a ;2-K

warm bias for the black contours when BT11 is lower

than 240K (i.e., the deep convection mode). For BT11.
240K (i.e., the cumulus congestus mode), the simulated

BT11 is distributed closely along the red line with a warm

bias of less than 0.5K. The bias is larger for approach 1

(where CTT is assumed to equal that of the environ-

ment) than approach 2, especially for the cumulus con-

gestus mode. A number of reasons could account for

these biases. For example, the ECMWF analyses, which

represent the large-scale environment, may not accu-

rately capture the temperature profile near convective

clouds, especially when convection triggers local dia-

batic and adiabatic processes that could influence the

vertical temperature profile at the spatial scale compa-

rable to the MODIS footprint.

5. Comparison with previous studies and
application to studying convective buoyancy

An important reason why accurate knowledge of CTT

is critical can be traced to a series of recent publications

(Luo et al. 2008, 2010; Wang et al. 2011) that utilize the

synergy between CloudSat and MODIS measurements

to estimate convective buoyancy. Convective buoyancy

(B) is proportional to the difference between CTT and

the ambient air temperature of the same height level.

Luo et al. (2010) concluded through a sensitivity and

uncertainty test that CTT is the major source of error in

convective buoyancy estimation. Even a merely 1–2-K

error in CTT is large enough to affect the determination

of the ‘‘fate’’ of some convective clouds, namely,

whether they are bound to make further ascent or have

already lost buoyancy.

In previous studies, Luo et al. (2010) and Wang et al.

(2011) used a simple, empirical method to correct for

nonblack cloud-top emissivity as follows: sinceCALIPSO’s

lidar signal cannot penetrate beyond an optical depth

at a visible wavelength tvis of;3, this attenuation depth

provides a means of estimating the correspondence be-

tween tvis and physical depth. It is further assumed that

the effective IR emission level is located at tIR 5 1 and

the relationship between tvis and tIR follows that
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provided by the International Satellite Cloud Clima-

tology Project (ISCCP; Rossow et al. 1996): tvis/tIR 5
2.56 for water clouds and 2.13 for ice cloud. Clearly, this

correction method is rather crude. For example, the li-

dar penetration depth may deviate from tvis of 3 and tvis

may not vary linearly with depth. Also, the effective IR

emission level may not always occur at tIR 5 1, as

demonstrated in Fig. 2. Moreover, the visible-to-IR op-

tical depth conversion is not a constant andmay vary from

one case to another. Nevertheless, it represented our first

FIG. 5. (a) The 2D histogram of the numbers of occurrences of the 11-mm brightness tem-

perature (BT11) measured by MODIS (abscissa) and simulated using PCRTM with CloudSat

cloud water profiles and temperature and humidity profiles as described in the text (ordinate).

The red line with a slope of 1:1 is plotted as a reference. Color-filled contours are results as-

suming CTT equal to the ambient air temperature. The black contours are the result from

updated estimation of CTT described in section 4. The difference between simulated BT11 and

MODIS measurements with respect to MODIS BT11 (b) with and (c) without non-blackbody

correction. The same color contours are used in (b) and (c).
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attempt to address the problem.Here, we compare results

derived from the previous method with those from this

study, which is more physically based.

Figure 6 shows the histograms of the distance from

cloud top to the EEL [i.e., x in Eq. (2)], as derived using

three different methods. Figure 6a is based on the earlier

method used in Luo et al. (2010) andWang et al. (2011).

Since Fig. 3 shows that the relationship changes from

CTF, 2 km to CTF. 2 km because of the saturation of

emission at that level, we divide the selected convective

cases into two different groups: one has CTF less than

2 km and the other has CTF at 2–4 km. They are shown

as blue and red bars in Fig. 6, respectively. In Fig. 6a, the

blue histogram shows a peak around 0.8 km with

a spread between 0.5 and 1 km. The red histogram rea-

ches its maximum at around 1 km.

Figure 6b is based on Eq. (2): the spread of the blue

histogram is similar to that of the bar histogram in Fig.

6a, but the peak of the histogram is now at 0.5 km. The

expected emission level, as shown in Fig. 2, is where t is

;0.72, instead of exactly 1 as assumed in the previous

method. Therefore, the new non-blackbody correction

should be smaller than that by Luo et al. (2010) and

Wang et al. (2011), which leads to warmer CTTs than

previous estimates.

Figure 6c is based on the estimates using the empirical

PDF derived from Fig. 3 instead of Eq. (2), as explained

in the last paragraph of section 3. Figure 6c shows wider

spread for both groups than Fig. 6b, but their peaks are

at similar locations and the expectation of the red histo-

gram corresponds to the red bar in the middle panel. This

can be explained by the fact that Fig. 6b is based on the

regression values derived from Fig. 3 while Fig. 6c takes

the entire spread in Fig. 3 into account. Hereinafter, the

correction estimated from such an empirical PDF is de-

noted as PDF-based correction and the correction using

Eq. (2) is referred to as regression-based correction.

As an application, the convective buoyancy as ana-

lyzed in Luo et al. (2010) and Wang et al. (2011) is re-

examined. The convective cloud-top buoyancy is

represented by the difference between CTT and the

ambient air temperature (Tenv) of the same level:

DT[CTT2Tenv. Figure 7 presents the fraction of

convection with positive buoyancy as a function of CTH

from 6 to 18 km for both the new and old methods.3

FIG. 6. Histogram of the distance between cloud top and EEL for all cases examined here.

Blue bars show the histogramof cases with CTH2ETH10dBZ , 2 km. The red bars are for cases

with CTH 2 ETH10dBZ within 2–4-km range. (a) Based on the previous method used in Luo

et al. (2008). (b) Using Eq. (2) to compute such distances. (c) The empirical pdf based on Fig. 3

is used to estimate the distances (more details on this estimation can be found at the end of

section 4).

3 The corresponding figure in Wang et al. (2011) included a pro-

gramming error that led to the incorrect estimation of the ratio of

positive buoyancy. That error has been fixed here.
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Taking DT as a proxy to show how vigorous the con-

vection is, Fig. 7 suggests that tropical deep convection is

statistically strongest when reaching 9–10 km and grad-

ually loses momentum during further development due

to the depletion of latent heat, entrainment of cold dry

air, and overshooting the level of neutral buoyancy.

These results can be explained by the observations of

trimodal characteristics of tropical convection (Johnson

et al. 1999). The smaller portion of the positive buoy-

ancy at a CTH of 6 km is related to the existence of the

weak stable layer, melting level at ;5 km. Many cumu-

lus congestus do not glaciate fast enough and fail to gain

enough thermal energy from latent heat release to sus-

tain further upward motion. For the fast-glaciating

clouds, they are likely to gain the maximum apparent

heat at 8 km (Takayabu et al. 2010), get heated up during

ascent, and achieve the strongest buoyancy at 9–10 km

(;300 hPa). Because of this strong positive buoyancy,

updraft motion is likely to continue and a local minimum

of detrainment is thus expected, which is supported by

Fig. 6b in Zuidema (1998).

The new IR non-blackbody correction method leads

to more cases with positive cloud-top buoyancy for the

very reason that the new correction is smaller than the

old one, thus resulting in warmer CTT estimates (Fig. 6).

Figure 7 shows that around 70% of the selected con-

vective cores with tops lower than 10 km have positive

buoyancy near cloud top, meaning that they will con-

tinue to accelerate. This result suggests that statistics

collected from previous studies concerning convective

clouds using polar-orbiting satellite data (i.e., snapshot

observations) should be treated with caution. In partic-

ular, statistics on apparent cumulus congestus that have

a lot of space to grow vertically (e.g., Casey et al. 2012)

should be reassessed in light of our study. Our results

thus underscore the importance of interpreting satellite

snapshot observations within the proper dynamic con-

text; that is, convective life stages need to be considered.

In parallel to Wang et al. (2011), further analysis was

conducted that separates day–night overpasses and

land–ocean cases. Four subgroups are shown in Fig. 8:

daytime over land, daytime over ocean, nighttime over

land, and nighttime over ocean. Qualitatively similar to

the results in Wang et al. (2011), Fig. 8 shows that

a larger diurnal cycle in convective buoyancy occurs

over land than over ocean. The fraction of positive-

buoyancy cases over land is larger at 1330 than that at

0130 LT. This is consistent with our understanding of

the diurnal cycle of tropical convection. The buoyancy

achieves its maximum at ;10 km. The change of the

ratio of positive buoyancy over ocean from 6 to 10 km is

smaller than that over land, possibly implying that

melting-level distributions over land and ocean and thus

the distributions of the latent heat release are different.

Yuan et al. (2010) indicate that the levels where deep

convective clouds are all in ice phase can be 2 km lower

in altitude over ocean than over land, suggesting that

convective cloud could gain more latent heat in lower

levels, shedding light on the smaller changes of the ratio

from 6 to 10 kmover ocean in Fig. 8, especially the one at

1330 LT. For both the 0130 and 1330 LT curves in Fig. 8,

the increase in the fraction of plumes with positive

buoyancy from 6 to 8 kmCTH is much larger over ocean

than over land. This is consistent with the previous

findings by Yuan et al. (2010) that land convection sel-

dom glaciates at 2158C while ocean convection might

do so.

6. Conclusions

A newmethod is presented to estimate the cloud-top

temperature of convective clouds by correcting for

the non-blackbody effect based on a relationship be-

tween cloud-top fuzziness (defined as the vertical dis-

tance between CTH and ETH10dBZ) and the distance

from cloud top to the cloud IR effective emission level.

Figures 3 and 4 show the dependences of cloud-top

radiative features on the CTF derived from both ob-

servations and radiative transfer model simulations.

Using CTF measured by CloudSat cloud-profiling ra-

dar together with the IR brightness temperature (BT11)

from MODIS, the algorithm provides an estimate of

the temperature of cloud top. Comparisons are made

FIG. 7. Fraction of convection clouds with positive buoyancy as

a function of CTT. The bin size of CTT is 1 km. The black line

corresponds to the black line in Fig. 6 of Wang et al. (2011) with

a small coding bug corrected. The red line is based on Eq. (3) and

shows the fraction for all cases. The shaded area indicates the 2-s

range calculated on the basis of Figs. 3 and 4.
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with previous studies using the same datasets but

a simple and less physically based method to correct for

the non-blackbody effect. The new method is shown to

outperform the old one. The major findings are sum-

marized as follow:

1) Based on explicit radiative transfer model calcu-

lations, the mean effective emission level is at an

IR optical depth (t11) of 0.72, lower than the value

that is often assumed in atmospheric radiation

lectures, which is 1. Among 16 837 cases examined,

99.4% of the effective emission level is in the range

of t11 at 0–2.

2) A regression relationship is developed that can

parameterize the non-blackbody correction as a func-

tion of cloud-top fuzziness measured by CloudSat

radar reflectivity profiles.

3) Using PCRTM, IWC, and LWC retrievals from

CloudSat and CALIPSO, as well as ECMWF re-

analysis datasets, we can largely reproduce the ob-

served BT11 by MODIS, lending support to the

validity of our method.

This new non-blackbody correction was applied to

reevaluate the convective cloud-top buoyancy, as has

previously been studied by Luo et al. (2010) and Wang

et al. (2011). Results show that ;70% of the convective

clouds observed by CloudSat as a snapshot in the height

range of 6–10 km (i.e., apparent cumulus congestus)

have positive buoyancy near cloud top, implying that

they will continue to grow. This result underscores the

importance of interpreting satellite snapshot observations

as derived from polar-orbiting satellites with caution

and within the proper dynamic context. Since the ap-

parent cumulus congestus has a lot of vertical space to

grow, previous statistics on this cloud type using snap-

shot observations should be reassessed. It should

be noted that the information on cloud development is

inferred from thermodynamic analysis (buoyancy anal-

ysis). To rigorously validate such inferences, an in-

dependent observation with high temporal resolution

would be needed. Possible candidates for such obser-

vations include, but are not limited to, continuous

Atmospheric Radiation Measurement Program ground

radar observations, geostationary imagery in the

window channels, and Multiangle Imaging Spectro-

radiometer (MISR) measurements, which observe the

same cloud from different angles within a short time

period. This investigation is a proof-of-concept study

and such thorough and rigorous validations are beyond

the scope of it. However, the validation is a focus of our

follow-up studies.

It is worth mentioning the uncertainties associated

with our analysis. This new non-blackbody correction

is based on the fusion of multiple datasets, including

satellite observations and retrievals as well as cloud-

resolving model simulations. Thus, it is inevitably af-

fected by the uncertainties and errors associated with

these inputs. We described the uncertainties in the

CloudSat retrievals and explained the choices we made

in the face of them. We estimated some aspects of the

uncertainties using Monte Carlo methods. However, to

thoroughly and quantitatively pinpoint all uncertainties

and to assess their impacts are beyond the scope of this

study. This is especially true for the uncertainties of the

parameters used in the cloud microphysics scheme of

the GCE model. It would take tremendous computa-

tional effort to assess the full impact of the perturba-

tions in these parameters. We acknowledge these

limitations but at the same time stress the improve-

ment of the new non-blackbody correction method

in helping to estimate the cloud-top temperatures. The

merit of data fusion in cloud remote sensing and anal-

ysis is also noted.
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