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ABSTRACT

Strong surface winds under extratropical cyclones exert intense surface stresses on the ocean that lead to
upper-ocean mixing, intensiÞed heat ßuxes, and the generation of waves, that, over time, lead to swell waves
(longer than 10-s period) that travel long distances. Because low-frequency swell propagates faster than high-
frequency swell, the frequency dependence of swell arrival times at a measurement site can be used to infer
the distance and time that the wave has traveled from its generation site. This study presents a methodology that
employs spectrograms of ocean swell from point observations on the Ross Ice Shelf (RIS) to verify the position
of high wind speed areas over the Southern Ocean, and therefore of extratropical cyclones. The focus here is on
the implementation and robustness of the methodology in order to lay the groundwork for future broad ap-
plication to verify Southern Ocean storm positions from atmospheric reanalysis data. The method developed
here combines linear swell dispersion with a parametric wave model to construct a time- and frequency-
dependent model of the dispersed swell arrivals in spectrograms of seismic observations on the RIS. A two-step
optimization procedure (deep learning) of gradient descent and Monte Carlo sampling allows detailed estimates
of the parameter distributions, with robust estimates of swell origins. Median uncertainties of swell source
locations are 110 km in radial distance and 2 h in time. The uncertainties are derived from RIS observations and
the model, rather than an assumed distribution. This method is an example of supervised machine learning
informed by physical Þrst principles in order to facilitate parameter interpretation in the physical domain.

1. Introduction

Strong winds associated with extratropical cyclones
act on the ocean surface and generate surface gravity
waves. These waves propagate long distances and are
observed as swell (Snodgrass et al. 1966). Long swell
waves (in the range between 0.03 and 0.8 Hz) can
travel across ocean basins with minimal attenuation
(Snodgrass et al. 1966). Because wave dispersion de-
pends on frequency, swell observed at distant locations
contains information about its position and time of gen-
eration. The idea of tracking storms using swell was Þrst
shown byMunk (1947) and by Barber and Ursell (1948).
The objective of this study is to establish a methodology
to use modern swell observations to learn about con-
ditions at the swellÕs source region as well as the travel
path of the swell.

The locations where swell waves originate experience
intense atmosphereÐocean interaction. Some of the stron-
gest events occur in the Southern Ocean, where the
observing system is sparse and storm systems are not
well characterized by direct observation (e.g.,Bourassa
et al. 2013). Strong surface winds lead to intense airÐsea
ßuxes of heat, momentum and CO2, with potential im-
plications for ocean circulation changes and the ocean
uptake of anthropogenic heat and CO2 in the Southern
Ocean (SO; Swart et al. 2018; Rintoul 2018; Marshall
et al. 2016; Munday and Zhai 2017; Gruber et al. 2019).

Ocean swell spectra are routinely generated from
autonomous wave buoy observations, GPS sensors, or
seaßoor pressure sensors (Munk et al. 1963; Collard
et al. 2009; Delpey et al. 2010; OÕReilly et al. 2016), and
they have also been observed by land-based seismic
stations when swell interacts with the coast (Bromirski
et al. 1999). The time series of swell arrivals at an ob-
servation site can be converted to a time evolving power
spectrum, known as a spectrogram. Each set of swell
arrivals detected in a spectrogram is related to the sur-
face wind at the storm (Pierson and Moskowitz 1964;
Hasselmann et al. 1973; Elfouhaily et al. 1997) and can,

Supplemental information related to this paper is available at
the Journals Online website:https://doi.org/10.1175/JTECH-D-19-
0093.s1.

Corresponding author: Momme C. Hell, mhell@ucsd.edu

NOVEMBER 2019 H E L L E T A L . 2171

DOI: 10.1175/JTECH-D-19-0093.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������3�0���8�7�&



as we will show, be interpreted as aremoteobservation
of the storm itself.

This study adopts a unique approach by using seismic
data collected not on land, but instead on a ßoating ice
shelf, as part of the Ross Ice Shelf (RIS) Vibration
Project (Wiens et al. 2014; Bromirski et al. 2017). The
data from the RIS allow us to compute an extensive
series of high-resolution spectrograms of surface gravity
waves, similar to conventional wave observations. We
use these data as a training set to develop a new method
to characterize ocean swell observations.

Feature comparison in geophysical data is often chal-
lenging because the observations are noisy, and the
models are too simple. As we outline below, the com-
bination of optimization and Monte Carlo methods en-
ables us to improve our model understanding of the
data, while we use the model to identify the relevant
data. This is a ÔÔmachine learningÕÕ approach that is
constrained by physical laws, with the beneÞt that it
generates uncertainties based on the data and the
model, rather than assuming an a priori uncertainty
distribution ( Marone 2018).

We present a method to compare characteristic pat-
terns in seismic spectrograms with a parametric model
that is constrained by the physics of ocean gravity waves.
We Þrst brießy describe the physical background that
motivates the model (section 2) and introduce the
dataset (section 3). Then, we introduce the governing
cost function (section 4), the model (section 5), and the
data preparation (section 6). The actual Þtting procedure
is explained in section 7, and its performance is shown in
section 8and discussed insection 9. The developed code
for this analysis will be publicly available in a github re-
pository (https://github.com/mochell/stormy_forerunners)
after completing the project.

2. Waves across the PaciÞc: Physical background

Observations on the RIS record storm-induced swell
events (Fig. 1), much like previously reported observations
along coastlines (Munk and Snodgrass 1957; Snodgrass
et al. 1966). The gestalt of these coherent packages of
swell energy is shaped by three processes:

1) The dispersion of deep water waves means longer
waves travel faster, such that the longest wave gen-
erated by a storm arrives Þrst (Munk 1947; Barber
and Ursell 1948; Snodgrass et al. 1966; Gallet and
Young 2014). At any point in the ocean, an observer
who records the arrival time of waves of different
frequencies can estimate both the time of origin and
the distance traveled, assuming all waves come
from the same source. For continuous observations,
like those provided by the RIS seismometers, the

succession of wave arrivals results in a sloped line in
the wave spectra (Fig. 1). The sloped line of these
dispersed wave events is an indirect measure of the
radial distance to the origin of the waves.

2) The spectrogram and its shape are related to winds
in the wave generation region. There is extensive
literature about ocean wave spectra. See, for example,
the compendial overviews ofMassel (1996, chapter 3.2)
or Elfouhaily et al. (1997). The most commonly used
parametric models are the PiersonÐMoskowitz (here
after PM) spectrum for a fully developed sea or the
Joint North Sea Wave Project (JONSWAP) spec-
trum ( Fig. 2, Pierson and Moskowitz 1964; Phillips
1985; Hasselmann et al. 1973, 1976). Both models are
possible functional forms for this optimization prob-
lem. The advantage of the JONSWAP spectrum is
that it is more ßexible and is not limited to fully de-
veloped seas. It also relates the peak frequencyfm
and the amplitude parameter a to the nondimensional
fetch ~X

fm 5
3:5g
U10

~X 2 0:33, (1)

a 5 0:033
�

fmU10

g

� 0:67

5 0:076 ~X 2 0:22, (2)

with

~X 5
gX
U 2

10

, (3)

where X is the fetch in meters (deÞned as the hori-
zontal distance over which wave-generating winds are
able to act), U10 is the 10-m wind speed over that
area, andg is the acceleration due to EarthÕs gravity
(Hasselmann et al. 1973). The JONSWAP relations
can be inverted to infer speed and fetch at the loca-
tion of the storm from the wave spectrum parameters
a and fm, detected at a remote location (Pierson and
Moskowitz 1964; Hasselmann et al. 1976). Both PM
and JONSWAP spectra are based on theories of wave
generation by winds (Phillips 1957; Miles 1957, 1960),
and their only difference stems from the JONSWAP
modelÕs inclusion of additional parameters that vanish
under the assumption of a fully developed sea (see
section 5, Fig. 2, and Massel 1996, chapter 3.2).

3) When swell travels into sea ice, it can be damped or
reßected (Fox and Squire 1994; Squire 2007; Vaughan
et al. 2009). While low-frequency swell waves travel
through sea ice and are detected in seismic records on
the RIS (typical periods of about 15 s,Fig. 1 shading;
Collard et al. 2009; Cathles et al. 2009; Bromirski et al.
2010; MacAyeal et al. 2009), higher frequencies are
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strongly damped (periods of about 10s and shorter;
Kohout et al. 2014; Collins et al. 2015; Ardhuin et al.
2016). It is hypothesized that damping of incident
swell energy by sea ice helps to maintain the overall

ice shelf stability (Squire et al. 1994; MacAyeal et al.
2006; Robinson and Haskell 1990; Lipovsky 2018;
Massom et al. 2018). However, a validated parametric
model of sea ice induced damping does not exist and

FIG . 1. Spectrogram of the vertical acceleration in DR01 between November 2014 and December 2016. The
spectrogram is expressed as a power spectra with a basic segment length of 20 min. The spectral estimate at each
time step is sampled from 12 of these segments.
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is therefore not included in our formulation of the
model (section 5).

The Þrst two processes, wave dispersion and spectral
shape, are used to construct our model for the optimi-
zation procedure. The model is constrained by prior
physical knowledge about the processes that we aim to
investigate. If the residual differences between model
and data share common features between multiple events,
then the misÞt can potentially be attributed to physical
processes that are not represented in the model, such as
the attenuation due to sea ice.

Most ocean swell observations show a superposi-
tion of locally and remotely generated waves (Rapizo
et al. 2015; OÕReilly et al. 2016). In contrast, the swell
spectra observed on the RIS are only due to remotely
generated waves because swell generation in the prox-
imity of the ice shelf is suppressed by sea ice. Even in
summer, when melting may produce open water areas
close to the RIS, any locally generated waves are shorter
than the remotely generated swell. Wave genera-
tion at the observation site is not possible because the
observations are made on the ice shelf rather than in the
ocean. The fact that RIS data highlight the impacts from
remote storm activity in the Southern Ocean makes
them unique.

On the other hand, RIS seismic records may be the
result of processes that are absent in open ocean ob-
servations, such as interactions with sea ice, topog-
raphy and currents, or the ice shelf itself. The intent
of this discussion of the method is to Þrst set these ad-
ditional complexities aside and, in a second step, assess
whether RIS-speciÞc processes can explain the de-
viation of the observations compared to the model
function. This model function represents a physical
hypothesis for the evolving ocean wave spectra; how-
ever, we do not expect it to apply exactly in each
individual case.

3. Seismic observations in the Ross Ice Shelf

The Ross Ice Shelf Vibration Project was a Þeld cam-
paign carried out from October 2014 to December 2016
with the goal of recording the Ross Ice Shelf response
to gravity wave impacts for geophysical, glaciological
and oceanographic purposes (Wiens et al. 2014). To
investigate the RIS response to gravity wave forcing, a
network of 28 seismic stations recorded 2 years of con-
tinuous vertical and horizontal displacements at each
station (Fig. 3). The sampling rate was either 100 or
200 Hz depending on the instrument conÞgurations at
each station (Bromirski et al. 2015). Data were archived
in accordance with IRIS (Incorporated Research Insti-
tutions for Seismology; www.iris.edu) standards for seis-
mic data. The three stations closest to the front (DR01,
DR02, and DR03) recorded the highest amplitude re-
sponse for swell waves, and are thus used for the analysis
presented in this paper, because they are expected to
have the largest signal-to-noise ratios for swell waves.

The processing is as follows. First, the 100- or 200-Hz
time series are averaged to 1 Hz, because the time scales
of interest (waves with frequencies less than 0.1 Hz) are
perfectly resolved by 1-Hz sampling, and the much
smaller data volume makes processing more efÞcient.

FIG . 3. Map of the Ross Ice Shelf Vibration Project. The position
of the front Stations DR01, DR02, and DR03 are indicated by
the blue, orange, and red dots. Other seismic stations are shown
as green dots. The ice-shelf thickness is shown as shading. The
ice-shelf edge migrated northward since the ice-shelf thickness
was derived (Haran et al. 2005; Haran and Bohlander 2014). The
front stations were about 2 km away from the ice-shelf front when
the data was recorded. The ice shelf thickness data are taken from
Basemap2 (Fretwell et al. 2013).

FIG . 2. PiersonÐMoskoviz (solid lines) and JONSWAP spectra
(dashed) for a variety of fetches and wind speeds. The fetch length
x and wind speedU10 are indicated [see(1) and (3)].
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Second, the recorded time series are corrected for
the frequency-dependent response function of the seis-
mometer. The 1-Hz time series is deconvolved with the
instrument response function, which is a cosine window
( f1 5 102 4Hz, f2 5 23 102 4Hz, f3 5 0.4 Hz,f4 5 0.5 Hz).
The resulting displacement time series are prewhitened
by taking the second derivative in time to generate a time
series of acceleration in meters per second squared (ms2 2).
Peaks in the acceleration time series are removed if
they deviate from the mean by more than 10 standard de-
viations; any resulting gaps areÞlled by linear interpolation.
Less than 0.1% of the data are removed from the time se-
ries, and the removals have no effect on the model estimate.

After these preliminary adjustments, a spectrogram is
calculated at each station using the 1-Hz averaged time
series for a shifting window discrete Fourier transforma-
tion. To calculate spectrograms, data are Þrst split into
segments of 20-min duration, with 50% overlap. Each
segment is detrended and fast Fourier transformed to
produce periodograms. Spectral estimates are computed
at hourly time increments, by averaging periodograms
from eleven 20-min segments centered around 1-h time
steps (i.e., spanning a total time period of 120min), while a
Hanning window was applied to each segment. The 20-min
segment length determines the frequency resolution with a
lowest frequency of 1/1200Hz. The resulting 2-yr spec-
trogram for DR01 is shown in Fig. 1. (Spectrograms for
DR02 and DR03 appear indistinguishable from DR01.)

4. Cost function deÞnition

Our next objective is to optimally Þt the swell arrivals
detected in the spectrograms to a model based on the
JONSWAP spectrum by adjusting the free parameters
in the model. We do this via a nonlinear minimization
method performed on a global cost function

F 5 Jd 1 Jm , (4)

which is the sum of the data cost function Jd and the
model cost function Jm (known as ridge or lasso regu-
larization). The data cost function Jd is the sum of the
squared difference between dataD and model M(p),
with p being the model parameter, multiplied by the
weight function w at each point

Jd 5 �
i,j

[(D i,j 2 M i,j ) wi,j ]
2. (5)

The model cost function Jm is the sum of squares of the
normalized parameter values

Jm 5 �
k

�
pi

0 2 pi

pi
s

� 2

, (6)

where p is a set of function parameters for optimization,
p0 represents the initial guesses of the parameter vector,
and ps is the corresponding prior error estimate (see the
appendix).

The model cost function allows us to optimize func-
tion parameters p, while taking account of prior esti-
mates of uncertainty in the parametersps. To allow a
wider range of parameter values, the prior uncertainty
is artiÞcially set to be large. Too small values forps

result in an overweighting of the costs due to the pa-
rameters, resulting in overly conservative model be-
havior that is more likely to remain close to the initial
conditions. The following sections explain the parametric
model (section 5), and the data preparation and weight
function ( section 6).

5. Model description

The model MS [ MS(f , t) is compared against the
data D( f, t) at each iteration of the minimization pro-
cedure. The model has a time componentMT(t) and a
spectral component S( f ) that are both described here.
We assume a separable modelMs( f, t) 5 S( f )MT(t).

1) The spectral part of the model S( f ) is based on
open-ocean swell spectra of a fully developed sea
(section 2). The JONSWAP spectrum [Hasselmann
et al. 1973; Massel 1996, p. 94, Eq. (3.81)] is re-
formulated as

S( f ) 5 â(2p f )2 5 exp

"

2 x
�

f
fm

� 2 4
#

gd , (7)

d5 exp

"

2
1
2

�
f 2 fm

s 0 fm

� 2
#

, (8)

where f is the frequency, â the amplitude parameter
in units of acceleration squared,x the nondimen-
sional stretching term (x 5 5/4 in the standard
JONSWAP model), fm the position of the peak
frequency, g the measure of the height of the peak
function, and s 0 the width of the peak function. We
deÞne an amplitude parameterâ 5 g2a such that the
Þrst guess of̂a is of order one, while the initial value
of a is inferred from the data (see below). This model
reverts to the original PM-spectrum when â and x
are set to constant values taken from JONSWAP
(Hasselmann et al. 1973). In total, there are Þve free
parameters in (7) and (8): the conventional peak
parameter fm and four more parameters (x, â, g, s 0)
to allow for the additional complexity in the seismic
data due to the interaction with sea ice and the RIS
(section 2). Other parameters of the JONSWAP
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spectrum, such asU10 and ~X are not used directly
in the model (7), but can be inferred using the
estimated parametersfm and â in (1)Ð(3).

2) In the time domain, visual inspection of the
spectrogram suggests that swell arrivals gener-
ally have a relatively sharp leading edge (Fig. 4),
while their decay varies (Munk and Snodgrass
1957). This behavior is approximated by the G
distribution

MT (~t ) 5
1

s tG(~t )

 
~t 2 ~tpeak

s t

! b2 1

e2 ~t , (9)

with the Gfunction as

G(~t ) 5
ð‘

0
x~t2 1e2 x dx, (10)

where ~t [ (t 2 tstart)/( tend 2 tstart) 5 (t 2 tstart)/Dt is the
normalized time, with tstart being the lower left and
tend the upper right corner of the parallelogram
(Fig. 4a, described insection 6a). The dimensionless
parameter s t is set to 0.07, so thatMT (~t ) in (9) has a

maximum value of order one, such that the only pa-
rameter that determines the amplitude isâ. The term
~tpeak represents the location of the peak in time,
and b controls the width of the Gdistribution; both
are used for parameter optimization (section 7).
Figure 5a illustrates MT (~t ) for default values of
~tpeak and b and for the maximum and minimum
values for b, set as constraints for the optimization
(see theappendix).

3) The time-evolving peak frequency is expressed as a
linear function that is informed by the deep-water
dispersion relation:

fpeak(~t ) 5 (~t 2 ~t0) m~t , (11)

where fpeak is the peak frequency,~t0 is the center of
the nondimensional normalized time axis, andm~t

is the rate of change in units of hertz. Note that
fpeak is different from the maximum peak fre-
quency fm: fpeak is peak frequency at each non-
dimensional time ~t, while fm is the maximum of the
peak frequencies, that is, the peak frequency over
the whole event.

FIG . 4. Spectrogram of a single swell event in January 2015 with the three stages of the Þtting procedure.
(a) Derived spectrogram (shading;section 3). Black and green dots indicate manually identiÞed edge points
of the parallelogram-shaped date mask (green line;section 6a). Red lines are used as the model initial
condition, and gray contours indicate the data weighting function w in (15). (b) Masked data (shading;
section 6a) with initial slope (red) and model (black contours). (c) As in (b), but with the optimized slope
and model.
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The rate of change m~t and nondimensional ini-
tial time ~t0 are directly related to the distance and
time estimates (Snodgrass et al. 1966; Munk and
Snodgrass 1957; Barber and Ursell 1948). The
inversion of (11) gives a relation for ~tpeak( f ), which
is inserted into (9).

The Gdistribution MT, the JONSWAP spectrum S, and
the linear slope equation (11) yield a two-dimensional
model of swell arrivals:

MS( f , ~t ) 5 S( f ) M T (~t ) (12)

5 â
2

0:7(2p )5

1
G(~t ) f 5

gd

� ~t 2 f m2 1
t 1 ~t0

0:07

� b2 1

3 exp

"

2 x
�

f
fm

� 2 4

2 ~t

#

, (13)

with d5 exp

"

2
1
2

�
f 2 fm

s 0fm

� 2
#

. (14)

Equation (12) has Nvar 5 8 Þtting parameters:
p 5 f â, x, fm, mf,~t0, b, g, s 0g

T. These parameters are
the basis for the nonlinear optimization procedure de-
scribed in section 7, and the sensitivity of the model (12)
to these parameters is shown inFig. 5.

6. Prehandling the data

Achieving optimal agreement between the data and
the model function requires selection and preliminary
correction of the data. This section explains how events
are selected and corrected to facilitate nonlinear opti-
mization. First, the shape (section 6a) and amplitude
(sections 6b and 6c) of individual events are used to
ensure similar signal-to-noise levels. Subsequently the

FIG . 5. Default (gray), minimum (blue), and maximum (red) model parameters with the G distribution for the (a) shape
parameter b, (b) the slope parameter mf, (c) the peak frequency fm, (d) the peak parameter g, (e) the peak width s 0, and (f) the
stretching x.
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model is Þtted to the adjusted data, given a customized
set of initial parameters, but without further individual
tuning of the model ( section 7).

a. Selection procedure and masking

The vertical acceleration spectrograms from stations
DR01 to DR03 show about 250 wave events during
the 2-yr RIS measurement period. (Fig. 1 shows the full
record for DR01, and Figs. S2 and S3 in the online
supplemental material show the same for DR02 and
DR03.) These events are common features in the spec-
trograms of other stations across the RIS array (Fig. 3).
Wave events are strongest near the ice shelf front and
decay with distance toward the interior of the shelf
(Bromirski et al. 2017).

Each event has a characteristic slope, indicating that
low-frequency energy arrives before higher frequen-
cies (section 2). In this analysis, the slopes are iden-
tiÞed using an interactive hand picking procedure. An
example of this is shown in Fig. 4a, in which the wave
event (blue shading) is identiÞed by its low- and high-
frequency limits (black dots in Fig. 4a) and its estimated
time width (green dot in Fig. 4a).

The data mask is a parallelogram deÞned by three
values, as follows (Fig. 4a, green perimeter). The up-
per and lower limits are the corresponding frequen-
cies of the black dots, and the tilted sides are twice
the temporal separation between the green point and
the black middle line. Initial parameters for slope
and intersect (section 5) are taken from a line cen-
tered between the left boundary and the middle line
(Fig. 4a, red line).

b. Data weighting

There is additional prior information about the use-
fulness of the data within the data mask. High ampli-
tudes close to the mask boundary are typically attributed
to noise, while data in the center of the domain are likely
associated with the selected event. The geometry de-
rived in the previous section is also used to construct a
data weighting function deÞned as

w 5 (wG 1 wG s wD )/2 1 wfloor , (15)

where wG is a geometrical weight that decays from 1
in the center to 0 at the boundary using a Hanning
window (Fig. 4a, gray contours),wD ( f , ~t ) is the spa-
tially smoothed1 data divided by its maximum value, such
that wD is a matrix that weights high-amplitude data points

more strongly, and (s ) is the Schur product. The mini-
mum iswßoor 5 102 6. The total weight w can vary between
wßoor and wßoor 1 1 and is constructed such that data
points at the boundary, especially of high amplitude, are
downweighted, while data points in the center with high
amplitudes are upweighted. The noise ßoor valuewßoor

represents the general uncertainty in the data that is esti-
mated from the uncertainty in the spectral estimate. The
uncertainty of the spectral estimate is derived from sub-
sampling described insection 3.

c. Noise handling

Within the parallelogram-shaped mask used to select
data from the spectrogram, higher noise levels often
occur at lower frequencies (Fig. 4a, below 0.05 Hz and in
Fig. S4). Here, noise is accounted for by Þtting a noise
model prior to Þtting the actual model. The noise model
follows an exponential decay of the form

Mn( f ) 5 bne2 t nf , (16)

where bn and t n are free parameters. The difference
between the masked data~D and Mn [ Mn(f ) deÞnes the
noise cost function

F 5 �
i,j

" 
~D i,j

s D

2 M i,j
n

!

wi,j
noise

#2

, (17)

with ~D as the masked acceleration spectrum, normalized
by its standard deviation

s D 5
�

1
N 2 1

�
N

i

~D i 2 ~D
� � 2

� 1/2

. (18)

The model weighting function wnoise 5 1 2 wG 1 wßoor

is the opposite of the geometric weight from (15) and
downweights data points with high signal-to-noise ra-
tios, such that (16) Þts to the background noise rather
than the data. The noise cost function(17) is minimized
for each event individually using the gradient descent
methods described in section 7. The resulting noise-
reduced data matrix

D 5
~D

s D

2 Mn (19)

is used for the actual model Þtting. It contains the
noise-corrected and normalized data for each event.
The geometric data selection and the constructed weight
function focus the nonlinear optimization on individual
dispersed wave events, while downweighting neighbor-
ing events and the seasonally changing low-frequency
noise due to sea ice (Fig. 1). The data selection process

1 The data are smoothed by using a running mean with a width
that is 0.2% of the size of the data matrix.
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generates a collection of 250 similar events that can be
well characterized by the model function (section 4).

7. Nonlinear Þtting

The optimization method changes the parametersp
of the model function M to minimize the cost function
F [M(p), p] equation in (6). The smallest value ofF that
the method Þnds represents the best Þt between model
and data and is only dependent on a set of parametersp.

a. Choice of initial values

The initial values of these parameters are either set
to a standard value or are informed by the geometrical
form of the data mask (Fig. 4b). The Þrst guess dis-
persion slopemf and nondimensional initial time ~t0 are
taken from the masking procedure (red line in Fig. 4a),
and the peak frequency fm is initially set to the peak
frequency of the masked data. The initial fm is also used
to calculate â(a) from (2) assuming a wind speed of
10 m s2 1. Other parameters that modify the spectral
shape are initialized from the JONSWAP spectrum
standard values (Hasselmann et al. 1973), which are
estimated based on open ocean observations.

An overview of the sensitivity to parameter values is
shown in Fig. 5. The initial parameters and their limits
are set to physically plausible ranges (see theappendix,
Table 1, and Massel 1996), such that they allow a wide
range of possible values, and equally importantly, also
adjust to the noise level. In high noise cases, the model is
often unrealistic and results in a poor Þt characterized
by a large fractional error ( section 8a). These cases can
be identiÞed and are not considered for further analysis
(section 8c).

b. Optimization method and estimations of
uncertainty

The nonlinear model (12) is optimized using a two-
stage Þtting algorithm to minimize the cost function
F in (6). In the Þrst stage, the model is initialized with
p0 and then changed using the LevenbergÐMarquardt
(LM) algorithm (damped least squares; Newville et al.
2014) to Þnd a local minimum of the cost function. The
LM algorithm calculates the local gradient in param-
eter space and moves its next guess of parameters in
the direction of the gradient. The iteration terminates
if the change of the cost function is small (, 102 15), if
the change in the independent variables is small, or if
the number of iterations exceeds its limit deÞned as
100(n 1 1)n, with n being the size ofD. We used a gra-
dient method Þrst, rather than a nonlinear search, be-
cause of its faster convergence to a (local) minimum
for a relatively smooth cost function.

In the second step, a parallel tempering Markov
chain Monte Carlo (PTMCMC; Goodman and Weare
2010; Foreman-Mackey et al. 2013; Earl and Deem 2005)
method is used to further minimize the cost function and
to produce an a posteriori error distribution for all vari-
ables simultaneously. This process is similar to simulated
annealing, where the progress toward an optimal solu-
tion can only be seen from the average of many itera-
tions rather than from each single iteration (Kirkpatrick
et al. 1983). This is a powerful tool in situations in which
multiple optimal solutions could exist, as in this prob-
lem: even though one origin per wave event is assumed,
the uncertainty estimate from PTMCMC is generally
capable of capturing several wave events that arrive at
the same time.

Each Markov chain is initialized with the optimal
parameters from the steepest descent method, and its
Þrst guess is seeded from a random distribution. This
chain, often called a walker, goes through 1000 function
evaluations, with two different annealing temperatures,
but only every second evaluation from the Þnal 75%
of this process contributes to the error distribution
(750 function evaluations per walker). This is repeated
1000 times in a Monte Carlo sense to create a distribution
with 7.5 3 105 data points in the eight-parameter space.

Figure 6 shows two examples of codistributions of two
elements of p for the event in Fig. 4c. (All distributions
are shown in Fig. S1.) The distributions have clear
maxima, which are the optimal values for each param-
eter. We use the median (blue lines inFig. 6) as the best
model Þt, while half the difference of the 15.87% and
84.13% quantiles (dashed lines, the width of one stan-
dard deviation in a normal distribution) is taken as a
simple measure of uncertainty (Newville et al. 2014).
The resulting best (median) model Þt is shown inFig. 4c.

The parameters are assumed to be uncorrelated (see the
appendixand Fig. S1), with their width being sensitive to
the choice of prior uncertainty values (section 4and the
appendix). However, the codistribution of the slope ~t0

and intersect m~t parameters shows a correlated error in

TABLE 1. Table of model Þtting parameters, their initial condi-
tions, and priors. An initial value of ÔÔadjustedÕÕ indicates that the
initial value is inferred from the data.

Parameter Initial value ( �)0 Min Max Prior std ( �)s

â ag2 0.01â0 100â0 0.2
fm Varying 0.04 0.1 0.002
g 2 1 4 0.4
~t0 Varying 2 0.5 0.2 0.04
s 0 0.05 0.01 0.1 0.01
mf Varying 0.5 m0

f 2.5 m0
f 0.2

x 5/4 1 3/2 0.05
b 2.1 1.2 3 0.08
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all observed cases (Fig. 6a). This distribution is con-
verted from the ~t0Ðm~t space to initial time

t0 5 ~t0DT 1 tstart , (20)

and radial distance

r0 5
g

4pDT
m~t , (21)

with Dt 5 tend 2 tstart (section 5) and using the deep water
dispersion relations (Barber and Ursell 1948; Munk and
Snodgrass 1957; Snodgrass et al. 1966). The resulting
distribution reveals probabilities of wave event origin in
time and radial distance and allows us to create prob-
ability maps to quantify the likelihood of a speciÞc
origin. Figure 7 shows these maps of probability in the
time and radial distance space (TR space). They are
direct conversions of the observational scatter captured
by the PTMCMC method ( section 7). Smaller patches
in the TR space (Fig. 7, bottom) correspond with very
certain model estimates of events in the observed spec-
trogram (Fig. 7, top), while larger patches in the TR space
correspond with less well deÞned wave events. This am-
biguity between a recent nearby event and a distant event
from further back in the past can be reduced by using
other dependencies in the model and by drawing on
extra information about wind events from atmospheric
observations and models. The authors plan to address
this in future work.

8. Performance of the optimization

a. Distribution of Þtting parameters

To compare the eight model parameters consistently
we express them as normalized distance computed
relative to the prior ( section 4). Figure 8 shows the
decomposition of the model cost Jm in (6) into the cost
introduced by each of the eight parameters for the three
front stations. The initial cost of each parameter is zero
(green line), while the median model cost of the param-
eter is indicated by the black line.

The distribution of costs due to the parameter ad-
justment is similar for all parameters and for all stations,
with a clear maximum close to zero. Final parame-
ter values close to the initial value suggest that small
changes in the parameters are enough to reduceJd

substantially without introducing costs in Jm. However,
there are cases for all parameters where the Þnal value
deviates from the initial value more substantially. In
these cases, the costs inJm introduced by large param-
eter adjustments are small compared to the reduction
achieved in Jd such that the overall costF is still mini-
mized. This must be the case because the ratio of model
to data cost,Jm/Jd, rarely exceeds 20% for all Þtted cases
(Fig. A1). This suggests that, based on gradients inF , an
efÞcient minimization can often be effected via small
changes in the model parameters, or sometimes through a
few larger changes to a subset of parameters. Since
the gradient descent method terminates if the number of

FIG . 6. PDFs of four parameters inferred in an example case using the PTMCMC algorithm. (a) The three panels
in the top left show the joint PDF as well as the single PDF for the slope parametermf and intersect parameter~t0.
(b) The three panels in the lower right show the joint PDF and single PDFs for the peak parameter g and the
amplitude parameter â. The blue lines indicate the median and the dashed lines the 15.87th and 84.13th percentiles.
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iterations exceeds its limit, it is possible that regions
of parameter space in the direction of small gradients
are never explored. However, these are sampled later by
the Monte Carlo method.

Parameters that determine the radial distance and
initial time are optimized during the minimization
procedure. The position of ~t0 has, in the median, a larger
contribution to Jm than other parameters (Fig. 8a). That
is, in about 85% of all cases, changes in the modeled
position were necessary to achieve minimum cost. In
contrast, the model slope parametermf also adjusts
(Fig. 8b), but introduces smaller costs, because the
manual selection criteria better deÞne its initial values
than the position of the initial time ( section 6a).

Two parameters of the JONSWAP spectrum (g and
s 0) also introduce noticeable model costs (Figs. 8c,d).
Their initial values were manually adjusted away from
the standard JONSWAP values (Fig. A2), because trials
that started with standard JONSWAP values reduced
the overall quality of the Þt (larger fractional errors).
In the end, neither the standard JONSWAP values
nor the chosen initial values (the appendix) are the
best choices to capture the shape of the observed swell
events well. However, an additional free parameter,x
(Fig. 8e), that changes the general shape of the spec-
trum, often remains close to its initial, theoretically

well-constrained value of 5/4 [see(7)], as predicted by
Hasselmann et al. (1973).

b. Comparing Þtting performance between
front stations

The optimization algorithm found 225 events dur-
ing the 24-month observational period. They occurred
at each of the three ÔÔfrontÕÕ stations DR01, DR02, and
DR03, each about 2 km away from the ice-shelf edge
(blue, orange, and red dots inFig. 3); common events at
all three stations are identiÞed by similar arrival times.

The seismic stations at the RIS ice shelf front are close
together (’ 80-km separations) compared to the distance
traveled by the waves (’ 1500 km). As a result, the in-
coming wave angles and amplitudes are assumed to be
uniform along the ice shelf front. However, the event
amplitudes observed at DR01 are systematically larger
than at DR02 and DR03 (Fig. 9a). The difference in
amplitude between the stations may be caused by the
structure of the ice shelf, and affected by a major rift that
separates DR03 and DR01, near DR02. If the amplitude
difference were due to the incoming angle of the waves
rather than ice-shelf rheology, one would expect more
randomly scattered differences between the stations,
because the incident waves are expected to come from a
wider range of incident angles.

FIG . 7. Seismic spectrogram in the RIS (asFig. 1). The lines show the optimized dispersion
slopes for events from the Southern Ocean (red, south of 308S) or north of it (blue).(b)
Probability maps of wave origins in radial distance and time for the same time as (a). The red
and blue lines indicate the best guess of the initial time, that is, when the lines in (a) cross the
abscissa. Each elliptic pattern in (b) is the probability distribution of the corresponding wave
event in (a). The smaller the probability patterns, the more certain the wave event origin is. The
red and blue dots between both panels show the amplitude as observed on the RIS but position
at their initial time.
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Comparison of other Þtted parameters suggests that
the same wave events lead to comparable observations
at the three RIS-front stations. For example, peak fre-
quencies of common events vary by about 0.02 Hz or
less between the three stations (Fig. 9b). Austral sum-
mer events, that generally have higher peak frequencies,
also have a similar observed frequencies at all three
front stations. Differences between them are likely
due to independent noise or local shelf structure. Peak
frequencies lower than 0.04 Hz are mainly observed at
DR01, while the same events at DR02 or DR03 rarely
fall below 0.04 Hz. Reasons for this could be systematic
differences in the ice shelf front geometry, or crevasses
and rifts in the ice shelf between the stations, which are
beyond the scope of this study. Aside from this discrep-
ancy, observations show peak frequencies and spectral

shapes similar to those in the open ocean, indicating that
the RIS response to incident waves maintains properties
from the open ocean waves.

The uncertainty in the radial distance estimate, and
therefore also the uncertainty in initial time, can vary
between the front stations. Figure 9c shows the radial
distance uncertainty for all events (deÞned as half the
distance between the 15.87 and 84.13 percentiles of
the uncertainty distribution ( section 7b, Fig. 6a black
dashed lines). The difference in radial distance uncer-
tainty between the stations is generally larger for larger
uncertainties. For many events, DR02 and DR03 have
smaller uncertainties than DR01. These events are of-
ten, but not always, selected by the criterion of smallest
fractional error, which is explained in the next section
(black half dots, Fig. 9c).

FIG . 8. PDFs of parameters from the 225 Þtted parameters sets in the three front stations DR01 (blue), DR02
(orange), and DR03 (red) expressed as normalized distance to initial value following(6). Green dashed lines
indicate the normalized initial values of the model and the black lines are the medians of all cases at all stations.
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