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ABSTRACT

The aim of the present study is to characterize mountain returns measured with a ground-based weather
radar operating in a mountainous region. A computation code based on the use of a digitized terrain model is
developed for calculating the areas illuminated by the radar beam. Partial and total screening effects are accounted
for in the calculation. The angular and range weighting functions of the radar measurement are modeled using
Gaussian approximations to give the so-called weighted illuminated areas for various sizes of the radar resolution
volume. Radar measurements are compared to the computed illuminated areas in order to determine the
average backscattering coefficient of partly grass-covered, partly forested mountains: 87% of the measured time-
averaged mountain return variance is explained by the computed values when the [5-dB resolution volume is
considered. Additional geometrical information, provided by the calculated angles of incidence, is accounted
for 1o yield a linear o%4u)() model relevant for the so-called near-grazing region since most of the angles of
incidence are in the 70°~90° range. Here 92% of the measurement variance is explained when the o 245)( )

model is used.

1. Introduction

From a meteorological point of view, mountainous
relief plays an important role in generating or inten-
sifying precipitation. Furthermore, from a hydrological
point of view, it leads to reduced response times and
increased streamflow volumes over small and poten-
tially dangerous watersheds of mountainous areas. In
this context, weather radar is a very useful device for
estimating and forecasting rainfall compared to con-
ventional rain gauge networks. However, its use comes
up against major difficulties due to the interception of
clectromagnetic waves by the relief. Optimization of
the radar location with respect to the areas of interest
certainly minimizes ground clutter and screening ef-
fects. A volumetric scanning protocol is also compul-
sory to cancel residual ground clutter, to infer the ver-
tical structure of atmospheric reflectivities, and to ex-
tend the spatial coverage of the radar measurement
{Joss and Waldvogel 1990; Andrieu and Creutin 1995;
Andrieu et al. 1995).

However, besides the obvious need for eliminating
ground detection effects, a precise characterization of
mountain returns can be interesting for various appli-
cations. First, mountains could be used as passive tar-
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gets for continuous testing of radar calibration stability.
Second, methods for improving rainfall estimation over
ground-cluttered areas could be derived. Finally, when
attenuating wavelengths are considered, mountain re-
turns may be used for estimating path-integrated at-
tenuation due to rainfall between the radar and the
mountain. The interest of such additional information
for correcting attenuated reflectivity profiles (surface
reference technique) is now well established for a
spaceborne radar configuration (e.g., Meneghini et al.
1983; Meneghini and Kozu 1990; Marzoug and
Amayenc 1991, 1994).

The present work is a numerical approach to this
characterization. A procedure for calculating areas il-
luminated by the radar beam using a digitized terrain
model (DTM) is proposed. The angular and range
weighting functions of the radar measurement, as well
as partial or total screening effects, are accounted for
in the establishment of the radar equation for ground
targets. At the same time, X-band radar measurements
realized in Grenoble, France, enable computation of
time-averaged mountain returns during nonrainy con-
ditions. These data, compared to the calculated illu-
minated areas, lead to a model for the mean back-
scattering coefficient of partly grass-covered and partly
forested mountains.

Note that previous work has been done concerning
the attractive idea of using DTMs for radar siting in
mountainous areas: in France, we can mention a pi-
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oneer work by Roux et al. (1989) that was a quite
successful attempt to simulate ground detections in the
context of the Cévennes 1986-88 Hydrometeorological
Experiment (Andrieu et al. 1989). The resulting code
has been later improved by Météo France; it is currently
used for choosing the sites of the new radars to be in-
stalled in the uncovered mountainous areas of the
South of France (ARAMIS network).

2. Theory

a. Radar equation for a ground target

In an analogous way to the weather radar equation
(Doviak and Zrni¢ 1992), the radar equation for a
ground target may be written as follows:

2% f G (8, ¢)| W (1) |2
(4r) rt

P(r()s 009 ¢0) =

X a°(r, 0, $)L2(r, 6, $)dS. (1)

Here (ry, 6o, ¢o) are the spherical coordinates of a given
radar cell center, dS represents an elementary illumi-
nated area centered at (r, 8, ¢), and (73, 8, ¢;) are the
spherical coordinates taken with respect to the radar
cell center; that is, r, = r — ry, 6, = 0 — Oy, ¢p = ¢
— ¢o. As dry weather conditions are considered, we
assume that the two-way attenuation factor L%(r, 6,
¢) is equal to 1 (i.e., the attenuation by atmospheric
gases is neglected). Term ¢%(7, 6, ¢) is the backscat-
tering coefficient (or backscattering cross section per
unit area) of the elementary illuminated area dS. Be-
sides the geometric and electromagnetic properties of
the target, the average backscattered power P(ry, 6,
¢o) at the output of the radar receiver depends on (i)
the working wavelength A, (ii) the transmitted power
P, and (111) the so-called angular and range weighting
functions G?(8,, ¢5) and | W(r,)|? accountmg for the
charactensncs of the antenna and the receiver, respec-
tively. Note that the validity of (1) lies on the assump-
tion of a phase independence of the scattering elements
dS so that their elementary powers may be added
(Skolnik 1990, chapter 12).

b. Weighting functions and resolution volume

The angular weighting function G2(8,, ¢;) can be
defined as the product of the square of the antenna
power gain Gy along the beam axis and the square of
the normalized power gain pattern f2(6,, ¢5):

GH(0b, d5) = G5/ (05, &5). (2)

If the radar antenna is a paraboloid of revolution,
(2) simplifies to

Gi(¥s) = G3f* (¥, (3)

where ¥, is the angular distance from the beam axis.
A coarse approximation of G?(y,) may consist of as-
suming that the gain is constant across the 3-dB beam-

DELRIEU ET AL.

1039

width ¥; and zero elsewhere. A more satisfactory so-
lution lies in the use of a Gaussian approximation for
the normalized power gain pattern (Probert-Jones
1962)

G2(¥s) = G3 exp(—%), 4)
with
v
41In2°

Of course, this approximation is valid only for part
of the main lobe, and more complex fittings involving
Bessel functions of second order (Doviak and Zrni¢
1992 ) should be used if the sidelobes are to be correctly
defined.

In a quite analogous way, the range weighting func-
tion | W (r,)|? is used to weight the contribution of a
scatterer located at range r to the power sampled at
range ry. A standard approximation is to assume that
for a rectangular transmitted pulse of duration 7, only
scatterers within a range ¢7/2 (where ¢ is the speed of
light) centered at ry contribute and receive an equal
weight of 1; that is,

<c7/4

elsewhere.

) 1, | rb|

| W(rb)|>2 = {6,
Doviak and Zrni¢ (1992) proposed an alternative
approach for modeling the range weighting function
based on the concept of matched filtering. They showed

that due to the finite bandwidth of the receiver, a better
approx1mat10n of | W(ry)|? is given by

(5)

2
] W(r)|* = {-2— [erf(x + b) — erf(x - b)]} (6)

for a rectangular transmitted pulse and if a Gaussian
frequency transfér function of the receiver is assumed.
In (6), erf represents the error function:

y
erf(y) = —?ﬁf exp(—t?)dt, (7)
_ T 0

and a = 7[2(In2)'/?]7', b = Bgra/2, x = 2aBgrs/c,
where B is the 6-dB bandwidth of the receiver.

When (4) and (6) are used to model the angular
and range weighting functions, the resolution volume
contributing to the backscattered power sampled at a
given point (7o, 8, ¢o) is a priori infinite. By conven-
tion, we will define the m-dB resolution volume V,, to
be the volume circumscribed by the 2m-dB contour of
G} (¥»)| W(rp)|%. The angle and range extents corre-
sponding to this cutoff level will be denoted v, and
'm, respectively. The volume V), is then defined in
three-dimensional space R? as

Vm?[M(r,0,¢')€R3,|rb| ,\//b\h]-' (8)
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From a geometrical point of view, V,, is the inter-
section of a circular cone with a ¥, vertex angle and
a spherical shell of outer radius ry + r,/2 and inner
radius ry — r,./2. '

¢. Hlluminated area

. From the previous considerations and making the
further assumption that the range extent of the reso-
lution volume is small compared to ry, (1) may be
rewritten as follows:

0

_ =
P(ry, o, ¢0)=CS7Z', 9)
0

where Cs is the radar constant relevant for a ground
target
_ P.G3N?

(4x)?

Cs
and »
20 = ff L) I W (r)2a(r, 0, $)dS.  (10)
S

Let us considér a new variable Z, the so-called
weighted illuminated area, depending only on the geo-
metric characteristics of the ground target and the radar
beam:

2=f£f4(¢b)lW(rb)|2dS- (11)

An estimation X, of Z (the subscript m refers to the
size of the resolution volume) can be obtained using
a DTM of the area of interest according to the following
procedure. Let us consider an X, Y, Z rectangular co-
ordinate system centered at O, the radar location. Fig-
ure 1 presents a schematic illustration of the vertical
and horizontal projections of V,,. The DTM consists
of a series of (X, Y, Z) triplets giving the altitude of
ground for a regular grid with horizontal. resolution
(AX, AY). Hence, the ground surface is described by
small portions of planes defined by three adjacent grid
points. First, all the DTM grid points belonging to the
(X, Y) projected area of V,, are selected. To each grid-
point 4, we can associate only two distinct triangles
ABC and AB'C’' as shown in Fig. 1b. The weighted
illumination area Z,, will then be calculated as the dis-
crete summation of the weighted illuminated areas of
the N, triangles thus defined:

N,
2= 2 Zmli). (12)

i=1

Let us now consider the calculation of Z,,(i): the
ith triangle defines a plane P; in R*. The angle of in-
cidence «; of the electromagnetic waves on P; is given
by '
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FIG. 1. (a) Vertical and (b) horizontal projections of the m-dB
radar resolution volume in the (O, X, Y, Z) Cartesian coordinate
system linked to the DTM. .

cosa; = —N-To,

(13)

where n and 1, are the unit vectors normal to P; and
along the radar beam axis, réspectively, oriented toward
positive Z values (Fig. 2). Plane P; is illuminated by
the radar beam if o; < 7 /2. In such a case, the inter-
section of the circular cone and plane P; is an ellipse
ifo; <w/2 —,,/2 and an hyperbola if #/2 — ,,/2
< a; < n/2 (Florent et al. 1991). Due to the small
values of y,,,, we will consider only the case of an ellipse
intersection in the following. Furthermore, the inter-
section of the spherical shell and plane P; is a circular
shell if ry — r,,,/2 is greater than the distance between
O and O’, where O’ is the projection of O on P;. At
this point, it is convenient to consider a new X, y, z
rectangular coordinate system associated to plane P;
in order to obtain a simple parameterization of the
ellipse and the circular shell. An integration scheme
can then be applied to obtain Z,,(i), the limits of in-
tegration being given by the triangle, the ellipse, and
the circular shell equations. It is worth noting that the
integration procedure is complicated by two factors:
first, the calculation of the weights f*(i;) and | W(r3)|2
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FIG. 2. Side view of the intersection of the radar resolution volume
and an elemental planar surface generated by three adjacent DTM
grid points.

imposes a conversion of the (x, y, z) coordinates back
to the (r,, 6, ¢5) coordinates; second, an additional
integration constraint is required to account for possible
partial or total screening effects due to the interception
of the radar beam prior the range cell of interest. Details
concerning this integration procedure are given in the
appendix.

d. Backscattering coefficient

The backscattering coefficient of ground depends
both on the nature of the surface (roughness, vegetation
cover, moisture content, etc.) and on the radar param-
eters (wavelength, angle of incidence, polarization of
the waves, etc.). Moore (Skolnik 1990, chapter 12)
reviews various models for backscattering coefficients
obtained from either satellite radiometer or with mast-
mounted microwave active spectrometer measure-
ments. For instance, a so-called linear model was fitted
to average backscattering coefficients versus the angle
of incidence:

&°=Aoexp(—3). (14)

Qo

This model is said to be linear since its logarithmic
transform yields

-0 —
O (dB) = (71 + boa,

(15)

with @y = 10 logA4, and by = —4.343 /. The param-
eters gy and b, are wavelength and polarization depen-
dent (see Table 12-2 in Skolnik 1990). Their validity
is also restricted to a given range of angles of incidence.
Basically, according to Moore, three angular “regimes”
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can be distinguished: the near-vertical regime corre-
sponding to angles of incidence ranging from 0° to
15°, the plateau region corresponding to angles of in-
cidence ranging from 15° to about 70°, and the near-
grazing regime for angles of incidence greater than 70°.

In the measurement context considered in the pres-
ent study, we can infer such a linear model through
the comparison of measured values of =° and values
of 2 calculated according to the procedure described
in section 2c. On one hand, N observations of Z° can
be obtained for all radar cells giving mountain returns
over the measurement area. If » is a space index (n
= 1, N) for the radar measurement made at point (ry,
bo, do), (9) gives

P(ro, 8o, ¢o)78
Cs '
On the other hand, to each triangle i contributing
to the estimation of the nth illuminated area, [/ = 1,
N,(n)] can be associated the values of 2,,(i, n) and
a;(n). Equation (12) yields
Ny(n)

Za(n)y= 2 Z,(i,n).

i=1

2%n) = (16)

(17)

The statistical distribution of the calculated angles
of incidence «;(n) gives the range of angles of interest
[ @min> @max], Which can be divided into N, classes using
a A« step. Rearranging the Z,, values according to the
N, classes of angles enables ( 17) to be written as follows:

Ne
Em(n) = E zm(ajy n)7

Jj=1

(18)

where «; is the central value of the jth class of angles
of incidence. Equations (16) and (18) can be combined
as

N,

a

2%n) = Z o%(a)Z(ay, n),

j=1

(19)

where the [¢°(«a;), j = 1, N,] values are coefficients
that can be estimated over the N available observations
using a multiple regression scheme.

3. Case study
a. Experimental context and dataset

Grenoble is located in the French Alps at the con-
fluence of the Isére and Drac Rivers. The topography
of the city is very flat with a mean altitude of 210 m
above sea level. The city is surrounded by three moun-
tain chains (Belledonne, Chartreuse, and Vercors) with
maximum altitudes ranging from 2000 up to 3000 m
(Fig. 3). During the last few years, various hydrome-
teorological experiments were conducted by the LTHE
for developing and testing a prototype X-band weather
radar devoted to rainfall monitoring at the time and
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. FIG. 3. Presentation of the study area: the available DTM information (250 -m 1§ollnes) thé

area.

space scales useful for urban hydrology (Delrieu and
Creutin 1991). The main features of the system are
listed in Table 1. During spring 1994, a spemﬁc exper-
iment was conducted for studymg the behavior of
mountain returns durmg nonramy condmons For

. TABLE 1. The X-band radar parameters.

Transmitter-receiver - .

Peak power 25 kW
Frequency 9.375 GHz
PRF = 500 Hz
Pulse width 2 us

MDS —109 dBm
Receiver 6-dB bandw1dth 1 MHz

Receiver convérsion slope

0.3 dB per count

Antenna
Diameter 1.2 m
Beamwidth at half power 1.8°
Power gain 38.8dB
Polarization Horizontal
Data features
Maximum range used 25 km
Radial resolution - 250m
Incremental azimuth 0.5°
256

Number of power levels

radar-location, and the measurement sector are s1tuated on a schematic v1ew of the Grenoble

convenience, the radar was located on the roof of the
laboratory (Grenoble campus) down in the valley. A
digitized terrain model (provided by the French Institut
Géographique National) with a resolution of AX
=AY =100 mis available for part of the area of interest
(Fig. 3). The measurement effort was concentrated on
a reduced a21muthal sector (60°~75°) for character-
izing radar returns due to the partly forested and partly
grass-covered Balcons de Belledonne Mountains. A
volumetric scanning protocol at two elevations (2° and
3.5°) was repeated every 3 min. Special care was paid
to the selection of the azimuths and elevations in order
to ‘avoid receiver saturation effects. During the mea-
surement period, the weather was good and the moun-
tain surfaces were considered relatively dry with no
snow cover. Figure 4 gives an illustration of the tem-
poral evolution of mountain returns during the mea-
surement period: the space-averaged Z° value is dis-
played as a function of time. It can be noted that the
mountain returns are relatively constant within each
measurement period and from one measurement pe-
riod to another. This fact tends to prove the good over-
all stability of the radar calibration and explains the
calculation of Z° temporal averages for the present
o%(@) model inference. The electronic calibration [in-
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FiG. 4. Temporal evolution of the space-averaged mountain returns
over the measurement area during four successive periods [22 March
1994 (126 min), 24 March 1994 (99 min), 25 March 1994 (96 min),
and 28 March 1994 (201 min)] taken in similar weather conditions.

cluding standard alignments and measurements of
some of the parameters involved in the radar equation
(peak power, frequency, pulse width . . .), as well as
a characterization of the receiver response using a signal
generator] was performed with the help of the radar
manufacturer. Complementary measurements con-
cerning the antenna power gain pattern were also re-
alized using a homemade receiver located at some dis-
tance of the radar. The absolute calibration, also
checked using rain gauge data during various rainfall
events, is estimated to be accurate to within +1 dB.

b. Comparison of measured =° and simulated
values

1) PRELIMINARY TESTS AND ADJUSTMENTS

First, the computation code was tested using simu-
lated DTMs in order to check the validity of the un-
weighted illuminated areas (.S,,) and angles of incidence
calculation. Special care was paid to the choice of the
(Ax, Ay) integration steps and to the mask grid reso-
lution [A tan(6,), A tan(y;)] (see the appendix) in
relation to the range of distances and angles of inci-
dence considered. To give an example, Ax = Ay = 1
m and A tan(6,) = Atan(y,) = 1.1 X 10~* were found
to provide a very good estimation (often much better
than 1% for S,,) for a reasonable computing time.

Second, the angular and range weighting functions
(Fig. 5) were calculated using (4) and (6) and the rel-
evant parameters listed in Table 1. Note the good
agreement of the Gaussian approximation of the an-
gular weighting function with the measurements. Table
2 gives the corresponding angular and range extents
V¥m and r,, for the m-dB resolution volumes considered,
thatis, form = 3,6,9, 12, and 15 dB. It is worth noting
that the application of the range weighting function
further complicates the computation code since (i) the
radar measurements have a 250-m radial resolution
and (i1) the procedure accounting for screening effects
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ANGULAR WEIGHTING FUNCTION (dB)
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FI1G. 5. Angular and range weighting functions: (a) measured an-
tenna power gain pattern f%(y;) (points) and its Gaussian approxi-
mation (dotted line) using ¥, = 1.8°, together with the resulting an-
gular weighting function f*(,,); (b) range weighting function | W(r,)|?
obtained with the measured pulse width (= = 2 us) and 6-dB receiver
bandwidth (Bs = 1 MHz) values using Eq. (6).

requires the use of nonoverlapping radial cells. To solve
this problem, the code was activated twice for a single
calculation with 500-m radial cells: one time with radial

TABLE 2. Angular and range extents of the
m-dB resolution volume.

m (dB) Vm (%) Tm (M)
3 1.80 300
6 2.54 375
9 3.10 429
12 3.60 472
15 4.00 509
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FIG. 6. Correlation coefficient of the measured Z° values and cal-
culated Z,, values (m = 15 dB) as function of the azimuth lag intro-
duced in the geometrical calculation: an azimuth pointing error of
about 1° is visible and was verified by the means of a detailed point
target azimuth analysis.

cells centered on one over two radar bins and a second
time with a shift of 250 m in order to produce Z,,
estimates for the remaining radar bins.

Finally, as the radar positioning may present some
systematic error, the first comparisons of measured Z°
and calculated Z,, values were utilized for the esti-
mation of azimuth, zenith, and radial lags using as a
criteria the correlation coefficient p of the (29, Z,,)
pairs. The most striking result is presented in Fig. 6
(note that the 15-dB resolution volume was considered
in the Z,, calculation ): an azimuth error of about 1.0°
is clearly identified, a moderately surprising result ow-
ing to the azimuth positioning technique initially used
(adjustment using surrounding “broad” targets such
as mountamtops). The amplitude and orientation of
the lag was confirmed later by a detailed azimuth anal-
ysis based on a more ponctual target (radio tower).
Hence, the proposed geometrical calculation is thought
to offer as a by-product a solution for checking radar
angular positioning with an accuracy comparable to
the sun’s positioning technique (+0.1°).

2) INFLUENCE OF THE WEIGHTING FUNCTIONS
AND RESOLUTION VOLUME SIZE

Figure 7 presents the correlation coeflicients ob-
tained between the measured =° and (i) the calculated
unweighted areas S,,, and (i1) the calculated weighted
areas Z,, for various sizes of the resolution volume (m
=3,6,9, 12, 15 dB). Concerning the (Z°, S,,) com-
parison, it can be seen that p is stable for » = 3 and
m = 6 and then rapidly decreases for higher-resolution
volume sizes. Note that the 3-dB case (p = 0.857) cor-
responds to the simplest models for the angular and
range weighting functions evoked in section 2b. Fur-
thermore, the (Z°, =,,) correlation coefficient signifi-
cantly increases from m = 3 dB (p = 0.861)tom = 12
dB (p = 0.930) and then becomes stable (p = 0.932
for m = 15 dB). The interest of using more complex
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F1G. 7. Influence of the weighting functions and resolution volume
size: the correlation coefficients of the measured Z° values (i) versus
the computed unweighted areas S,, (dotted line) and (ii) versus the
computed weighted areas Z,, (solid line) are displayed as functions
of the m-dB radar resolution volume size.

models for the angular and range weighting functions
[such as the Gaussian approximations given by (4)
and (6)] is therefore clearly established in the case of
mountain returns observed with a ground-based radar.
The “sill”” value for m = 12 is certainly due to the fact
that scattering surfaces outside the 12-dB volume re-
ceive almost negligible weights (less than 4.0 X 1073).

¢. Inference of the backscattering coefficient model

The histogram of the angles of incidence calculated
for each illuminated triangle contributing to the Z,,
estimations over the measurement area (N = 941) is
presented in Fig. 8. It is worth noting that according
to Moore’s classification ( see section 2d), the observed
« range basically corresponds to the near-grazing re-
gion: the distribution is unimodal with a mean value
of 77.0° and a standard deviation of 5.7°; the cumu-

0.08

0.06 1

0.04 7

FREQUENCY

0.02 b

O 1 1
60 70 80 90

o(°)

FiG. 8. Histogram of the calculated angles of incidence.
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FIG. 9. Average backscattering coefficient as function of the angle
of incidence: the points represent the [¢%(e), j = 1, N,] coefficients
given by a multiple regression analysis. The linear regression line
fitted to these coefficients in order to obtain the & %gy(a) linear model

parameters [Eq. (20)] is represented by the solid line. The dotted line
gives the model proposed by Skolnik (1990).

lative frequency of the « values less than 60° is negli-
gible, and the upper limit (7/2 — ¢¥,,,/2 = 88° for m
= 15, see section 2¢) introduces a minor truncation
effect. The following « partition was chosen for the
backscattering coefficient model inference according
to the procedure described in section 2d:

N,=10 Aa=25° a; =63.75°,

corresponding to an « range of [62.5°-87.5°]. The
resulting [¢°( a)), j = 1, N,] coefficients, expressed in
decibel values are displayed in Fig. 9. A regression line
was fitted to these coefficients (with a correlation coef-
ficient of —0.975) in order to estimate the (ay, by ) linear
model parameters, yielding

5 %48y = 12.93 — 0.37a (20)

or

(21)

=0 _ __*
o 19.61 exp( “.75) .

d. Consistency of the results

First, the o °(a) model (21) was used to produce
simulated values of 2% according to the following
equation:

Ny(n)
Zo(n) = % %) Z.(i, n).

i=1

(22)

The calculated 15-dB weighted illuminated areas and
the calculated angles of incidence as well were consid-
ered in this computation. The measured versus cal-
culated Z° values are plotted in Fig. 10 together with
the corresponding regression line and the 80% confi-
dence intervals. Although this comparison does not
constitute a validation, it is useful for checking the
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FIG. 10. Scattergraph of the computed and measured mountain
returns, together with the corresponding regression line and the 80%
confidence intervals. Note that the computed Z° values are obtained
with the 15-dB resolution volume and the ¢°(«) model given by Eq.
21).

overall consistency of the geometrical calculation pro-
cedure. It can be seen that the use of the 7 °(«) model
contributes a significant amount of information since
the correlation coefficient is equal to 0.960 (i.e., 92%
of explained variance), while the correlation coefficient
of the (29, Z,,) pairs is 0.932 (i.c., 87% of explained
variance ). Furthermore, the fact that the slope of the
regression line is close to | tends to prove the overall
quality of the shape parameters (such as the 3-dB
beamwidth of the antenna, the 6-dB bandwidth of the
receiver, the receiver conversion slope, etc.) used in the
calculation procedure and the radar data processing.
Indeed, a sensitivity study of these parameters has
shown that improper estimation of their values may
lead to significant biases in the measured and calculated
29 correlations. As an illustration, Table 3 presents the
slopes and correlation coefficients obtained when the
3-dB beamwidth of the antenna varies from 1.6° up
to 2.0°.

Second, the o °(«) model given by (20) and (21)
can be compared to the models presented in Table 12-
2 of Skolnik (1990) for the average backscattering

TABLE 3. Sensitivity of the measured and calculated =° values
correlation to the 3-dB beamwidth of the antenna.

Correlation Regression
Y3 (°) coefficient slope
1.6 0.950 0.84
1.7 0.957 0.91
1.8 0.960 0.97
1.9 0.960 1.05
2.0 0.958 1.12
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coefficients of the summer Skylab (including a wide
variety of land uses, such as desert, grassland, cropland,
forest) and Kansas experiments (devoted to cropland
measurements ). The following equation was fitted to
the data:

alamy(fia) =a, + bia+of +difa, (23)

where fis the frequency. For an angular range of 20°-
70°, a frequency range of 6-17 GHz, and a horizontal
polarization, the proposed values for the constants are
a; = —9.1 dB, b, = —0.12 dB deg™', ¢; = 0.25 dB
GHz ' and d, = 0, yielding for = 9.375 GHz:

5 %8y = —6.76 — 0.12a. (24)

It can be noted (Fig. 9) that the models given by
(20) and (24) are quite consistent owing to the different
conditions of measurement: the average difference of
the two curves in the 60°-90° angular range is about
1 dB. However, the mountain model presents a much
higher slope (—0.37 instead of —0.12): this fact may
be explained by the different behavior of the back-
scattering coefficient in the plateau and near-grazing
regions. This last result has motivated an additional
test for checking the sensitivity of the £° computation
to the slope parameter of the & %4g)(@) model: b, was
allowed to vary in the [0, —1.0] range, while the cor-
responding intercept was calculated as o = 2° ~ Z,,
— by, where 2°, 2,,, and & are the means of the
measured 2° values and the computed Z,,and « values,
respectively. It can be observed ( Table 4) that the slope
and the correlation coefficient of the measured and
computed Z° values increase from b, = 0 up to by
= —0.2, remain almost constant up to b, = —0.5, and
then progressively decrease for higher slopes. Although
the by parameter influence is low in the [—0.2, —0.5]
range, this result tends to confirm the significance of
the by = —0.37 estimation given by the multiple regres-
sion analysis.

Finally, a spatial display of the measured and cal-
culated mountain returns over the measurement area
is proposed in Fig. 11 for the two elevation angles con-
sidered. The overall agreement is good, especially for
the strongest returns. The main differences can be de-
picted at the edge of cluttered areas and concern weak
returns. This result is certainly due to both (i) the geo-
metrical calculation uncertainty that is expected to in-
crease when the illuminated area decreases and (ii) the
expected higher variability of the weakest measured
mountain returns. Note also that the coherence of the
pictures does not seem to downgrade when the range
increases, an indication of the good behavior of the
partial screening procedure. This last result was con-
firmed by a correlation analysis of the =° values sorted
into various range classes.

4. Conclusions

The present study was devoted to the characteriza-
tion of time-averaged mountain returns measured with
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TABLE 4. Sensitivity of the measured and calculated 3° values
correlation to the slope parameter of the backscattering coefficient
model.

Correlation Regression
by coefficient slope
0 0.932 0.92
-0.12 0.950 0.94
-0.20 0.958 0.96
—0.37 0.960 0.97
-0.50 0.955 0.95
-0.75 0.921 0.89
-1.00 0.870 0.80

a ground-based X-band weather radar operating in a
mountainous region. A computation code, based on
the use of a digitized terrain model, was developed for
calculating the areas illuminated by the radar beam.
Partial and total screening effects were accounted for
in the calculation. Furthermore, the angular and range
weighting functions of the radar measurement were
modeled using Gaussian approximations to give the
so-called weighted illuminated areas for various sizes
of the radar resolution volume.

It was shown that these geometrical estimates explain
87% of the radar measurement variance when the 15-
dB resolution volume is considered. The explained
variance is reduced to 73% for the unweighted illu-
minated areas of the 3-dB resolution volume, a result
indicating that the simplest approximations of the range
and angular weighting functions are unsatisfactory in
the present context.

Then, the radar measurements and the simulated
weighted areas were used to establish a model for the
average backscattering coefficient a ° of grass-covered
and/or forested mountains. Additional geometrical
information, provided by the calculated angles of in-
cidence «, was accounted for to yield a linear
o {4p)(@) model consistent with the models proposed
elsewhere in the literature. It is worth noting that this
model is relevant for the so-called near-grazing region
since most of the angles of incidence are in the 70°-
90° range. A further gain was obtained with the use of
the & {4p)( @) model since the variance explained by the
calculated mountain returns reaches 92% of the mea-
surement variance. Furthermore, the slope of the
regression between the calculated and measured values
is close to 1, a result indicating the overall quality of
the parameters used in the geometrical calculation and
in the radar data processing.

Future work will be devoted to the characteri-
zation of the space and time variability of dry-
weather mountain returns for various types of
land uses (forest, grass, rocks, snow-covered sur-
faces, etc.). This information will serve as a base for
studying the behavior of mountain returns in the
presence of rain, the main objective being to assess
the feasibility of using mountain returns for esti-
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F1G. Al. Projections of the radar resolution volume (a) in the plane
P generated by three adjacent DTM grid points and (b) in the plane
normal to P defined by the triplet of points (O, O', O”).

of the spherical shell and plane P is a circular shell
centered at O’ (Fig. Alb).

It is convenient to consider a new X, y, z rectangular
coordinate system, associated to plane P, defined as

€, = e,xe,

o — fo= e cosa
Y Irp — e, cosal

e, = —n, (A1)

where n and r, are the unit vectors normal to P and
collinear to the radar beam axis, respectively, oriented
toward positive Z values. Note that the y and x axis
correspond to the main and the minor ellipse axes,
respectively, and that the z axis is normal to P.

The parameterization of the ellipse and the circular
shell can be obtained in the (O’, x, y, z) coordinate
system (Fig. Al).

The ellipse has for an equation

X2 —p)?
! (A2)
with
=1
a=s(p+aq)
‘l/m)[ 12—61)2]‘”2
b=r,tan| =1} 1 — —=
(2 (p+9)?
. D—q
= ' +——
p = F, Sina >
and
- sin[ ¥ v\ T
p=r, sm( 5 )[cos(a + > )

Ym

g = r,sin )

S—
| DRS———
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where r, is the distance between the radar location (O)
and the intercept (0O”) of the radar beam axis with
plane P. '

The circular shell is limited by two circles centered
at O’ with equations

x2 4yt = s?

x*+y* =55,

m .
N ro‘—_z_ Sina

¥ .
So = (ro + —2@) sina.

(A3)
with

Note that if 7, and « are great enough, the circular
shell can be approximated by a band limited by two
lines parallel to the x axis with equations

Y=
V=5 (A4)

Then the estimation of the weighted illuminated area
can be performed by an integration scheme illustrated
in Fig. A2. First the y range of integration is defined
as

Ym = max(Vr, Vs ¥Ym)

Y = mln(yf49 .VI\V/!, ylfl)a

where the subscripts m and M refer to the minimum
and maximum y values and the superscripts £, S, and
T refer to the ellipse, the circular shell, and the triangle,
respectively. If y,, is greater than y,,, the triangle is not
illuminated. On the contrary, the [y, Vis] interval is

>
~
X

F1G. A2. Schematic illustration of the numerical integration pro-
cedure for estimating the illuminated area as the intersection of the
ellipse, the circular shell (approximated by a linear band), the DTM
triangle, and the so-called mask-grid constraint (MG line) due to the

eventual interception of the radar beam by the relief at prior range
cells.
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FiG. 11. Measured and calculated mountain returns for the two ¢levation angles considered (3.5° and 2.0°) in the- radar measurement

sector. Each polar Z° value'(expressed in decrbels) is affected by the correspondmg small Cartesxan mesh (100 m X 100 m) in order to keep
the underlymg relief isolines v151ble )

mating path-integrated attenuation due to rainfall
between the radar and the mountain target. This in-
formation. is thought to be useful for correcting
reﬂect1v1ty proﬁles when attenuatlng wavelengths
are. used
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~ APPENDIX

Calculatlon of the Intersectlon of the Radar
Resolutlon Volume and an Elemental
Planar Mountam Surface -

Letus consrder aplane P generated in R by a triplet
of points (4, B, C). As noted in section 2b, the m-dB
radar-resolution volume V,, is defined by the intersec-
tion of a circular cone with a ¥, vertex angle and a
spherical shell of outer radius r, + r,,,/2 and inner radius
ro — rm/ 2. If the angle of incidence o« [Eq (13)]isless
than or equal to /2 — y,,/2, the intersection of the
circular cone and plane Pis an ellipse (Fig. Ala). Fur-
thermore, if ro — 7,,/2 is greater than the distance be-
tween the radar location and plane P, the 1ntersect10n
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discretized using a Ay step. For each y; value [y, = Y,
+ Ay(k — /)], an x; range of integration is defined
as

Xm(y) = max[xE (), xm(¥i)]
xp(yi) = min[x5(yi), x5 (¥i)],

where x5, x5, xI, and x}; are the minimum and
maximum x(y;) values for the ellipse and the triangle,
respectively. The contribution of the kth y interval to
the illuminated area is zero if x,,(yx) = xXa(3). On
the contrary, the [x,,()x), xa(¥x)] range is discretized
using a Ax step, thus leading to a series of elemental
rectangular surfaces having a AxAy size. These ele-
mental surfaces are illuminated if there is no screening
effect due to the interception of the radar beam prior
the range cell of interest. To cope with this last prob-
lem, a so-called mask grid, defined in the plane normal
to the beam axis with a [A tan(6,), A tan(¢,)] res-
olution, was used. First the spherical coordinates (7,
05, ¢») of each elemental AxAy surface center must
be calculated. Then the mask grid meshes are pro-
gressively filled with the radar cell index of the first
AxAy surface falling into them. A AxAy surface cor-
responding to a mask grid mesh already filled by a
prior cell is considered as screened and, therefore, is
not accounted for in the calculation of the weighted
illuminated area. Furthermore, when all the mask grid
meshes are filled, the radar beam is considered as to-
tally screened and the Z,, calculation is stopped for
the current radar beam axis position. Note that the
spherical coordinates (7, 85, ¢5) of each AxAy surface
center are also necessary to evaluate the angular and
radial weights this surface will receive in the Z,,
calculation.
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