Predicting Urban Surface Roughness Aerodynamic Parameters Using Random Forest

G. DUANa and T. TAKEMIa

a Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

(Manuscript received 2 December 2020, in final form 16 May 2021)

ABSTRACT: The surface roughness aerodynamic parameters \(z_0 \) (roughness length) and \(d \) (zero-plane displacement height) are vital to the accuracy of the Monin–Obukhov similarity theory. Deriving improved urban canopy parameterization (UCP) schemes within the conventional framework remains mathematically challenging. The current study explores the potential of a machine-learning (ML) algorithm, a random forest (RF), as a complement to the traditional UCP schemes. Using large-eddy simulation and ensemble sampling, in combination with nonlinear least squares regression of the logarithmic-layer wind profiles, a dataset of approximately \(4.5 \times 10^5 \) samples is established for the aerodynamic parameters and the morphometric statistics, enabling the training of the ML model. While the prediction for \(d \) is not as good as the UCP after Kanda et al., the performance for \(z_0 \) is notable. The RF algorithm also categorizes \(z_0 \) and \(d \) with an exceptional performance score: the overall bell-shaped distributions are well predicted, and the \(\pm 0.5 \sigma \) category (i.e., the 38% percentile) is competently captured (37.8% for \(z_0 \) and 36.5% for \(d \)). Among the morphometric features, the mean and maximum building heights (\(H_{\text{ave}} \) and \(H_{\text{max}} \), respectively) are found to be of predominant influence on the prediction of \(z_0 \) and \(d \). A perhaps counterintuitive result is the considerably less striking importance of the building-height variability. Possible reasons are discussed. The feature importance scores could be useful for identifying the contributing factors to the surface aerodynamic characteristics. The results may shed some light on the development of ML-based UCP for mesoscale modeling.

KEYWORDS: Atmosphere-land interaction; Large eddy simulations; Classification; Regression

1. Introduction

Turbulence-resolving large-eddy simulation (LES) within a mesoscale model is typically run over subregions, while a substantial portion of the domain remains more coarsely resolved. Urban topographies are generally considered as surface roughness, which acts as drag forcing, flux sources or sinks (Muñoz-Esparza et al. 2014; Haupt et al. 2020). The microscale dynamics within the urban canopy layer are usually not explicitly resolved and the momentum exchanges with the boundary layers aloft are typically parameterized in mesoscale modeling (Brown 2000; Mirocha et al. 2014; Shen et al. 2019; Edwards et al. 2020).

A large amount of the literature has been devoted into improved parameterization of the surface-layer impacts in mesoscale models, which led to the well-known Monin–Obukhov similarity theory (MOST; Monin and Obukhov 1954). Efforts including experiments and observations of the surface-layer micrometeorological processes (e.g., Haugen et al. 1971; Kaimal et al. 1976; Olesen et al. 1984), which has enabled the intercomparison of MOST with measurements, continue contributing to improving its accuracy (Nazarian et al. 2020; Maronga et al. 2020b; Bou-Zeid et al. 2020). Knowledge on the quantitative influence of urban surface roughness in mesoscale modeling has been greatly advanced with the emerging of techniques, which have made direct and reliable measurements of turbulent eddies and fluxes more conveniently achievable (e.g., Kaimal and Businger 1963; Hanafusa et al. 1982; Kaimal and Wyngaard 1990; Cheng et al. 2020). Following MOST, the surface-layer turbulent fluxes are connected with the gradient of the mean profiles (Foken 2006), namely, taking the mean wind velocity \(U(z) \), for example:

\[
U(z) = \frac{u_*}{\kappa} \left[\ln \frac{z-d}{z_0} + \phi(\zeta) \right] \quad \text{and} \quad \frac{\partial U(z)}{\partial z} = \frac{-u_* \varphi^\gamma}{u_* \kappa (z-d)} \phi(\zeta),
\]

where \(u_* \) is the friction velocity, \(\kappa \) is the von Kármán constant, \(\zeta = z/L \) accounts for the thermal stability, and \(z_0 \) and \(d \) are the surface roughness aerodynamic parameters (i.e., the roughness length and the zero-plane displacement, respectively). For neutral stratification, the Obukhov length, \(L \rightarrow \infty \), and \(\phi(\zeta) = 0 \) and \(\varphi(\zeta) = 1 \). The surface momentum flux, \(-u\varphi^\gamma\) (Reynolds shear stress), can be obtained via vertical integration over the Prandtl layer (the constant-flux layer) and then specified as the surface boundary conditions (Maronga et al. 2020a).

The roughness length \(z_0 \) and the zero-plane displacement height \(d \) represent two key components of the surface layer scaling [Eq. (1)]. Urban boundary layer flows are strongly perturbed by urban geometries, that is, buildings, which are unevenly distributed and anisotropic in the 3D details. The perturbations are typically represented using roughness elements in mesoscale models. The physical processes in the roughness surface layer (RSL) and within the urban canopy layer are of high complexity (Roth 2000; Britter and Hanna 2003; Bou-Zeid et al. 2020). Accurate knowledge of the roughness parameters is important to the understanding of the urban surface aerodynamic characteristics, and hence vital to the accuracy in modeling the surface boundary conditions (Foken 2006).

Corresponding author: G. Duan, g.duan@storm.dpri.kyoto-u.ac.jp

DOI: 10.1175/JAMC-D-20-0266.1

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
The roughness length may be assigned in accord with land-use categories (e.g., Wieringa 1992; Davenport et al. 2000); however, the applicability may be limited because of the fact that full-scale observations are not always readily obtainable for all terrain types and meteorological conditions. By contrast, the micrometeorological method and the morphometric method are perhaps more suitable in the urban boundary layer literature (Grimmond and Oke 1999): for the former, z_0 and d are determined through least squares regression of the logarithmic wind profile (e.g., Cheng et al. 2007); for the latter, they are parameterized in terms of the surface morphometric features for the discrete roughness elements mounted on the ground (e.g., Macdonald et al. 1998; Ratti et al. 2002; Hagishima et al. 2009). This includes the building-packing indices

$$\lambda_f = A_f / A_T$$ and $$\lambda_p = A_p / A_T$$

(2)

(the frontal-area index and the plan-area index, respectively, where A_T is the total frontal area, A_f the total plan area of the roughness obstacles, and A_p is the total lot area), the mean and maximum building heights H_{ave} and H_{max} and associated building height variability σ_H. For convenience,

$$X' = \{\lambda_p, \lambda_f, H_{ave}, H_{max}, \sigma_H\}.$$

(3)

The micrometeorological approach requires knowledge of a well-defined logarithmic wind profile a priori, which may not be well suited to operational models. For the morphometric method, deploying tall towers for field observations is not required, instead z_0 and d are directly computed from the morphometric statistics. The latter approach has proven successful generating encouraging estimations of the roughness aerodynamic parameters for realistic urban topographies (Kanda et al. 2013), and hence would be more promising than the first approach, especially given the ever-growing availability of high-resolution geophysical data and with the assistance of building-resolving computational fluid dynamics (CFD) techniques (Hanna et al. 2006; Nakayama et al. 2011; Park et al. 2015b; Chew et al. 2020). Similarly, let

$$Y' = \{z_0, d\}.$$

(4)

Among those approaches, one aspect that has attracted little attention is how important each morphometric index is on the parameterization of the roughness aerodynamic parameters. It is demanding to assign weights precisely to each of the indices to account for the differences in the contribution to the parameterization. Formulating new schemes for improved parameterization within the conventional urban canopy parameterization (UCP) framework remains mathematically challenging. By contrast, machine learning (ML) is capable of handling a large number of entries. For an urban canopy, this could include all the morphometric indices [Eq. (3)] that may exert influences on the surface aerodynamic characteristics [Eq. (4)], potentially in a complex manner (Martilli et al. 2002; Akinlade et al. 2004) and likely to be nonlinear (Duan and Takemi 2021). ML allows the important features to be identified by ranking the feature importance scores.

Exploring the potential of ML toward predicting the surface roughness aerodynamic parameters, briefly,

$$X' \rightarrow Y',$$

(5)

may also assist the development of improved UCP schemes.

Recent developments of ML techniques have led to successful results in the studies of complex physical problems across climate networks, computer science, gene regulation, biology, and medicine (Zitnik et al. 2019; Gagne II et al. 2020; Tang et al. 2020; Biesbroek et al. 2020). ML has demonstrated great potential dealing with problems as complicated as turbulence modeling. The feasibility of representing the unresolved subgrid turbulent processes in place of the traditional subgrid-scale (SGS) parameterization has been evaluated for a global general circulation model in Rasp et al. (2018). Cheng et al. (2019) explored the application of ML for SGS modeling in LES for atmospheric flows of varying stability conditions. The SGS stresses produced by ML were shown to be more accurate than the conventional Smagorinsky SGS models (Smagorinsky 1963; Bardina et al. 1980). The value of ML has also been well recognized in studies of chaotic dynamical systems (Lellep et al. 2020) and hydrodynamic environments (Li et al. 2020).

This work explores the applicability of ML for the prediction of urban surface roughness aerodynamic parameters. Following the introduction, section 2a describes the urban topographies considered for the simulation of a neutrally stratified turbulent boundary layer flow using LES (section 2b, with the model validation given in appendix A). An ensemble sampling method is introduced in section 3a. In combination with the conventional micrometeorological approach, the nonlinear two-parameter least squares regression (section 3b), a dataset of the urban morphometric indices and the aerodynamic parameters, z_0 and d, is established for the training of a random forest (RF) ML model (section 4a). Section 4b describes the measures for identifying the morphometric features that could be of predominant influence on the prediction of the aerodynamic parameters. The results are analyzed in section 5, wherein section 5a presents vertical distributions of the mean wind and turbulence statistics, and section 5b analyses the z_0 and d statistics from the least squares fit against the most recently proposed UCP scheme. Predicted z_0 and d using RF are analyzed in section 5c with both RF regression [section 5c(1)] and RF classification [section 5c(2)] considered. Informative morphometric indices are identified in section 5d. Robustness is discussed in section 5e. Summary and discussion are given in section 6.

2. Numerical experiments

a. Urban topography

This study investigates a neutrally stratified turbulent boundary layer flow that developed over a realistic urban topography. Four residential regions D within Osaka, Japan, are considered (Fig. 1). As in Takemi et al. (2020), the topography data of Osaka City are obtained from the digital surface model (DSM) and the digital elevation model (DEM) with a
FIG. 1. Four urban areas within Osaka. The topographies are color shaded by the building heights. Shown are (a) $H_{\text{avg}} \pm \sigma_{H} = 13 \pm 10$ m, (b) $H_{\text{avg}} \pm \sigma_{H} = 11 \pm 7$ m, (c) $H_{\text{avg}} \pm \sigma_{H} = 16 \pm 16$ m, and (d) $H_{\text{avg}} \pm \sigma_{H} = 24 \pm 19$ m. Herein H_{avg} denotes the global average of the building height over the entire domain of each topography and σ_{H} is the associated building-height standard deviation. The analysis is performed for the four areas as a whole, hereinafter D.
horizontal resolution of 2 m from the Kokusai Kogyo Co., Ltd. As a common practice in urban CFD, the ground elevation is excluded so as to be focused on the morphological characteristics associated with the roughness elements mounted on the ground surface. Each subregion possesses unique morphological profiles differing in building-packing densities, building-height variability and the roughness element arrangement, but we do not attempt to distinguish the results between the different subregions. Performing simulations for separate domains is simply to accommodate the computer power. The raw data are combined and analyzed as a whole.

The domain dimensions of the subregions are the same, that is, $L_x = 1504 \times \Delta x = 3008$ m in the streamwise direction (x), $L_y = 864 \times \Delta y = 1728$ m in the spanwise direction (y), and $L_z \approx 500$ m in the vertical direction (z). The spatial resolution is homogeneous in the lateral directions; that is, $\Delta x = \Delta y = 2$ m, in accord with the DSM and DEM dataset. The grids are equally spaced in the vertical direction for the lower boundary layers [i.e., $\Delta z = 2 \Delta z_{\min} \leq 2$ m for $0 \leq z \leq 80$ m ($\approx 4-8H_{ave}$)] but are stretched at greater heights [i.e., $\Delta z_{i+1} = 1.08 \Delta z_i$ for $z > 80$ m (where k denotes the vertical grid index)], until $\Delta z = \Delta z_{\max} = 16$ m, which is maintained up to the upper boundary of the domain, giving a total of 82 layers in the vertical direction. The ratio of the coarsest and finest vertical grid spacings considered in the current study is $\Delta z_{\max}/\Delta z_{\min} = 8$, which is smaller than Cui et al. (2004) and Michioka et al. (2019) by a factor of ≈ 2 and is smaller than Michioka and Sato (2012) by a factor of up to 4.75, allowing a much smaller grid deformation.

To avoid building-height discontinuities (that would normally arise from periodic boundary conditions for realistic urban surfaces), a buffer area filled with cubic roughness elements is set around each topography. Similar to Yoshida et al. (2018), the lateral dimensions (width and length) of the cuboids are fixed at 10 m. As in Duan and Takemi (2021), the height of the roughness elements is equal to the global average $H_{ave,g}$ of the building heights for each topography.

b. Large-eddy simulations

The turbulent boundary layer flows are simulated using the Parallelized Large-Eddy Simulation Model (PALM) 6.0 (Maronga et al. 2020a), which is based on the implicitly filtered nonhydrostatic, incompressible Boussinesq equations and the 1.5-order Deardorff SGS scheme (Deardorff 1980). The setup of the 3D model essentially follows Duan and Takemi (2021), except that thermal effects are neglected. The model is initialized with the stationary solution from a Reynolds-average nonhydrostatic model, in accord with the DSM and DEM dataset. The grids are equally spaced in the vertical direction for the lower boundary layers [i.e., $\Delta z = 2 \Delta z_{\min} \leq 2$ m for $0 \leq z \leq 80$ m ($\approx 4-8H_{ave}$)] but are stretched at greater heights [i.e., $\Delta z_{i+1} = 1.08 \Delta z_i$ for $z > 80$ m (where k denotes the vertical grid index)], until $\Delta z = \Delta z_{\max} = 16$ m, which is maintained up to the upper boundary of the domain, giving a total of 82 layers in the vertical direction. The ratio of the coarsest and finest vertical grid spacings considered in the current study is $\Delta z_{\max}/\Delta z_{\min} = 8$, which is smaller than Cui et al. (2004) and Michioka et al. (2019) by a factor of ≈ 2 and is smaller than Michioka and Sato (2012) by a factor of up to 4.75, allowing a much smaller grid deformation.

To avoid building-height discontinuities (that would normally arise from periodic boundary conditions for realistic urban surfaces), a buffer area filled with cubic roughness elements is set around each topography. Similar to Yoshida et al. (2018), the lateral dimensions (width and length) of the cuboids are fixed at 10 m. As in Duan and Takemi (2021), the height of the roughness elements is equal to the global average $H_{ave,g}$ of the building heights for each topography.

3. Dataset establishment

a. Sampling

A dataset for the statistical analysis and the training of the random forest ML model in the latter sections is established...
using an ensemble sampling approach after Duan and Takemi (2021). Briefly, the simulation data are analyzed for an ensemble of small urban units, D_{ij}, within the domain, D (see Fig. 1), that is, $D_{ij} \subset D$ (see Fig. 2 for a schematic illustration). The analysis units D_{ij} are defined by traversing a sampling square of specified lateral dimensions, $l_x \times l_y$, across D with a displacement of d_x in the streamwise and/or a displacement of d_y in the spanwise directions. Herein, fixed unit dimensions $l_x \times l_y = 250 \times 250$ m2 are combined with variable displacement distances, $d_x \in [100, 200, 300]$ m and $d_y \in [100, 200, 300]$ m. Relative to Yoshida et al. (2018), wherein $d_x = l_x$ and $d_y = l_y$, the sample size in the current study is effectively increased, for example by a factor of 2^2 if $d_x = (1/2)l_x$ and $d_y = (1/2)l_y$, allowing a more comprehensive characterization of the urban morphometric features.

Adopting this ensemble sampling approach, a dataset of various values for the surface roughness features, which include the building-packing indices (λ_p and λ_f), the mean and maximum building heights (H_{ave} and H_{max}) and associated building-height variability (σ_H) [herein X, see also Eq. (3)], is created for the entire domain D (Fig. 1). Given the displacement distances (d_x and d_y) and the sampling-square dimensions (l_x and l_y) considered in the current study, the dataset contains approximately 4.5×10^3 analysis units. Figure 3 summarizes the morphometric statistics.\(^1\) Except for H_{max}, which exhibits a strong positive skewness (implying the presence of skyscrapers), all of the other morphometric metrics are roughly centered around the mean.

The flow in the RSL is strongly perturbed by the surface roughness elements (Kastner-Klein and Rotach 2004). The dynamic statistics from LES, for example, flow and turbulence, should be processed before being used for the calculation of the roughness aerodynamic parameters (see section 3b) that are subsequently incorporated into the dataset for ML. Following the common practice, a statistically representative vertical profile can be obtained via temporal and horizontal averaging. For convenience, angle brackets denote the horizontal averaging over an analysis unit, D_{ij}, namely,

$$\langle \cdot \rangle = \frac{1}{A_{ij}} \int_{A_{ij}} \langle \cdot \rangle \, dx,$$

where A_{ij} is the planar area of D_{ij}. Each sampling unit contains $(l_x/\Delta x \times l_y/\Delta y = 125 \times 125)$ grid points in a lateral plane, which is considered sufficient for statistically representative results through horizontal averaging. In Cheng and Castro (2002), the horizontal average was performed over 25 sampling profiles. It was also shown that a 4-profile average yielded very similar results to the 25-profile average, and a lateral average over 25×25 grids was confirmed sufficient in comparison with a 50×50 choice (Wang et al. 2018). The number of grid points in the horizontal plane (each grid point corresponds to one profile) is significantly greater than that used in Cheng and Castro (2002) and is larger by a factor of 6 in comparison with Wang and Ng (2018). As in Duan and Takemi (2021), an overbar denotes time averaging over the duration of the data collection ($t_f - t_0$),

$$\bar{\tau} = \frac{1}{t_f - t_0} \int_{t_0}^{t_f} \langle \cdot (t) \rangle \, dt,$$

The averaging time span is comparable to $\sim 100\tau_{\text{eddy}}$, where $\tau_{\text{eddy}} = H_{\text{ave}}^{\log }/u_{\infty}$ denotes the eddy turnover time scale (see Figs. 3 and 7 for a rough estimation of the mean building height $H_{\text{ave}}^{\log }$ and the friction velocity u_{∞}, respectively) and should suffice for meaningful statistics (cf. Cheng and Liu 2011).

Ensemble averaging over all sampling units, denoted with a caret, will also be considered. The calculation follows Duan and Takemi (2021).

b. Roughness aerodynamic parameters, z_0 and d

The conventional micrometeorological approach estimating the surface roughness aerodynamic parameters, that is, the roughness length z_0 and the zero-plane displacement height d, is generally performed through two-parameter regression of the logarithmic wind profile,

$$\langle \pi \rangle = \frac{u_{\infty}}{k} \ln \left(\frac{z - d}{z_0} \right),$$

by minimizing the following cost function (Cheng et al. 2007; Hagishima et al. 2009),

$$E = \sum_{z_i = H_{\text{ave}}^{\log }} \left(\frac{\kappa}{\pi(z_i)} \frac{u_{\infty}}{u_{\infty}} - \ln \left(\frac{z_i - d}{z_0} \right) \right)^2,$$

where κ is the von Kármán constant, usually taken to be 0.4, and $[H_{\text{log}}, H_{\text{log,u}}]$ define the vertical (grid) range of the logarithmic region.

The friction velocity reflects the balance between the flow and the underlying roughness surface, and has been an important velocity scale in urban canopy parameterization

\(^1\)The data used for the random forest ML model are scaled to ensure zero mean and unit variance (see Figs. 7b,c).
(Britter and Hanna 2003). It can be calculated in two ways that
differ in the physical meaning. One is based on the drag force
exerted by the roughness elements (e.g., Cheng et al. 2007;

\[u_\theta = \sqrt{\tau_p / \rho}. \quad (10) \]

Alternatively, \(u_\theta \) can be obtained directly from the eddy co-
variance statistics of the surface layer (e.g., Rotach 1993a,b;
Oikawa and Meng 1995; Raupach et al. 1996).

\[u_\theta = \sqrt{|-u' w'|}. \quad (11) \]

The former [Eq. (10)] requires knowledge of the pressure
distribution along individual frontal and back surfaces of the
roughness elements, which may be more suitable for idealized
building obstacles (e.g., Hagishima et al. 2009; Kanda et al.
2013); however, the calculation is not straightforward for re-
alistic urban topographies (cf. Kanda et al. 2013). The high
inhomogeneity and irregular distribution of building heights as
well as the nonuniform building facades preclude direct mea-
surements of the drag force. By contrast, in the latter approach
[Eq. (11)] \(u_\theta \) is directly derived from the Reynolds shear
stress, \(-u' w'\), which can be readily obtained from the resolved-
scale wind speeds. While both methods have been applied in
previous studies, it is argued that the second one reconciles
well with field campaigns, wherein the eddy covariance statisti-
cs are more conveniently measurable than the drag. For conve-
ience, the flux, \(-u' w'\) that averaged throughout the RSL, is used
for the calculation of \(u_\theta \) (cf. Cheng and Castro 2002).
Therefore, \(u_\theta \) serves as a characteristic velocity scale
for the roughness surface layers. This yields a roughness
Reynolds number, \(Re_\theta = u_\theta z_0 c / \nu = O(10^3)\), which is com-
parable to the LES results of Kanda et al. (2013) (for \(\kappa \approx 0.4\))
and represents an extremely rough surface condition (cf. Inagaki
and Kanda 2008).

Applying the proposed sampling approach (section 3a) in
combination with the two-parameter nonlinear least squares
fitting, a dataset of approximately 4.5 \times 10^5 samples is estab-
lished for \(z_0 \) and \(d \) [herein \(Y \); see also Eq. (4)] and incorporat-
ed into the dataset created in section 3a, enabling the training of
the ML model and allowing the results to be analyzed in a
statistical manner in the latter sections.

4. Machine learning

4a. Random forest

A relatively less sophisticated ML model is employed,
herein a random forest, which is nonetheless one of the most
powerful supervised ML algorithms that is capable of both
regression and classification (Breiman 1996). RF is an en-
semble ML algorithm built from multiple decision trees that
are trained independently on random subsamples of the
training dataset, known as bootstrapping. It has been suc-
 cessfully applied in studies of land surface phenomenol
(Rodriguez-Galiano et al. 2016) and atmospheric boundary
layers (Bodini et al. 2020).

RF is able to handle a very large database, which could in-
clude statistics for all the morphometric indices and the
roughness aerodynamic parameters (herein \(D_n \)) established in
section 3. Formally,

\[D_n = \{(X', Y')\}_{i=1}^n, \quad (12) \]

where \((X', Y')\) denotes an element pair of the feature set \(X = [\lambda_p, \lambda_f, \sigma_f, H_{ave}, \text{ and } H_{max}]\); see Eq. (3) and the response set \(Y = [z_0, d]\); see Eq. (4)]; that is, \((X', Y') \in (X, Y)\). The objective is to
predict \(Y \) for given \(X' \) through an RF algorithm [see Eq. (5)]
that trained on bootstrap samples of \(D_n \).

The final prediction is obtained through averaging (for re-
gression) or voting the majority (for classification) over the
ensemble trees, known as aggregating, making it more ef-
fective than any of the individual decision tree. A simplified
mathematical illustration of ML using RF is given in
appendix B.

b. Feature importance measures

Identifying the most important features (e.g., \(\lambda_p, \lambda_f, \sigma_f, H_{ave}, \text{ and } H_{max} \)) that affect the target variables \((z_0 \text{ and } d)\) is not
straightforward in the formulation of conventional UCP. By
contrast, RF is capable of differentiating informative predic-
tors from noninformative ones. This can be done by ranking
the importance metrics associate with the features, which in-
clude the decrease of the node impurity on each feature (herein
\(IG \)) and the change of model performance scores before and
after shuffling the values (permutation) of a feature (herein
\(IP \)) (Menze et al. 2009). See appendix C for a brief description of
\(IG \) and \(IP \).

Large values of \(IG \) and \(IP \) indicate that the associated fea-
tures are informative, while small ones imply that the features
are of less importance. The feature importance metrics will be
analyzed in section 5d for each of the morphometric indices,
wherein the ones that could be of substantial influence on the
prediction of the surface roughness aerodynamic parameters are
identified.

5. Results

5a. Mean and turbulence profiles

Figure 4 plots the temporally and laterally averaged wind
profiles for the ensemble of the urban units. While the profiles
are noticeably affected by the surface roughness parameters,
\(H_{ave} \) and \(\sigma_f \), the general pattern follows a familiar picture: the
wind speed increases away from the surface roughness, fol-
lowed by a likely exponential (within \(z/H_{ave} \approx 5 \text{ to } 20 \) for high \(\sigma_f \)
and \(z/H_{ave} \approx 10 \text{ to } 30 \) for low \(\sigma_f \)), and eventually converges
toward the freestream velocity at greater heights.

A well-defined inertial sublayer (ISL) may not be always
expected for a vertical (grid) range, although the wind profiles
plotted in Fig. 4 exhibit a strong exponential. Figure 5 plots the
vertical profiles for the second-order turbulence statistics. The
general pattern of the Reynolds shear stress (Fig. 5a) shows a
common feature with previous studies (Raupach et al. 1996).
The fluxes reveal a great inhomogeneity in the vertical: there is
a rapid decay toward the urban surface and the overall
strength is weak within the canyons ($z/H_{\text{ave}} \leq 1$); peak values are obtained above the urban canopy layer ($z/H_{\text{max}} \leq 1$) and the profiles converge to small values as the height approaches the freestream level. There is a similar pattern for the turbulent kinetic energy (Fig. 5b). The results agree well with the wind-tunnel measurements of Kastner-Klein and Rotach (2004) for a scaled 3D realistic urban topography.

Contrary to the field campaigns of Rotach (1995) and Oikawa and Meng (1995), wherein the turbulence statistics peaked around 1–1.5 times the canopy height, the maxima herein are observed at greater heights, $z/H_{\text{ave}} \sim 3–10$. This is perhaps because the canopy morphology was less of a concern in the field campaigns: the former was performed for a close-to-unity street canyon and the latter for a flat space downstream a residential area. For a vast portion of the profiles, the turbulence statistics attain the maximum around H_{max} (indicated in the inset “$H_{\text{max}}/H_{\text{ave}}$” as short horizontal lines). This is consistent with the previous finding of Kanda et al. (2013) for realistic urban areas within Tokyo and Nagoya, Japan; however, we note that this is less so for regions of small building-height variability.

While a very narrow ISL is vaguely seen for $z/H_{\text{ave}} \sim 10$ and low σ_H (overlapped by the high σ_H profiles), the fluxes are not even close to constant, instead exhibiting a quick convergence to small values for $z/H_{\text{ave}} \geq 10$, and this is doubly so for areas of high σ_H. Nevertheless, it will be seen in the latter sections that the lack of a well-defined ISL does not preclude the existence of a logarithmic layer and hence the two-parameter nonlinear regression for the surface roughness aerodynamic parameters, z_0 and d.

b. z_0 and d, conventional micrometeorological approach

This section presents z_0 and d obtained through the conventional micrometeorological approach, that is, least squares regression of the logarithmic wind profile (see section 3b). We show in Fig. 6 that all of the logarithmic profiles are well regressed and the regression errors are small ($\leq 5\%$ for both z_0 and d). Note that the vertical (grid) range for the plotting is extended beyond the logarithmic region so that the profiles

FIG. 5. As in Fig. 4, but for the second-order turbulence statistics: (a) turbulent momentum flux $u'w'$ and (b) turbulent kinetic energy (TKE). Note the logarithmic scale on the ordinate axis. The inset figure legend plots the normalized maximum building height $H_{\text{max}}/H_{\text{ave}}$ that is associated with each profile.
measured (LES) and predicted (UCP) values. This can be partially attributed to the friction velocity \(u_\ast \), which differed between the two studies. In principle, one could directly compare the regressed \(z_0 \) and \(d \) with the predicted values; however, the qualitatively different methods for the calculation of \(u_\ast \) preclude pointwise comparison (see section 3b for a brief discussion). Nevertheless, we try to demonstrate this by comparing the current \(u_\ast \) (denoted as \(u_\ast_{,\text{ML}} \) in Fig. 8c) with values obtained from another method that is based on the peak \(-u'w' \) (denoted as \(u_\ast_{,\text{peak}} \)). The latter approach is also often used in previous studies of urban TBL flow (e.g., Rotach 1999; Kastner-Klein and Rotach 2004).

Despite some scattered points for large \(H_{\text{max}}/H_{\text{ave}} \), a vast majority of the data are well clustered for areas of \(H_{\text{max}}/H_{\text{ave}} \approx 5 \) and the relative discrepancies between \(u_\ast_{,\text{peak}} \) and \(u_\ast_{,\text{RSL}} \) are roughly within \(\pm 20\% \). Figure 8c may be interpreted in the following manner. Large abscissa values (\(H_{\text{max}}/H_{\text{ave}} \)) in combination with low building-height variability (\(\sigma_H \), indicated in the colorbar) imply the presence of skyscrapers, which is in contrast to a cluster of high-rise buildings. For the latter, \(H_{\text{max}}/H_{\text{ave}} \) is generally small, while \(\sigma_H \) is high. Scenarios, wherein both \(H_{\text{max}}/H_{\text{ave}} \) and \(\sigma_H \) are small, essentially indicate a more homogeneous surface. It is noticeable that large discrepancies of \(u_\ast \) arise for high \(H_{\text{max}}/H_{\text{ave}} \) (\(\approx 20 \)) and relatively low \(\sigma_H \), that is, regions that include skyscrapers, and the associated \(u_\ast \) discrepancy is \(> 40\% \). This is consistent with the previous finding of Kanda et al. (2013). For brevity, \(u_\ast \) is used instead of the notation \(u_\ast_{,\text{RSL}} \) in other places of the text.

Plotting \(z_0/H_{\text{ave}} \) versus \(\lambda_p \) and so for \(d/H_{\text{ave}} \) (Figs. 8a,b, respectively) helps to highlight the discrepancies that may not be easily resolved using the conventional UCP, herein the overestimation of the scatter for the former and the underestimation for the latter. It was indicated in Kanda et al. (2013) that the parameterization needs to be improved for areas with high-rise buildings centered in the domain or a vast of misalignment of building facades with the dominant wind direction. The influence of tall bluff elements on \(z_0 \) and \(d \) was also noted in Hagishima et al. (2009) though for idealized uniform and nonuniform building arrays. Obviously more geometric factors affecting the surface roughness heterogeneity and the uneven distribution of the roughness elements may need to be considered or the weights quantifying the importance of each contributing factor be adjusted for improved performance of the parameterization.

c. \(z_0 \) and \(d \), random forest

1) RF REGRESSION

Figure 9 compares the roughness aerodynamic parameters, \(z_0 \) (Fig. 9a) and \(d \) (Fig. 9b), obtained from the RF regression ("predicted") with those from the conventional least squares regression ("measured"; see sections 3b and 5b). A typical 75%–25% training-validation ratio (e.g., Were et al. 2015) is used for the random split of the original dataset. Despite a few outliers in Fig. 9a, the performance of the prediction using RF ML reaches up to \(R^2 = 0.94 \) (RMSE = 0.15 m) for \(z_0 \) and \(R^2 = 0.99 \) (RMSE = 2.33 m) for \(d \) as compared with the

![FIG. 6. Log-law fitting. The vertical (grid) range for the plotting is extended beyond the logarithmic region so that the profiles associated with different analysis units may be better distinguished.](image-url)
conventional UCP algorithm: see Kanda et al. (2013), wherein $R^2 = 0.55$ for z_0 and $R^2 = 0.78$ for d. Once the relationship is established, one can conveniently predict the roughness aerodynamic parameters for given surface topographical features. We have confirmed that a 80%–20% random split of the dataset for training and testing (e.g., Ghorbani et al. 2020) does not affect the results qualitatively.

The exact performance of the model depends on various factors, which include the number of trees (or estimators) in a forest, the fraction of the original dataset allocated for the training of an individual tree and the number of features to find the best split, the minimum required number of samples in a node to allow further splitting and the maximum depth that a tree can be grown. The optimum combination of the hyperparameters is obtained through cross validation.

2) RF CLASSIFICATION

As compared with the regression, which predicts values, classification is useful in distinguishing between urban surfaces of differential roughness and aerodynamic characteristics in accord with the aerodynamic parameters for given topographic entries. To do so, values of the aerodynamic parameters need to be separated into discrete classes that label different value ranges, herein 10 for z_0 ($z_01 - z_010$) and 9 for d ($d1 - d9$). The bounds for neighboring ranges may be defined in a practical manner following Grimmond and Oke (1999); however, for

![Fig. 7. (a) A summary of the dynamic characteristics, (b) pdf for z_0, and (c) pdf for d. The R^2 squared in (a) reflects the quality of the two-parameter nonlinear least squares regression of the wind profiles (Fig. 4) toward the theoretical logarithmic profile (Fig. 6). For compactness, statistics of Re (see section 2b), u_*, and Re_a (see section 3b) that are associated with the ensemble of the analysis units are plotted in the same panel with the roughness aerodynamic parameters. As in Fig. 3, the red open diamonds denote the mean and the short horizontal lines colored in white plot the median. The red curves in (b) and (c) denote the fitting to skewed Gaussian distributions. The caret denotes the ensemble average over all sampling units (see Duan and Takemi 2021), and σ is the associated standard deviation. The data of z_0 and d are normalized to ensure zero mean and unit variance.](image-url)
simplicity they are assigned in a statistical way, that is in terms of the distance (in units of the standard deviation) to the ensemble mean (see Table 1 for a summary of the discrete classes and the corresponding value ranges).

The performance of the classification is quantified using confusion matrix in Fig. 10. Except for some negligible amount of confusion, for example, when attempting to distinguish \(z_0 \) from \(z_{08} \) and \(d_6 \) from \(d_9 \) (highlighted in the dash–dotted blue squares), the overall performance of the classification is exceptional. The fraction of predictions that the model correctly classified is as high as 0.97 for both \(z_0 \) and \(d \). There is a well-defined off-diagonal pattern—the distribution of correct predictions roughly follows a bell shape, which preserves the nature of the original dataset (see Fig. 7), and the ±0.5\(\sigma \), that is, the 38% percentile (see Table 1), is well captured: 37.8% for \(z_0 \) and 36.5% for \(d \) (see the intersectional portion of the horizontal and vertical bands, \(z_{04} \) for Fig. 10a and \(d_3 \) for Fig. 10b).

d. Feature importance identification

Figure 11 plots the model performance scores (definitions see section 4b), \(I_C \) (Figs. 11a,b) based on the reduction of node impurity upon each feature and \(I_P \) (Figs. 11c,d) based on the decrease of model performance, for the RF regression. The surface morphometric features exhibit greatly differing
influence on the roughness aerodynamic parameters. For I_G (Figs. 11a,b), the average and maximum building heights (H_{ave} and H_{max}) account for up to 60\% of the influence on the prediction of z_0 (Fig. 11a). Although the building-height variability σ_H is relatively less informative in comparison with the building packing indices (λ_p and $\lambda_f \sim 30\%$), the information contribution is nonnegligible ($\sim 10\%$). By contrast, the displacement height, d (Fig. 11b), is shown to be almost exclusively determined by H_{max}; the I_G score is up to 90\%. The I_P scores (Figs. 11c,d) exhibit a rough agreement with I_G. While the orders of the feature indices for I_P and I_G do not exactly coincide—for example, that for λ_p and λ_f and also H_{ave} and H_{max} are swapped in Fig. 11c as compared with Fig. 11a and λ_p and σ_H are swapped in Fig. 11d as compared with Fig. 11b, the general trends of the feature importance agree within the error bars, and the agreement is markedly better for d.

Actually, the importance of the maximum building height, H_{max}, was also emphasized in Kanda et al. (2013). A rough but direct evidence is the inclusion of H_{max} for the parameterization of z_0 and d in Kanda et al. (2013) as compared with the original formulas of Macdonald et al. (1998). Despite that H_{max} does not appear explicitly in the parameterization of z_0, the influence is implicitly accounted for through the building-height variability, σ_H. Distinct aerodynamic characteristics were also observed behind high-rise buildings in a densely built-up urban area in Seoul (Park et al. 2015a).

Figure 12 plots the I_G (Figs. 12a,b) and I_P (Figs. 12c,d) scores for the RF classification. It is surprising that the I_G scores imply a qualitatively different effect of the surface morphometric features on the classification of the roughness aerodynamic parameters than on the regression (cf. Fig. 11). Taking z_0 (Figs. 12a,c) for example, the I_G scores (Fig. 12a) suggest that the morphometric features considered herein are almost equally important for the classification, while the I_P scores (Fig. 12c) support the argument that the morphometric indices are unevenly informative (also note the swapped feature order). This is perhaps because the labeling of classes for z_0 and d (see Table 1) artificially reduces the randomness, which consequently biases the feature importance scores for the classification.

Discrepancies of the feature importance scores between I_G and I_P may be also attributed to the difference in the nature of the two feature importance measures (introduced in section 4b), namely I_G is biased because of the correlation between the impurity reduced by one feature and that reduced by the other as the tree being grown deeper, as opposed to I_P, which does not have the correlation issue and is unsusceptible to random noise. Importantly, the feature importance scores of I_P for the classification (Figs. 12c,d) exhibit a qualitative agreement with the scores obtained for the regression (Fig. 11), implying the robustness of I_P as compared with I_G as a feature importance measure.

e. Robustness

The sample size was effectively increased adopting the ensemble sampling approach (section 3), which enables the

Table 1. Labeling of the discrete value ranges of z_0 and d; the caret, or “hat,” denotes the ensemble average. The row with z_0^4 and d^3 indicates classes that occupy the $\pm 0.5\sigma$ or the 38\% percentile.

<table>
<thead>
<tr>
<th>z_0</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_0^1</td>
<td>$z_0 \in [z_0 - 2.0\sigma, z_0 - 1.5\sigma]$</td>
</tr>
<tr>
<td>z_0^2</td>
<td>$z_0 \in [z_0 - 1.5\sigma, z_0 - 1.0\sigma]$</td>
</tr>
<tr>
<td>z_0^3</td>
<td>$z_0 \in [z_0 - 1.0\sigma, z_0 - 0.5\sigma]$</td>
</tr>
<tr>
<td>z_0^4</td>
<td>$z_0 \in [z_0 - 0.5\sigma, z_0 + 0.5\sigma]$</td>
</tr>
<tr>
<td>z_0^5</td>
<td>$z_0 \in [z_0 + 0.5\sigma, z_0 + 1.0\sigma]$</td>
</tr>
<tr>
<td>z_0^6</td>
<td>$z_0 \in [z_0 + 1.0\sigma, z_0 + 1.5\sigma]$</td>
</tr>
<tr>
<td>z_0^7</td>
<td>$z_0 \in [z_0 + 1.5\sigma, z_0 + 2.0\sigma]$</td>
</tr>
<tr>
<td>z_0^8</td>
<td>$z_0 \in [z_0 + 2.0\sigma, z_0 + 2.5\sigma]$</td>
</tr>
<tr>
<td>z_0^9</td>
<td>$z_0 \equiv z_0 + 3.0\sigma$</td>
</tr>
</tbody>
</table>
training of the ML model; however, the overlapping of neighboring units\(^2\) may result in correlations in the calculated roughness aerodynamic parameters between adjacent analysis units. While this should be less of an issue for the RF classification since it is unlikely that values of the aerodynamics parameters of overlapped units would be separated into different classes [see section 5c(2)], it would possibly lead to overfitting of the RF regression. It is hard to acquire a large dataset with completely independent samples meanwhile maintaining a sufficient characterization of the surface topographic features; however, the performance scores in section 5c need to be interpreted with caution.

It is prudent to confirm the performance of the RF model for a dataset that is devoid of the neighboring overlap. This is now examined for \(d_x = l_x = 250 \text{ m}\) and \(d_y = l_y = 250 \text{ m}\). As expected, the significant issue encountered in practice is the substantial decrease of the sample size (by more than an order of magnitude) and as a consequence, the surface morphometric features are also much less comprehensively represented. Unfortunately, there seems no economical means to resolve this other than considering more topographies. It is impractical and expensive to increase the sample size to an equivalent amount as before by doing so. Herein large-eddy simulations are performed for six extra subregions taken from Tokyo (see appendix D). The spatial dimensions and model setups remain the same as that for the Osaka topographies plotted in Fig. 1.

Relative to the prediction in section 5c, a significant drop is experienced \((R^2 = 0.65\) for \(z_0\) and \(R^2 = 0.66\) for \(d\); figures not shown), particularly for \(d\), which is not as well predicted as the UCP scheme proposed in Kanda et al. (2013). The evidence to support the argument that an ML model could perform superiorly to the conventional UCP is inconclusive. Nevertheless, the slightly improved prediction of \(z_0\) is suggestive that ML can still be considered as a valuable complement to the conventional UCP once datasets are available for a sufficient training.

6. Summary and discussion

The current study explored the potential of ML as a complement to the conventional UCP schemes. Using LES and the traditional micrometeorological method, that is two-parameter nonlinear least squares regression of the logarithmic-layer wind profiles, in combination with the ensemble sampling approach (Duan and Takemi 2021), a dataset of approximately \(4.5 \times 10^3\) samples was established for the roughness aerodynamic parameters \((z_0\text{ and } d)\) and the urban surface morphometric statistics. The latter included the building packing indices \((l_f\text{ and } l_p)\), mean and maximum building heights \((H_{\text{ave}}\text{ and } H_{\text{max}})\) and associated standard deviations \((\sigma_H)\). A random forest algorithm (Breiman 2001), one of the most powerful ML algorithms that is capable of both regression and classification, was subsequently trained and implemented for the prediction of \(z_0\) and \(d\), which are vital to the accuracy of the MOST.

The RF algorithm predicted the categories of \(z_0\) and \(d\), which were separated into discrete classes in terms of the departure (in units of the standard deviation) from the ensemble mean, with an exceptional performance score. The overall bell-shaped distributions were well predicted and the \(\pm 0.5\sigma\) (or 38%) percentile category competently captured: 38.0% for \(z_0\) and 36.5% for \(d\). The classification is of particular relevance to

\(^2\)For the sampling with lateral displacement distances \((d_x\text{ and } d_y)\) smaller than the lateral dimensions \((l_x\text{ and } l_y)\) of the analysis unit.
the parameterization of surface characteristics in mesoscale models, wherein the roughness parameters are generally assigned in accord with land-use categories (Wieringa 1992; Davenport et al. 2000). While the RF regression experienced a significant drop in estimating \(\delta \) relative to the most recently proposed UCP scheme in Kanda et al. (2013), the performance for \(z_0 \) appeared to be promising. The most practical contribution is the identification of parameters that could be of predominant influence on the prediction of \(z_0 \) and \(\delta \). The surface morphometric features exhibited greatly differing influence on the roughness length than on the displacement height. For the former, all the morphometric parameters considered herein are found to be informative, doubly so for the building height metrics (\(H_{\text{ave}} \) and \(H_{\text{max}} \)), which accounted for up to 60% of the influence. By contrast, the latter, \(\delta \), appeared to be almost exclusively determined by \(H_{\text{max}} \). The results coincide well with Kanda et al. (2013), wherein the importance of the maximum building height, \(H_{\text{max}} \), was also emphasized. Direct supporting evidence is the inclusion of \(H_{\text{max}} \) in the proposed aerodynamic parameterization schemes as compared with the original formulas in Macdonald et al. (1998).

A perhaps counterintuitive result is the considerably less striking importance of the building-height variability that reflected by the feature importance scores (\(I_G \) and \(I_P \)). It is found that \(\sigma_H \) was of less influence as one would normally expect, particularly for the prediction of \(\delta \) (Fig. 11). While this is not entirely surprising because the values of \(\sigma_H \) for the urban topographies considered herein (\(\sigma_H < 25 \text{ m} \); see Fig. 3) could be of secondary importance, a more likely explanation would be that \(\sigma_H \) is correlated with the other surface morphometric features, in particular with \(H_{\text{max}} \) and \(\lambda_f \) (Hagishima et al. 2009). The building-height-to-canyon-width aspect ratio (AR), which affects the flow regimes inside urban canyons (Ngan and Lo 2016), is another morphometric feature that could be correlated with \(\sigma_H \), particularly considering the ubiquitous asymmetric canyon geometries in realistic urban regions. The influence of \(\sigma_H \) may be already embodied within those indices; however, disentangling the complexity of the correlation between features is difficult using the current ML algorithm.

![Fig. 11. The (a),(b) IG and (c),(d) IP scores (definitions see section 4b) for the RF regression for (left) \(z_0 \) and (right) \(\delta \). Because \(I_P \) is calculated as a relative change of \(R^2 \) values before and after the permutation of a feature, it is not necessarily upper bounded by unity. Note the order change of feature labels on the ordinate axes between different panels, especially the top vs the bottom. For comparison, each feature is indicated in a different color.](image-url)
Nevertheless, knowledge of the feature importance scores allows weights to be assigned accordingly to the different contributing factors, and those scores could be of usefulness guiding the selection of informative factors for the derivation of new UCP schemes.

The weaknesses of the current study lie in the following aspects. First, the urban topographies may not be representative of all urban surface types (Ratti et al. 2002), especially of areas occupied with sparsely distributed roughness elements, despite that the ensemble sampling approach (see section 3a) to a certain extent already accounts for the spatial variations of the morphometric statistics. Green canopies and vegetated surfaces might be another important consideration (Raupach et al. 1996; Kanda et al. 2007; Barbano et al. 2020). Second, the meteorological conditions were idealized, for example, the turbulent flow was driven by a prescribed pressure gradient with periodic boundary conditions and thermal effects were neglected. On the one hand, the estimation of the surface roughness aerodynamic parameters using the conventional micrometeorological method may not be straightforward for thermally stratified boundary layers, partially due to the growing of the internal boundary layer (Rao 1975; Duan and Ngan 2020). On the other hand, the nonuniversal motions, for example, intermittency in stable conditions (Sun et al. 2012; Ansorge and Mellado 2016) or enhanced vertical transport of scalar covariance in unstable conditions (Cancelli et al. 2012), may result in possible violation against the similarity theory (Mahrt and Bou-Zeid 2020). Oftentimes “near neutral” assumption is imposed in studies of neutrally stratified boundary layer flows (Horiguchi et al. 2010; Klein and Galvez 2015). More sophisticated ML algorithms may be explored, for example, deep learning (e.g., Rasp et al. 2018; Cheng et al. 2019), to account for more complex perturbations that would arise in realistic meteorological scenarios. The above aspects may represent interesting directions for future investigation.

Establishing a universally accessible database to integrate z_0, d, associated urban morphological indices, and possibly available meteorological conditions from discrete simulations, experiments, or field campaigns could bring efforts of different parties together and make well-trained ML algorithms possible. Given the proof-of-principle attempt of the current study, testing a simplified ML algorithm within a mesoscale model as a replacement of the internal UCP schemes could be an

![Figure 12](image-url)
achievable short-term goal throughout the entire phase toward ML-based UCP.

Acknowledgments. This research was supported by the Environment Research and Technology Development Fund (ERTDF) JPMEERF20192005 of the Environmental Restoration and Conservation Agency (ERCA) of Japan and Japan Society for the Promotion of Science (JSPS) Kakenhi 18H01680. The computation was performed on the Large-Scale Computer Systems, Laurel 2, of Kyoto University. The authors thank the editor and the anonymous reviewers for the careful reading and valuable comments.

APPENDIX A

Validation

Figure A1 compares the vertical profiles of the temporal and spanwise averages of the streamwise velocity $\langle u \rangle$ at different streamwise locations x/W inside a unit-aspect-ratio canyon ($H/W = 1$, where H is the canyon height and W is the canyon width) with the wind-tunnel measurements of Brown et al. (2000). Statistical performance metrics (Eichhorn 2004) indicate that the model simulated the wind profiles very well: the normalized mean-square error (NMSE) $= 0.01–0.03$ and the fractional bias (FB) $= 0.01–0.03$ are consistent with the acceptance criteria for microscale flow models (VDI 2005); the hit rate, $q = 68\%$, also satisfies the criterion ($q > 66\%$) for successful validation (Santiago et al. 2007). Comparable agreements have also been obtained in previous studies using the same LES model (e.g., Duan and Ngan 2018; Lo and Ngan 2020).

The degree of pattern similarity between the simulated and measured wind profiles is quantified using Taylor diagram (Taylor 2001; Ghorbani et al. 2020) in Fig. A2. The markers on the diagram denote the statistical measures of the comparison for each x/W. A perfect validation would be the one that overlaps the measurement (indicated as “REF” on the x axis). It can be seen that the simulated patterns of the wind profiles match well with the measurements.

FIG. A1. Normalized mean streamwise velocity profiles, $\langle u \rangle/\langle U \rangle$, for the current LES (solid blue curve) and the wind-tunnel experiments of Brown et al. (2000) (black circles) for $x/W = (a) -0.4$, (b) -0.25, (c) 0, (d) 0.25, and (e) 0.4; $\langle U \rangle$ denotes the shear-layer average, $1 \leq z/H \leq 1.5$, of the streamwise velocity.

FIG. A2. Taylor diagram for the comparison of temporally and spanwise-averaged streamwise velocity profiles obtained from the current LES model with that from the wind-tunnel experiments of Brown et al. (2000). REF denotes the measured values.
match well with the measurements: the Pearson correlation coefficients (the azimuthal angle) are close to unity; the RMS errors (gray contours) are small, and the standard deviations (the dashed arc) are comparable to the measured values.

Successful validations of second-order turbulence statistics can be found in Duan and Ngan (2019) and Nazarian et al. (2020) for idealized building arrays and in Gronemeier et al. (2021) and Resler et al. (2021) for real-case building setups. Since the dataset in the current study is primarily derived from least squares regression of the time-averaged wind profiles (see sections 3b and 5b), validations of second-order statistics are not repeated here.

APPENDIX B

A Simplified Mathematical Illustration of RF

RF has often been presented in a schematic style in its practical applications, while the associated mathematical properties and statistical mechanisms have been largely neglected. This is because internally an ML algorithm can be hardly represented using a series of formulas—it is an interdisciplinary field and involves linear algebra, multivariate calculus, probability theory and statistics, algorithms, and complex optimization (Mitchell 1997). For completeness and clarity, we show below a simplified mathematical illustration of the procedures that RF uses.

Given a dataset, \(\mathcal{D}_n = \{ (X^i, Y^i) \}_{i=1}^n \) [Eq. (12)], where \((X^i, Y^i)\) denotes an element pair [Eqs. (3) and (4)] of the feature set \(X \) and the response set \(Y \), that is, \((X^i, Y^i) \in (X, Y)\), the objective is to predict \(Y^i \) for given \(X^i \), namely,

\[
\hat{f}(X^i) = E(Y^i | X^i),
\]

using an RF algorithm that trained on bootstrap subsamples of \(\mathcal{D}_n \), herein \(\mathcal{D}_n = (X, Y) \). A collection of the base trees that trained in parallel on \(B \) subsets \(\mathcal{D}_B \) (resulting from \(B \) times bootstrapping),\(^1\)

\(^1\) The process of training the decision trees of a random forest in parallel on random subsets of the training dataset \(\mathcal{D}_n \).
\[D_b = \{ (X_b, Y_b) \}_{b=1}^B, \]
(B2)

where \(D_b = (X_b, Y_b) \subset D \), constitutes a random forest.

Algorithms for growing the trees generally work from the top down. The best split of each node aims at minimizing the impurity \(G \), which is a measure conditioned on the feature entries for the optimal partitioning of each node into two such that similar values of the target variable end up in the same set. Exact forms of the impurity function depend on the specific RF tasks. For regression, common measures include minimizing the L1 and L2 errors; for classification, there is Gini impurity (MacKay 2003; D’Ambrosio and Tutore 2011). The optimum split option \(\theta^* \) of a sample set \(Q \) (where \(Q \subseteq D_b \)) at node \(m \) is determined such that \(G \) is minimized, namely,

\[\theta^* = \arg\min_{\theta} G(Q, \theta). \]
(B3)

Recursively doing so for subsets \(Q_{\text{left}} \) and \(Q_{\text{right}} \) (where \(Q = Q_{\text{left}} \cup Q_{\text{right}} \)) until specified a criterion (e.g., the maximum depth for a tree or the minimum allowable leaf number for a node) is reached. The final prediction of RF for input \(X' \) is given by averaging over the ensemble of the trees for regression,

\[\hat{f}_{\text{final}}(X') = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(X'), \]
(B4)

or voting the majority for classification. This final process is also referred to as aggregating, and jointly with bootstrapping it is known as bagging.

APPENDIX C

A Brief Description of the Feature Importance Measures, \(I_G \) and \(I_P \)

For \(I_G \), a typical choice would be the Gini impurity decrease for RF classification and the variance reduction for RF regression. The former is a function of the probability \(1 - p_i \) that a randomly chosen class is incorrectly categorized; the latter is simply the mean-square error. Formally,

\[I_G = \Delta \sum_{i=1}^{J} \frac{1}{N_i} \sum_{j=1}^{N_i} (y_i - \bar{y})^2 \]
\[I_P = \sum_{b=1}^{B} \frac{P(X_b, Y_b) - P(S(X_b), Y_b)}{P(X_b, Y_b)}, \]
(C1)

where \(\Delta \) indicates the deduction of associated impurity measure, \(J \) denotes the number of the classification, \(N \) denotes the number of predicted values \(y \), and \(\bar{y} \) denotes the associated mean. For \(I_P \), there is

For simplicity, herein \(P \) is chosen to be the \(R^2 \) squared for the RF regression and the proportion of correctly classified counts for the RF classification.

APPENDIX D

Subregions within Tokyo

Figure D1 plots the topographies of six urban areas within Tokyo considered for the extra LES in section 5e. The spatial dimensions and model setups remain the same as that for the Osaka subregions plotted in Fig. 1.

REFERENCES

——, R. Lawson, D. DeCroix, and R. Lee, 2000: Mean flow and turbulence measurements around a 2-D array of buildings in a

Horiguchi, M., T. Hayashi, H. Hashiguchi, Y. Ito, and H. Ueda, 2010: Observations of coherent turbulence structures in the

