The Influence of Vertical Air Velocity on the Remote Microwave Measurement of Rain

A. C. L. Lee

Meteorological Office, Bracknell, Berkshire, United Kingdom

(Manuscript received 16 November 1987, in final form 2 March 1988)

ABSTRACT

Atlas and Ulbrich showed a close theoretical relation between gage-measured rain rate and 1 cm microwave absorption; and other remote techniques for potentially accurate rain estimation have been developed. More recently, Ulbrich cast doubt on the absorption relation, suggesting an important influence by vertical air velocity. This paper uses a mass-continuity argument to show that over flat terrain vertical air velocity has no influence on the relation between gage-measured rain rate and rain rate remotely sensed aloft, although it introduces a discrepancy between the area of the rain sensed aloft and the area of surface rainfall. Thus point rainfall may be correctly estimated, but areal rainfall will be erroneous where rain falls systematically in significant convective updrafts or downdrafts.

This conclusion affects all remote techniques for rain estimation, whether ground or satellite based, although techniques incorporating continuous raingage calibration may be excepted. Evidence of agreement with gage measurements cannot be taken as evidence that any technique will estimate rainfall correctly, unless (averaged) vertical air velocity effects can be accounted for.

1. Introduction

Over the years remote methods of rain measurement have been developed that claim potentially high accuracies, although these often cannot be demonstrated because of practical limitations.

The relation between rain rate (R) and radar backscatter coefficient (Z) worldwide is uncertain to within an order of magnitude (Battan 1973; Atlas, Ulbrich and Meneghini 1984), at least partially because of the variation in raindrop size distribution (DSD). The least inaccurate Z–R radars use long (Rayleigh scattering) wavelengths near 10 cm where atmospheric and rain absorption is small. For carefully calibrated 10 cm radars, using a Z–R relation adjusted locally using raingages, and with substantial temporal and spatial averaging, Wilson and Brandes (1979) concluded that radar measurements of areal rainfall are accurate to within a factor of 2 about 75% of the time.

Large raindrops adopt a flattened shape compared to the spherical shape of small droplets, so some DSD information is available for a near-horizontal radar beam from the relative intensities of vertically and horizontally polarized backscatter. This may be used to improve the Z–R relation for the actual rain being observed, so that measurement scatter for rain falling in still air can be reduced. Relative intensities may be measured either as ratios of left- and right-handed circular polarization backscatter from a left-handed circular transmission (Moninger et al. 1986; Kropfl et al. 1986), or as a direct differential (dB) reflectivity for horizontal and vertical polarization—the so-called ZDR technique. Goddard and Cherry (1986) compared ZDR measurements with disdrometer and rapid response raingage data for a volume 200 m above the ground-based instruments. If DSDs were assumed to fit the gamma distribution (Atlas and Ulbrich 1982) which is now generally accepted, their results can be interpreted (Atlas 1986) as having a bias error equivalent to a 1 dB calibration error—which can be accounted for in future measurements—and a root-mean-square error of 15%.

Radar systems for satellite-based rain observation cannot use differential backscatter techniques as a nadir pointing instrument cannot observe a raindrop’s side section. Furthermore, space payload limitations preclude high-resolution 10 cm antennae, so that shorter and more attenuating wavelengths must be used. Fortunately, the near-vertical path lengths of absorbing precipitation are much shorter than those for ground-based systems, so absorbing wavelengths as short as 0.86 cm are feasible.

Atlas and Ulbrich (1977)—hereafter designated AU—showed that near 1 cm wavelength the relation between microwave Mie attenuation and still-air rainfall rate was fortuitously constant when averaged over short regions of the important raindrop diameter range 0.02–0.4 cm. Thus the relation between R and microwave attenuation (A) is expressed independently of DSD near this wavelength. They used many disdrometer measured DSDs to calculate A–R rela-

Corresponding author address: Dr. A. C. L. Lee, Meteorological Office, Room 140a, London Road, Bracknell, Berkshire RG12 2SZ, England.

© 1988 American Meteorological Society
tions, and fitted power-law curves to the resulting scattergrams. The best fit occurred at 0.86 cm wavelength for a nearly linear relation, with a scatter of 8.8%. Atlas and Ulbrich claim that if 0.86 cm Z data was also available, the improved DSD information reduces A–R scatter to 5%. Useful, although less impressive, results were claimed for longer wavelengths; e.g., 20% A–R scatter from a somewhat nonlinear curve at the less attenuating 3.22 cm wavelength.

The National Aeronautics and Space Administration (NASA) (1987) propose satellite-borne radars, operating at 14 or 16 GHz and 35 GHz (0.86 cm), for low-latitude rain measurement, especially over the ocean, similar to the aircraft measurements by Meneghini Nakamura et al. (1986). The techniques include measuring the intensity of radar pulses backscattered at nearly vertical incidence off the ocean surface through the rain. This measures the attenuation through the path-integrated rain rate, while the path length is ascertained by range gating. This paper will not discuss the many formidable obstacles to achieving accurate results, but in principle vertically averaged rain falling in still air is measurable through absorption with a potential accuracy of 5–8.8% as suggested by AU.

An alternative technique for satellite rain estimation over the ocean monitors the microwave sea-surface brightness temperature. At 10–35 GHz ocean emissivity is approximately 0.4, so the brightness temperature observed without rain is low. As rain rate increases, the measured radiation is calculated from the radiative transfer equation for the upwelling radiation to the radiometer from the absorbing (and thus emitting) rain, and the upwelling radiation from the ocean surface. The latter now includes a partial reflection of the downwelling radiation to the surface, which itself originates from rain emission in front of a cold space background. At low precipitation (microwave) optical depth, the increase in brightness temperature is proportional to the amount of absorber present. As the optical depth increases, the surface becomes invisible through the absorbing precipitation, and the temperature seen is that of the precipitation itself; at even greater optical depths only the cold precipitation top can be viewed. Thus, as rain rate is increased from zero, the brightness temperature initially increases linearly with absorber amount, then saturates and starts to fall. Wilheit (1986) suggests that over the oceans passive microwave measurements are essentially attenuation measurements that can be very closely related to the rain rate independently of the details of the drop-size distribution. The many practical problems in passive rain estimation will not be discussed, but on this basis if rain depth is measured or estimated, then in principle we can estimate (still-air) vertically averaged rain rate with the low scatter potential of absorption methods.

Thus, provided biases due to radar calibration, beam-filling problems, bright band and cloud absorption effects can be eliminated, and growth or evaporation effects modeled, then in principle rain can be estimated remotely to 5–15% by absorption or dual-polarization backscatter techniques. This high potential accuracy fails to take into account the subject of this paper—bias through vertical velocity of the air in which the rain is falling—which may cause factor of 2 errors in rain estimation for highly structured rain systems.

Section 2 of this paper uses a mass-continuity argument (after Kessler, 1969) to show that over flat terrain vertical air velocity has no influence on the relation between surface-gage measured rain rate and rain rate remotely sensed aloft, although it introduces a discrepancy between the area of the rain sensed aloft and the area of surface rainfall. Thus point surface rainfall may be correctly estimated, but areal rainfall based on the remotely sensed rain area will be erroneous where rain falls systematically in significant updrafts or downdrafts.

This conclusion affects all remote techniques for rain estimation, whether ground or satellite based, although techniques incorporating continuous raingage calibration may be excepted. A corollary is that evidence of agreement with gage measurements cannot be taken as evidence that any technique will estimate rainfall correctly, unless (averaged) vertical air velocity effects can be accounted for.

These mass-continuity implications have been overlooked in most of the recent literature. Ulbrich (1986) suggests that vertical air velocities (implicitly at the point of remote measurement) would explain certain experimental discrepancies that have been reported in the relation between gage and microwave-absorption measured rain. Section 3 examines Ulbrich’s argument, and finds no strong evidence to contradict the mass-continuity implication that this specific relation is unaffected by vertical velocities, within the context described here, and detailed in section 2; the discrepancies were probably due to measurement difficulties. However, “rain” is affected by vertical air velocities, and to roughly the extent that Ulbrich suggests, if applied to areal totals. Section 4 highlights the potential magnitude of vertical velocity effects, and section 5 discusses some comparisons between gage and remote sensing measurements that may be misleading. Section 6 indicates how continuous gage calibration can alleviate effects of vertical air velocity.

2. Quantified effects of vertical velocity
a. Nonzero vertical velocities

Remote rain measurement is affected by nonzero vertical velocities at the point of sensing, as an updraft retains precipitation aloft for longer. This has been noted by numerous authors, including Battan (1976) who showed that the weighted still-air fall velocity of rain at 9 mm h⁻¹ is 5.1–5.5 m s⁻¹, and that vertical velocities comparable with this would have a significant
or even substantial effect on rain rate (aloft). All rain measurements, whether via Z, A, or Z_{DR}, will be affected unless specific account has been taken of vertical velocity effects.

b. Mass-continuity constraints

Kessler (1969; section 14.C.3) discusses the implications of vertical air velocities for radar measurements. He considers a simplified steady-state description of precipitation concentration M (kg m^{-3}) falling over level terrain in which all drops have the same (negative) vertical velocity V (m s^{-1}) relative to incompressible air which has an upward vertical velocity w (m s^{-1}). By definition, the rainfall rate R (kg m^{-2} s^{-1}) is given by

\[R = -M(V + w). \]

(1)

Precipitation quickly adopts its nominal velocity relative to the air into which it falls (Kessler 1969; Appendix A), so that the ratio of rainfall rates for parcels of precipitation at two altitudes in the same vertical column, one susceptible to remote measurement and the other at another level, perhaps the surface (Fig. 1), is:

\[R_1/R_0 = [M_1(V_1 + w_1)]/[M_0(V_0 + w_0)]. \]

(2)

If the precipitation is unaffected by microphysical processes, then \(M_1 = M_0 = M \) and \(V_1 = V_0 = V \):

\[R_1/R_0 = (V + w_1)/(V + w_0). \]

(3)

This argument could be refined by having different classes for narrow ranges of drop sizes, and allowing mechanisms to exchange M between classes to allow for drop coalescence and shattering. Rain generation or evaporation could also be included. These additions are appropriate to a numerical model, but do not add to the present insight. In a recent reaffirmation of this model Kessler (1987) includes air compressibility effects, which he demonstrates are small to first order. He also includes variations in V, noting that resulting effects are usually small except in the case of melting snow or hail. To retain the impact of simplicity, these refinements will not be discussed further here.

A remote measuring instrument estimates rainfall rate aloft assuming that \(w_1 = 0 \), so overestimating in the presence of an updraft (Fig. 1). However, if a verifying raingage is on level ground, then \(w_0 = 0 \), and (3) shows that the incorrect estimate of rain rate aloft will agree with the true rain rate when the packet of rain reaches the ground (Fig. 1). This paradox exists because the precipitation adopts the convergence field of the air through which it falls, and the ascending (descending) air mass is forced to converge (diverge) horizontally to achieve zero vertical velocity at the surface, so that the embedded surface rain is spread over a smaller (larger) area than the rain observed aloft (Fig. 1). Thus, although the point rain rate estimate is correct, there will be an error in estimated areal rainfall corresponding to the error in measuring rain rate aloft (Kessler 1969). This error corresponds to the factor \(V/(V + w_1) \), as indicated in Fig. 1.

In real rain the situation is more complicated, but

![Fig. 1. Steady-state rain of uniform density M (kg m^{-3}) and still-air fall rate -V (m s^{-1}) descends in a sharply-bounded area \(A_1 \) (m^2) through an updraft \(w \) (m s^{-1}) associated with low-level convergence. By definition, point rain rate \(R = -M(V + w) \). If a remote instrument measures \(M, V, \) but assumes \(w = 0 \), then its measure of point rainfall aloft \(R_a \) agrees with surface point rainfall \(R_s \), where \(w_0 = 0 \). In the steady state, \(A_1R_1 = A_0R_0 \), so \(A_1/A_0 = V/(V + w_1) \). Thus the remote instrument overestimates the rain area in the presence of an updraft, giving an erroneous area rainfall.](image-url)
the same broad conclusions hold. Where \((V + w_1)\) is zero (or positive) for an area of precipitation aloft, that precipitation must be ignored as it does not reach the ground (without first passing through the same level with a negative total velocity). For parcels of nonsteady-state rain the duration aloft and at the surface may be different, but the relative rainfall is obtained from the integral of (3) as long as the parcel space/time location is identified both aloft and at the surface. The same caveat holds for rain falling out of a sloping updraft. Horizontal wind shear may spread the rain area at all levels, but horizontal spreading maintains the integral of \(M\) times area (ignoring areas of positive total velocity), so that as long as representative measurements are available the foregoing conclusions are unaltered for areal rainfall.

The simple Kessler model described here predicts that updrafts have no effect on the agreement between surface-based “point” raingages and remote measurements aloft. An implicit assumption is that the gage is in the area of surface rainfall. Where real rain suffers entrainment (diluting the rain density at the rain boundaries), or horizontal size sorting through wind shear, the gage measurement will be affected. However, these effects may not be important in the experimental situation where an observer chooses periods of data that appear to be constant, in the hope of obtaining an accurate comparison, as these are likely to correspond to central areas of the rain. In any case, entrainment and size sorting are microphysical processes that will affect gage measurements independently of the vertical draft effects discussed here, although they are often associated with drafts.

c. Sloping terrain

Section 2b considered only flat terrain. In sloping terrain we have the further complications of measurement/definition of rainfall, and interpretation of \(w\).

Conventional horizontal orifice raingages measure “meteorological (point) rainfall.” An instrument designed for sloping terrain has an orifice inclined parallel to the slope, and measures “hydrological (point) rainfall.” Sharon (1980) discusses the relation between these instruments. If the rain volume collected by the inclined gage is divided by the area of the gage orifice projected onto a horizontal surface, the result is the “hydrological (point) rainfall per projected unit area” or HPR.

Consider an air parcel advected up a uniform and extensive upwind slope as depicted in Fig. 2. In the absence of convergence, air everywhere within the parcel has zero vertical velocity with respect to the slope, and rain falling at \(-V\) with respect to the parcel air will exit the parcel base (onto the slope) to give an HPR calculated by (3) with \(w_1 = w_0 = 0\). Poreh and Mechrez (1984) studied the combined effects of wind and topography on rainfall distributions. In the limiting case of terrain having a scale length large compared with the characteristic scale length of the rain-response to wind perturbations, then a uniform rain rate in air with zero vertical velocity well above the hill (i.e., no convergence at this level) results in the same uniform HPR on all parts of the hill (at the surface, where there is also no convergence).

The rain itself falls slowly with respect to a horizontal plane (following the rain), because of the vertical component of the upslope wind, as a suitable instrument would detect (Fig. 2). However, to obtain surface rain rate one must subtract the surface “motion” \(v_0 \cdot \nabla h\) from the \(w_1\) aloft (where \(v_0\) is the surface wind vector and \(h\) is the surface), which in the absence of convergence balances \(w_1\). In practice one would need to know the relation between the measurement aloft and the wind/slope characteristics at the point where the rain will fall.

As the terrain and rain-response scale-lengths become comparable, the (smooth) three-dimensional air flow around the hill contains curved streamlines which imply accelerations, and these combine with the still-air fall velocities and inertial mass of (different sized) raindrops to deposit rain in a horizontal distribution which differs from that aloft (Poreh and Mechrez 1984), so that (single point) raingage readings may be misleading.

Thus, even if a remote-sensing rain rate monitor has the capability of measuring vertical velocities, care must
be taken in its interpretation near sloping terrain—especially near rugged terrain.

3. Discussion of a recent paper

a. Ulbrich’s argument

Ulbrich (1986) analysed Norbury and White’s (1972) measured relation between radar attenuation and rain gauge rainfall rate, and that of two other measurements, in the context of their agreement with the AU theoretical curve. Norbury and White’s 35.8 GHz absorption measurement was made over a double-pass total path length of only 448 m at a height of only 5 m above the ground. Rain rate was measured at four rapid-response rain gauges evenly spaced at intervals of approximately 45 m. Three of the gauges were placed on top of 3 m poles, while the fourth was situated with its lip 0.5 m above the ground. Agreement between Norbury and White’s measurement and AU’s theoretical curve is good, although scatter is somewhat greater than AU suggest. Ulbrich (1986) notes that the low altitude of the measurements would inhibit vertical velocities, and that these measurements in UK summer showers were unlikely to be contaminated by large-scale organized vertical motion.

Ulbrich (1986) considered measurements by Anderson et al. (1947) (hereafter AA), and Semplak and Turrin (1969) (hereafter ST) measured at 1.25 and 1.62 cm respectively, each of which indicate $A-R$ relationships higher than AU theory by 40–60%. Ulbrich notes that an updraft of 2–4 m s$^{-1}$ would reduce the fall-speed of a gamma-distributed DSD, reducing the rain-rate into agreement with the rain gages; and that AA’s low-scatter measurements were made on the upwind slope of Hawaii near Hilo in orographic rain. ST’s measurements exhibited great variation, and the regression fit to most of their data produced an attenuation some 30% less than a theoretical curve based on Mie calculation and a Laws and Parsons DSD. However, the particular subset of ST’s data that Ulbrich discusses gave an attenuation so high that no DSD would explain the measured $A-R$ relation. ST and Ulbrich both highlight the fact that this rain occurred over a period associated with the passage of a cold front, and appear to accept the idea that a large scale organised updraft of the order of 1 m s$^{-1}$ along the front reduced the rain rate, giving the abnormally high attenuation coefficient.

b. Re-examination of the anomalous measurements

The measurements of AA involved 9 gages—four having a rapid 30-sec integration period—over a 1950 m range, so that spatial resolution of the rain along the path may have been good. However, Ulbrich’s (1986) argument that the upslope wind (in the absence of convergence) may have affected a correctly measured rain rate is not consistent with the arguments of the previous section; in any case this explanation is weakened by AA’s comments that winds were light.

Vertical velocities at the gage sites may have been present through rain falling systematically within orographically initiated convective updrafts. On flat terrain these updrafts are eliminated at the surface by low-level convergence. However, AA’s measurements were made “on a lava flow, parallel to the mean wind vector” with the receiver at 762 m and the transmitter at 853 m. This might imply siting on a ridge with sufficient exposure to permit convergence below the gage level.

Orographic rain near Hilo may contain a high proportion of large drops, to 4–5 or even 8 mm diameter (Johnson et al. 1986). AU used power-law approximations to demonstrate attenuation independence of DSD, and these break down for large drops. However, Mie absorption for spherical drops of diameter greater than 5 mm falls below AU’s power law, so attenuation coefficients should be reduced rather than enhanced. Large drops adopt a flattened shape, enhancing their attenuation of horizontally polarized radiation (and reducing attenuation for vertical polarization), but this effect is small for Mie scattering (Oguchi 1983). AA do not specify microwave polarization, but it is unlikely that the overall attenuation coefficient will be significantly enhanced by any unusual preponderance of large drops.

Potential weaknesses in AA’s experimental technique may have caused overestimation of the absorption coefficient. They describe “rain shelters” housing “funnel and graduate” gages that were read manually in situ, and may thus have been exposed atop small sheds—in turn atop a ridge. Heavy convective rain may have been associated with gusting, and horizontal winds generate an upward flow over obstacles that can carry precipitation over a gage. For correctly exposed gages 0.3–0.4 m above a flat terrain, Sevruk (1982) suggests that wind-field deformation loss can be up to 10%. For poorly exposed gages the effect could be larger, although this would be alleviated by the large drops present in tropical rain. An additional 2% loss could be caused by splash-out.

The microwave beam width of AA was 7.5°, giving a 15 m half-width at the transmission path midpoint. Had they chosen a path over a substantially concave terrain to avoid multipath problems, the rainfall lag between gage and elevated attenuation measurement may not have been adequately considered. In practice, AA discuss time coordination in great detail (without mentioning individual gage lags), and describe the terrain as having “a gentle slope”, so the path slope was probably nearly uniform. Thus, AA may have suffered multipath interference between the direct path and a ground reflection as their antennae were mounted “in a small elevated shack” rather than up masts; indeed slight terrain concavity would enhance ground reflections through focusing.
The lava surface was covered with "saw grass and low brush" which they might have considered adequately rough to absorb incident radiation. However, once this vegetation is flattened and coated with streams of heavy rainfall, microwave energy incident at a grazing angle may have been strongly reflected. If the terrain were less than 2.5 m below the direct transmission, the path difference between direct and reflected beams would be small over a sizable portion of the terrain, giving a coherent sum even with diffuse reflection. With vertically polarized radiation, the received signal would be enhanced; but with horizontally polarized radiation the phase reversal on reflection would cause the received beams to interfere destructively, leading to a reduction in received energy and overestimation of absorption coefficient. Alternatively, a longer path difference could give destructive interference with vertical polarization. It is surprising that AA do not mention the microwave polarization, nor discuss multipath precautions, so perhaps they were less than adequately aware of the potential problems. Absence of multipath can only be demonstrated by measuring the maximum received signal (as both transmitter and receiver azimuth and elevations are varied) as a function of transmitter or receiver height (over several meters) above the terrain. This exercise may have been difficult to carry out using 1947 equipment under tropical rain!

Multipath effects are difficult to predict precisely, but with a fixed installation could be fairly systematic and equivalent to a few decibels—a 3 dB signal reduction is enough to overestimate the coefficient by 50% at 25 mm h⁻¹, and by more at lower rain rates. The rain-coating effect may be less at reduced rain rates, and could be largely absent for the no-rain calibration. However, it is not clear whether this effect would be sufficiently systematic to produce AA's low scatter.

Explanation of the anomalous ST result in section 3a depends on large-scale wind convergence rather than upslope winds, and merits some discussion. Semplak and Turrin’s measurements were made over a 6.4 km path oriented along a northwest/southeast line with four rain gages distributed along the path, each at a height of 7.6 m above the ground. Weather archives show that a cold front, oriented approximately north/south, and traveling at 9 m s⁻¹ due east, occurred near the time that ST report a frontal barometric and wind velocity pattern associated with their anomalous rain.

Consider the continuity equation for air, considered as an incompressible fluid, near a horizontal surface:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0
\]

where the symbols have their conventional meanings. Substituting finite differences, over an area where \(\Delta x = \Delta y = 6400 \text{ m}, \Delta z = 7.6 \text{ m}, \Delta w = 1 \text{ m s}^{-1}\), we have \(\Delta u + \Delta v = 842 \text{ m s}^{-1}\). Thus the surface wind speed must change by around 842 m s⁻¹ in 6.4 km to account for an average vertical velocity of 1 m s⁻¹ over an area of scale-size 6.4 km. Clearly, wind speeds of this magnitude did not occur, so updrafts of 1 m s⁻¹ were not generated by large-scale convergence as suggested explicitly by Ulbrich, and implied by ST.

Semplak and Turrin’s experiment was conducted in New Jersey with the transmitter at Cliffwood, atop a hill 31 m above sea level, and the receiver to the southeast close to the top of Crawford Hill, at 116 m. Between these sites, the terrain from Cliffwood slopes down to sea level within 1500 m, and then generally rises, first gently but gradually at a more rapid rate up the side of the Mount Pleasant range of hills to the Crawford Hill peak. Semplak and Turrin note that the line-of-sight path had “good foreground clearance at both ends” — a desirable condition to avoid microwave multipath interference problems, but one indicating a terrain likely to introduce topographical effects on gage measurements. During the period ST report a surface wind of up to 7 m s⁻¹ from the west to northwest quarter, roughly along the measurement line and up the surface slope. Below the final 1 km of transmission path the surface gradient increases to around 1:11, so that significant local orographic (surface) updrafts could be created here.

Condensation caused by this updraft would enhance rainfall orographically by providing “feeder” cloud droplets (Browning et al. 1975) for the unstable frontal region, so that some rain would be deposited preferentially on the upwind slope of the hill throughout the frontal passage. The last of ST’s gages was situated near the Crawford Hill peak, while the penultimate was located 2 km back along the line-of-sight, well away from the steepest slopes. Thus some rain may have been concentrated within the region between these gages, which would then underestimate the path-integrated rain, leading to an overestimated attenuation coefficient. A view more appropriate to the higher rain rates would note that ST’s path-averaged rain intensity was very high—especially during the five-minute peak during which the raingages suggested a path-average of 45 mm h⁻¹. High rain intensities of short duration are usually associated with small areas, so the local rain rate may have been concentrated within a 1 km or so portion of the path, implying rain rates approaching 250 mm h⁻¹. At the implied intense levels of local convection, orographic enhancement by such a small hill would probably be insignificant, so the rain may have occurred anywhere along the path. A rain pulse of small horizontal dimensions centered anywhere between gages would produce an overestimated attenuation coefficient, again explaining the disagreement with theory without involving direct effects of vertical velocities on remote measurements.

Semplak and Turrin themselves note that “from experience with the network, we have learned that the gauge spacing is somewhat too large to permit resolving the distance associated with some of the very heavy rain rates.”
Thus both Anderson et al. and Semplak and Turrin's results are inconclusive, especially as the latter are exceptional, providing scant evidence that the AU relation should not hold over flat terrain provided that there is an adequate spatial sampling of accurate gages. It is probable that many other direct microwave measurements made over long paths could be inconclusive for similar reasons.

4. Magnitude of vertical velocities

For measurement of rain to better than 10%, vertical air velocities must be known to around 0.5 m s\(^{-1}\). Detailed analysis of likely updrafts is outside the scope of this paper, but an indication is given that updrafts may be significant.

Houze (1981a) presents an overview of precipitation structure from various sources. Within midlatitude cold frontal rainfall, 2–3 m s\(^{-1}\) updrafts and downdrafts have been encountered. These are weak compared to the 16 m s\(^{-1}\) (or larger) updrafts found during the convective phase of Florida/Ohio summertime thunderstorms. Such intense convection maintains the precipitation aloft (although still measured by remote sensors), until a mature stage when both updrafts and downdrafts coexist, and precipitation starts to reach the ground. At this stage a cross section shows updrafts increasing from the ground to 2 m s\(^{-1}\) at 2 km, and 12 m s\(^{-1}\) at 6 km altitude. Houze (1981b) reviews GATE studies to give insight into tropical precipitation structure. Around 40% of tropical rain falls within broad-area “anvil” cloud with relatively small vertical velocities for this purpose. The remaining 60% is convective rain. Within isolated convective cells 1–3 m s\(^{-1}\) updrafts are typical of convective cores within the height-range 700–2500 m. The vertical velocity structure of the convective region of tropical squall lines exhibit intense updrafts—perhaps 10–15 m s\(^{-1}\). These carry precipitation aloft to a region of evaporative downdraft—of perhaps 4 m s\(^{-1}\)—behind the squall front.

5. Interpretation examples in remote rain measurements

From section 2 we see that in the presence of updrafts it is possible to get good agreement between remote measurements of rain rate and a verifying raingage on flat terrain under the measured rain aloft, and yet incur dramatic errors from the same type of remote measurement when estimating areal rainfall because the rain area is wrongly estimated by the remote measurement. This has important consequences for the interpretation of accuracy claims for the remote measurement of rain, and for the design of future rain measuring systems.

Wilheit et al. (1977) report a comparison between radiometers operating at 19.35 GHz and 37.0 GHz (0.81 cm wavelength) and two types of “conventional” ground-based raingage. The radiometers were ground-based, oriented at 45° zenith angle, sensing emission from rain falling below the known freezing-level of 4 km. The results from periods when the rain rate and brightness-temperature measurements were steady for periods of two minutes or more were theoretically interpreted in terms of a satellite-based radiometer making nadir passive microwave measurements through constant-temperature rain over the ocean. The results showed discrepancies of only 30–40% between the directly measured rain rate and the theoretically interpreted brightness-temperature “measurements” within the rainfall rates of 1–20 mm h\(^{-1}\). However, this interpretation is optimistic in the sense that the temperature and radiative properties of the theoretical ocean are precisely known—this would not be the case for a real ocean.

A ground-based radiometer looking (nearly) upwards makes a small-area “point” measurement comparable with a “point” raingage measurement, so agreement should be achievable. However, upward- or downward-pointing radiometers deduce a mean rain rate between the surface and the freezing level, representative of an altitude where vertical velocities might have developed. Thus, the extent of the areas of rainfall observed by a high spatial resolution satellite-based 10–35 GHz radiometer would not correspond with the areas of surface rainfall if these fall systematically in convective up- or downdrafts, and poor areal rainfall estimates would result. In practice, satellite-based 10–35 GHz radiometers suffer from poor spatial resolution compared with rain-cell dimensions, but the same result would hold—to be compounded with further errors if there was a nonlinear relation between high-resolution rain amount and brightness temperature.

Wilheit et al. (1977) also discuss a comparison between the 19.35 GHz Nimbus 5 Electronically Scanning Microwave Radiometer (ESMR) data over the oceans off the west coast of Florida and a ground-based WSM-57 active radar at Miami. Unfortunately, agreement here is only within a factor of 2 because of various practical problems discussed in their paper. However, had it been possible to match active radar and passive radiometer measurements at some altitude representative of the height-averaged vertical velocity, and so perhaps obtain agreement, either measurement would have given a potentially unrealistic representation of the area of the surface rainfall, and so introduced errors in areal rainfall. The same argument would hold for active measurements of path-integrated rain rate obtained through backscatter off the ocean surface.

In principle, active satellite-based rain radars can monitor rain close to the surface by range gating. This could solve the problem of eliminating vertical velocities, and also eliminate virga effects. In practice there are difficulties in achieving measurements close to the surface, and resolution of the order of 1 km may be
all that is practicable. This is a large enough altitude to develop vertical velocities.

Conventional ground-based rain radars usually have practical difficulties in making rain measurements at low altitudes because of the terrain and because of radar side-lobes. Thus measurements are made aloft, and areas of surface rain may be erroneously estimated where rain falls systematically in an updraft or downdraft. This difficulty would also apply to Z_{DR} radars, in spite of their claimed high accuracy, unless systematic vertical velocities are insignificant.

6. Calibration by raingages

One might anticipate that raingage calibration would automatically eliminate bias problems, although the misleading agreement discussed above suggests caution. Consider a hypothetical radar to be calibrated against a raingage; assume the radar senses rain only at altitudes above the gage where significant vertical velocities may have developed, and that the idealized rain of section 2c occurs.

The operator may wait until both radar and gage show steady readings, and then calibrate. Although this may demonstrate the excellence of the radar’s gain and the accuracy of the previously estimated DSD, (3) indicates incorrect calibration for the rain rate aloft, so that areal rainfall (based on multiplying radar-measured rate, area, and duration) would be erroneously estimated, perhaps by a factor of 2 for a 4 m s$^{-1}$ updraft.

Alternatively, the calibration might equalize integrations of radar and gage readings over a time—say, one hour—during which an entire rain cell might cross the gage and corresponding radar measurement point. If the updraft halves the elevated rain rate, then the surface rainfall area would be half of that aloft. Each sensor would observe steady rain, but on average the gage would observe rain for half the radar’s duration. On average, equalizing the hourly integrations would then calibrate the steady radar reading equivalent to half the steady gage reading, correctly accommodating the updraft. This calibration would be invalid for rain away from the gage with a more tilted convective structure and rain falling in a downdraft, but provided structures are reasonably homogeneous over the area calibrated by each gage, and the integration period is appropriately chosen, then updraft effects should be alleviated. Permanent calibrations are inappropriate, and an adequate density of physical raingages must be available to update the variable calibration as necessary.

In practice “steady reading” calibration techniques are inapplicable, as rain is inhomogeneous, exhibits lag between elevated and surface measurements, and suffers wind sorting and other problems. Thus long-period averaging (perhaps by filtering rather than by integration) is incorporated by default into systems that include gages to compensate for orographic effects below the radar beam. The result is that updraft effects are alleviated provided the gage network is adequately dense (Collier 1986).

Other remote measurement techniques could be calibrated using gage data, although they are often aimed at eliminating gages by their increased complexity, or at wider (i.e., satellite) coverage. Satellite measurements could be calibrated against radar “gages”, but these may be accurate—for the reasons stated—only if they incorporate calibration through a network of physical gages of adequate density to ensure homogeneous orographic rain structure between gages. Satellite calibrations would be valid between the radar “gages” only for synoptically homogeneous rain systems unless the satellite could estimate updraft velocities through direct measurements, or proxy measurements such as image texture.

7. Conclusions

Ulbrich (1986) has recently suggested that vertical air velocities may be important in the measurement of rain rate by microwave absorption techniques, and its comparison with raingages. This paper agrees with his implication that vertical air velocities are important, and to the extent that Ulbrich suggests; but not with the implied impact on the relation between remote and gage measurements. This crucial difference undermines Ulbrich’s evidence for the effect that he highlights, and has some important consequences for all remote measurements of rain.

In any comparison of raingage data and remote measurement of point rain rate, the vertical velocity of the air near the level where the gage is situated must be taken into account. For gages on a flat terrain this is zero, so that according to the simple Kessler model there should be no effect. For the rare situation of gages sited aloft, some adjustment may have to be made. In practice it is difficult to make an adequate gage measurement of rain rate for comparison with the most accurate remote sensing techniques because of local effects of terrain, the nonuniformity of rain over the remotely sensed area, or instrumental problems.

If we consider rain that maintains a uniform mass concentration and fall-velocity relative to still-air throughout its descent from the remotely sensed point to the surface, then vertical air velocities present at the point where rain is sensed can cause the rain aloft to cover an area different to that covered at the surface. This gives rise to a greater than 10% error in areal rainfall where rain falls in modest convective updrafts or downdrafts of 0.5 m s$^{-1}$ or more. In practice, rain often falls in a mixture of up- and downdrafts, leading to some cancelation of the effects discussed here, but the net effect varies with the details of the rain system being observed, and vertical velocities well in excess of 0.5 m s$^{-1}$ are commonly associated with convective rain. Real rain may suffer complex microphysical changes, and size sorting through wind shear, but the foregoing
general effect of vertical air velocity on areal rainfall totals is unchanged.

These conclusions impact on all remote rain sensing measurements which implicitly assume that rain falls in still air. This includes both ground-based and satellite-based measurements, even where rain gauge data is used to calibrate the remote measurement, although in the latter case an appropriate form of continuous averaging can alleviate the problem.

In spite of the many difficulties, useful ground-based radar measurements of rain are performed operationally without making detailed use of research results on attenuation, backscatter, or vertical velocity effects. This is achieved by using electrically calibrated 10 cm Rayleigh-scattering and low-attenuation radars, by making some inferences about bright-band effects and unusually strong echoes from hail, and by having an empirical adjustment—preferably by some form of continuous adjustment. However, this is only because timely short-term measurements of rain are valuable even if not highly quantitative, and longer-term measurements can be adjusted to a large extent by rain gauge data. If progress is to be made towards more precise measurements, the impact of the discussions presented here must be considered along with many other complicating factors.

Satellite-borne rain measurement techniques will have to measure, or model, vertical air velocities if they are to make 10–20% measurements of areal rainfall over flat terrain; for example, for climate purposes (NASA, 1987). A study of the climatology of updrafts associated with rainfall, particularly over the tropical oceans and carried out in conjunction with satellite rain measurements, would be of great value in remote rain sensing. Over sloping or rugged terrain the problems are considerably enhanced, and the details of topography and three-dimensional winds would have to be known.

Acknowledgments. My thanks are due to Dr. S. A. Clough and Dr. P. J. Mason for their helpful discussions concerning fluid flow and precipitation deposition.

REFERENCES

NASA, 1987: On requirements for a satellite mission to measure tropical rainfall. NASA ref. publication 1183, GSFC, Maryland.

