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ABSTRACT

The governing equations, power and cross spectra for the atmospheric motion, and transports in the
frequency, wave-number space are derived. Discussions are made of the contributions of the nonlinear inter-
actions of atmospheric waves in velocity and temperature fields to the conversion of kinetic and potential
energies, and to the meridional transports of angular momentum and sensible heat in the atmosphere,

1. Introduction

The foundation of the statistical theory of turbulence
lies in G. I. Taylor’s pioneering work in 1935 and 1938
(Taylor, 1935, 1938) in which he introduced the correla-
tion between velocities at two points as one of the
quantities needed to describe the turbulence, and the
Fourier transform of the correlation to obtain an energy
spectrum function depicting the distribution of kinetic
energy over various Fourier wave-number components
of the turbulence. In recent years, a great deal of
theoretical and experimental work on turbulence has
been done. Comprehensive lists of literature on turbu-
lence may be found in monographs by Batchelor and
Townsend (Batchelor, 1953; Townsend, 1956).

Because of the complex nature of turbulent motion,
mathematical treatment of turbulence has mostly been
confined to the microscale under the assumptions that
the field of turbulent motion is statistically homogene-
ous and isotropic. Indeed, analysis of microscale turbu-
lent motion becomes greatly simplified, since the effects
of Coriolis and pressure forces are comparatively small
and may be neglected. In the large-scale motion in the
atmosphere, however, the motion is not only affected
by the presence of the pressure and Coriolis forces but
complicated by the lack of homogeneity and isotropy
in the field of turbulence. The best way of studying
atmospheric turbulence is to analyze the motion in
three-dimensional wave-number space. Such an analy-
sis, though it proves to be most general, is extremely
complex. However, the mean motion in the atmosphere
and the movement of the large-scale atmospheric sys-
tems are primarily parallel to the latitude circles. These
suggest that the large-scale atmospheric motion and
transport processes may be examined in the longitude-
time space. The purpose of this paper is to make such
an analysis,

2. Power and cross spectra in wave-number, fre-
quency space

One of the important studies of the large-scale atmo-
spheric turbulence and transport processes is the analy-
sis of the power and cross spectra of the turbulent
motion and transports in the atmosphere. The former,
which deals primarily with the kinetic, potential and
internal energies, is basic to the understanding of the
mechanism of turbulence. The latter, which concerns
primarily the transport and conversion of energies, is
fundamental in the maintenance of the general circula-
tion in the atmsophere.

Studies of the longitude spectra (Benton and Kahn,
1958; Eliasen, 1958 ; Kao, 1954; Saltzman, 1957, 1958;
Van Mieghem et al., 1960) and the Lagrangian and
Eulerian time spectra (Kao, 1962, 1965; Kao and Bul-
lock, 1964) have recently been made. A comprehensive
list of references of the analyses of the former may be
found in a recent monograph by Van Mieghem (1961).
These studies have provided a great deal of informa-
tion regarding the contributions of the large-scale mo-
tion due either to the longitude- or time-eddies. How-
ever, to gain an insight into the contribution due to the
motion of eddies of various sizes and frequencies, it is
necessary to analyze the power and cross spectra of the
large-scale atmospheric motion and transports in the
frequency, wave-number space. In this section we shall
develop a tool for such an analysis.

Let g(\,f) be a real, single-valued function, which is
piecewise differentiable in a normalized domain, 0<),
{<2m, where, \ and ¢ stand, respectively, for the longi-

tude and time. g(A,f) has a Fourier transform which
may be written
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where Q is the complex coefficient and % and # are the

wave number and frequency, respectively. The inverse

transform of (1) gives ¢(A,f) expressed in terms of its

complex coefficient as follows:

+0
Q(k,n)eiEtniidy,

-—00

o
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Here the summation of the complex coefficient Q with
respect to the integer wave numbers is the consequence
of the cyclic distribution of ¢(\,f) along latitude circles.

For convenience of computations in this study,
We express

Q(k7")=Qf(k>17/)+iQi(k;n)7 (3)

where

1 2 27
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and
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are the real and imaginary parts, respectively, of Q(k,n).
It can easily be shown that

Q*(£k, Fn)=Q(Fk, £n)
Q- (£k, Fn)=0,(Fk, &=n),
Qi(:FkJ :}:n)z _Ql(:*:k) q:") ) (4-)
Q(x &, Fn)Q*(£k, Fn)=Q>(kk, Fn)
+0Q#(£k, Fn)=|Q(£k, Fn)|?

where Q* denotes the conjugate of Q.

Consider the same conditions for another scalar func-
tion s(\,#) with a Fourier transform S(k,n). It can be
shown that for functions s(\,) and ¢(\,f), we have

1 27 27
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where
1 2 2w
S(j,m)y=— / / s(\ e~ tlMmd Iy,
dnt Jo Jo

Letting &, n— 0, we have the generalized Parseval’s
formula,
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It can further be shown that

1 27 2T
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4ntJo Jo

1 5 @
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4lg=—uo —»

+S(k, —n)Q(—k, m)+S(—k,n)Q(k, —n) Jdn. (7)

In view of the integrand of the right-hand side of the
above equation being an even function, (7) may be
written as
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Here relation (4) has been employed.

Denote the cross spectrum of s(A,f) and g(),f) due to
eddies of wave-number % and frequency # moving to-
ward the direction of increasing and decreasing longi-
tude, respectively, by

Es (0 Fn)=S5,(0, F1)Q.(0, Fn)

+S,‘(0, :F%)Q,(O, :Fn)
Eyo(k, Fn)=2[S,(k, Fn)Q.(k, Fn)

+S1(k, :Fn)Q.(k, TFn):I

©)

for 0

The contribution of s(\,f) and ¢(),f) integrated over a
latitude circle and over a normalized time interval 27
may then be expressed in terms of the sum of E,,(k,n)
and E,,(k, —n) integrated over the frequency and
wave-number domain. Thus,

1 27 27
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=0/,
The above equation may also be expressed as
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where

Eyolk, :F)=/ Ey (R, Fn)dn
0

is the cross spectrum of s(A,#) and ¢{A,f) due to eddies of
wave number k2 and all frequencxes, moving, respec-
tively, in the direction of increasing and decreasing
longitude, and

+e0
Ey(Fn)=73_ Ey(k, Fn)
k=0

is the cross spectrum due to eddies of frequency » and
all wave numbers, moving, respectively, in the direction
of increasing and decreasing longitude.

To compare the longitude-time power and cross
spectra for different latitudes .and time intervals, it is
convenient to introduce the normalized cross spectra,

Foo(k, 1)
_2[5,(k, +1)Q,(k, £1)+S:(k, £n)Q:(k, £n)]

1 27 2 ’
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(for k=0, the factor 2 in the numerator should be
replaced by 1), and

k0,

o0
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0

. (13)
FIQ(:{:n)=—§ an(k, :bn)
k=0
such that
5l ) Fuall, =)1=1
(14)
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For the analysis of the power spectrum of the scalar
quantity g(\,f), the quantities s(\,t) and S(&, =t#») in
the equations of this section should be replaced, respec-
tively, by ¢\, and Q(k, £).
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Computations of the longitude-time power and cross
spectra of the large-scale atmospheric motion and the
meridional transports of angular momentum, kinetic and
potential energies, etc., for the year 1964 have been
made (Kao et al., 1966). Analysis of these results, which
provide information regarding the mechanism of the
large-scale turbulence and transport in the atmosphere,
will be presented in a later paper.

3. Equations for the large-scale atmospheric motion
and transports in the longitude, latitude, pres-
sure coordinate system

In the longitude A, latitude ¢, pressure p coordinate
system, the equations of motion, the hydrostatics equa-
tion, the continuity equation, and the energy equation
may be written as:

d w a4 v a
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where a is the radial distance from the center of the
earth, f the Coriolis parameter, g the acceleration of
gravity, 2 the height of isobaric surfaces, w the individual
rate of change of pressure, 7" the temperature, R the gas
constant, & the rate of heat addition per unit mass, »
and v the longitudinal and meridional component of the
velocity, respectively, and F1 and F, the corresponding
longitudinal and meridional component of the frictional
force. For large-scale atmospheric motion, F; and F,
represent the sum of molecular frictional force and the
Reynolds stress force due to eddies of high frequencies.

In the study of the maintenance of the general circu-
lation in the atmosphere, we are particularly interested
in the local rate of change of the kinetic and internal
energies, and the rates of the meridional flux of sensible
heat and angular momentum. With the use of Egs.
(15)-(19), they can be shown to be
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These equations of transports will be compared with those transformed to the frequency, wave-number space in
the next section.

4. Governing equations for the large-scale atmospheric motion and transports in the wave-number,
frequency space

To transform the governing equations for the large-scale dtmospheric motion and transports to the wave-number,
frequency space, we introduce the following notations for the Fourier coefficients of the quantities used
in this study:

g\LP, @) | u v w gz T h Fi F,

OGmpe) | U V W Z 6 H G Gs

Applying the Fourier transform formula (1) to the zonal component of the equation of motion (15), we obtain
the complex coefficient of the zonal component of the velocity, i.e.,

i o ®
Uk, +n)==4— 3. {

n j=—w

1
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a
1 .
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where the subscripts represent the variables with respect to which the partial differentiations have been taken.
On the right-hand side of Eq. (24), the first term represents the contribution to the complex coefficient of the
zonal component of the velocity due to the nonlinear interaction of the waves of the zonal velocity, the second term
represents the contribution due to the interaction between the waves of the zonal and meridional components of
the velocity, and the third term represents the contribution due to the interaction of the zonal and vertical com-
ponents of the velocity. The fourth and sixth terms represent, respectively, the effect of the earth’s curvature and
rotation, whereas the fifth term represents the contribution of the pressure waves. The last term gives the effect of
the frictional force in the atmosphere ; for large-scale atmospheric motion, it represents the complex coefficient of the
Fourier transform of the molecular frictional force and the Reynolds stress force due to eddies of high frequency,
which is nonlinear in nature.
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Eq. (24) may be used to analyze the linear and nonlinear effects of waves of various wavelength and frequency
on the zonal component of the velocity. It may be noted that the first and fifth terms of the right-hand side of (24)
are weighted by kn~!, whereas the rest of the terms of the right-hand side have a factor »~. This indicates that
waves of small frequency would generally contribute more to the zonal component of the velocity. As a by-product,
Eq. (24) may be used to evaluate the Fourier coefficient of the frictional forces.

Applying the Fourier transform formula to Eqs. (16), (17), (18) and (19), we obtain, respectively, the complex
coefficient of the meridional component of the velocity, the height of the pressure surface, the individual rate of
change of the pressure, and the temperature as follows:
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The above equations will be used to analyze the kinematic, dynamic and thermodynamic contributions to velocity
and temperature fields in the frequency, wave-number space.

One of the objectives of this study is to analyze the contribution of the large-scale atmospheric motion to the
kinetic energy, the rate of the meridional transports of sensible heat and angular momentum, and the available
potential energy in the atmosphere. To do so, spectra of §(u?4-12), 9T, vua cose and T need to be computed. They
can, respectively, be shown to be
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Studies of the linear and nonlinear effects of the velocity and temperature fields on the kinetic and internal
energies, and the meridional transports of sensible heat and angular momentum in the wave-number, frequency
space are being made. The results of these studies will be reported in a later paper.
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