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ABSTRACT

The problem of the steady symmetric motion of a Boussinesq fluid is considered for a system with small
aspect ratio. It is assumed that the motion is driven by applying a periodic heat flux to the horizontal
boundaries. Solutions are first found for a non-rotating system in which nonlinear effects are small, but
not zero. The solutions show that if the fluid is heated from above, the meridional circulation tends to be
concentrated near the upper boundary at the point where the cooling is 2 maximum; when the fluid is
heated from below the meridional circulation tends to be concentrated near the lower boundary at the
point where the heating is a maximum,

Then, it is shown for a non-rotating system that when nonlinear effects are dominant, vertical boundary
layers must form. These vertical boundary layers form at points where the horizontal velocity is zero,
and are characterized by small horizontal velocities and temperature gradients, but large vertical velocities
and horizontal diffusion. By means of scaling analysis, the scales and magnitudes of the variables are
determined for both the internal boundary layers and the boundary layers along the horizontal boundaries,
when nonlinear effects are dominant.

Next, the effect of rotation is considered, and it shown that exactly the same sorts of vertical boundary
layers will form in a rotating system. Scaling analysis is again used to show that in this case the horizontal
boundary layers near the internal boundary layers are of the same kind as in the non-rotating case, but
far enough away from the internal boundary layers they merge into a nonlinear Ekman layer.

Finally, some possible geophysical applications are considered. The model of the atmospheric circulations
on Venus proposed by Goody and Robinson is found to agree qualitatively with the results presented here,
but the quantitative results for the internal boundary layer, or mixing region, are found to differ con-
siderably. Also, estimates are made for the internal boundary layer which would accompany a Hadley
cell similar to that found in the earth’s tropical region. It is found that the rising motions will occur over a
region about 200 km in width. This result suggests that the nonlinear process which produces these internal
boundary layers may be one of the important processes in determining the structure of the Intertropical
Convergence Zone. Finally, the identification of the narrow sinking regions as another example of the

kind of internal boundary layer studied here is considered, but in this case the magnitudes and scales are
not plausible.

1. Introduction ences to the literature], because of their importance in

the theory of the general circulations of the terrestrial
atmosphere. Another example of geophysical relevance
is the model of the oceanic thermal circulation produced
by Robinson and Welander (1963), which is essentially
a solution for sideways convection in a rotating system.

However, all of the published studies of sideways
convection in both rotating and non-rotating systems
differ in two important respects from many geophysical
situations. In the first place they produce the differ-
ential heating by applying at the boundaries a tempera-

Determining the steady, axially-symmetric state of
motion of a differentially heated atmosphere or ocean
is essentially a problem in sideways convection, The
resulting state of motion in geophysical contexts is
generally referred to as the Hadley regime of motion.
Such motions have been studied extensively for non-
rotating systems in the fluid dynamics literature (e.g.,
see Batchelor, 1954; Weinbaum, 1964; Elder, 1965;
Rossby, 1965; Gill, 1966). In fact, it has been suggested
that the results of the non-rotating case may have

relevance for certain geophysical problems; in par-
ticular, by Stommel (1962) who was concerned with the
oceanic sinking regions, and by Goody and Robinson
(1966) who were concerned with the circulations in the
atmosphere of Venus. The motions that occur in
rotating systems have been even more extensively
studied, particularly in connection with the annulus
experiments [e.g., see Fowlis and Hide (1965) and
Williams (1967), both of whom have extensive refer-

ture that varies horizontally, instead of a flux that
varies horizontally. Secondly, they do not consider the
case when the depth of the system is small compared to
its horizontal extent.! In order to study the effects of
such conditions, we will model a typical geophysical
situation by a Boussinesq fluid in a rectangular coordi-
nate system, unbounded horizontally, bounded below

1 A referee has pointed out that similar effects have been con-
sidered by Rogers (1954) for a less general problem.
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by a rigid surface, and bounded above by a flat, stress-
free surface. We will only consider the steady symmetric
(no zonal variations) motion.

We will first study the motion in a non-rotating
system. The equations of motion are, in general, highly
nonlinear, with the relative size of the nonlinear terms
measured by a Rayleigh number Ra. In order to gain
some insight about the kind of motions that occur, we
will investigate the effects of shallowness and flux
boundary conditions by solving the equations with a
perturbation expansion in powers of Ra. In general,
such expansions only give quantitatively accurate re-
sults for Ra<10% whereas Ra>>10® for geophysical
situations. However, by going to high enough order in
the perturbation series, the first effects of nonlinearities
can be examined, and previous studies show that the
tendencies revealed by these first nonlinear effects agree
qualitatively with the results for Ra>>10?. In particular,
the concentration of the flow near the boundaries and
the development of asymmetries in the flow when
Ra>>10° are correctly revealed by the Rayleigh number
expansions (see Batchelor, 1954; Weinbaum, 1964;
Covelli, 1966).

Next we will consider how the flow is modified for
large Rayleigh numbers and draw some qualitative
conclusions. These conclusions enable us to determine
many features of the flow by use of scaling arguments.
Then we will consider how these features are modified
in a rotating system. Finally, we will consider several
geophysical phenomena for which the properties de-
duced for the nonlinear Hadley regime motions may be
relevant.

2. The mathematical model

We consider first the case of no rotation. The
Boussinesq equations for steady, two dimensional flow,
are then:

dv dw

—4—=0, (2.1)

dy 09z
v 0v 1 0P v ™
SN T RS
dy Jz po OV 9z 9y?
dw  Jw 1 9P w w
r—tw—=———vt v(——+—)+agT , (2.3)
dy 0z po 0z 9z 9y?

t—t 10— = ——

aT aT (GZT 82T)
ay 9z dz2  Iy? ’

(2.4)

where v and w are the meridional and vertical velocity
components, y and z the meridional and vertical space
variables, po density, P hydrodynamic pressure, and 7'
is the deviation from the mean value of either the
temperature (for a liquid) or the potential temperature
(for a gas). In addition, « is the expansion coefficient, g
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the acceleration of gravity, » kinematic viscosity,
kinematic conductivity and for the time being we will
assume k=» (although the analysis would be no more
difficult in principle if k< v).

Eq. (2.1) allows us to introduce a stream function,

V= —gg, 2.5)
wW=dy. (2.6)
In terms of ¢ Eq. (2.4) may be written
T o T _
K('—‘l' )+¢2T1/_¢UT2=0- (2/)
a2 3y’

If we use Eq. (2.2) to eliminate P from Eq. (2.3), we
obtain

3?9\ d AN\ I
e Ly (e i (e A
922 9y? dy dz/\9z2  0y?

To model a geophysical situation, we will solve Eqgs.
(2.7) and (2.8) in a region bounded by two horizontal
planes at z=0 and z=d. We will assume that the lower
boundary is rigid so that

$=¢.=0 atz=0, (2.9)

but that the upper boundary is flat and stress-free, so
that

¢=¢zz=0 at g=d. (2.10)

At these surfaces we will specify the vertical tempera-
ture gradient,

(2.11)
(2.12)

T,=Fo(y) atz=0,
T.,=F.(y) atz=d,

where Fo and F; would, of course, be determined by
specifying the flux at the boundaries. We will assume
that the flux boundary conditions are periodic with a
scale y~ L.

It is convenient to rewrite Egs. (2.7) and (2.8) in
dimensionless form. We will measure y in units of L, 2
in units of d, T in units of AT'=Gd, where G is the
magnitude of the boundary conditions applied to 7,
and ¢ in units of (agd®’AT)*. Thus, Egs. (2.7) and (2.8)
become

2T+ eRa¥f¢,.T,—¢,T.]=0, (2.13)
Vig+eRai[¢, V¢, — ¢, V¢, |+ eRatT,=0, (2.14)
where
62 62
V2= e @, (2.15)
az  9y?
d
e=—, (2.16)
L
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agd'G

a=

(2.17)

KZ
It is understood that ¢, T, ¥, and z are now dimension-
less variables.
3. Behavior for small Rayleigh number
If Ra=0, Eq. (2.13) reduces to
aT 8T

+ e&—=0,

0z 9y?

(3.1)

Suppose, for example, that Fo=(G/d)kocosy and
F1=(G/d)k1 cosy. Then the exact solution of Eq. (3.1),
found by separation of variables, is

ko (k1—Eg coshe)
T(y,2)= cosy(-— sinheg——— coshez). 3.2)
€

e sinhe

In the limit as e — 0, this solution becomes

1 k]"ko :
T= -;(cosy) (kl—ko)-{-cosy[( 5 )z2
¢ .

By ko
+koz————]+0(ez). (3.3)
6 3

Consequently, the limit e— 0 is a singular one, and
this must be taken into account if we wish to take
advantage of the smallness of ¢ in solving our problem.

The mathematical reason for the singular behavior
is clear. In the limit e— 0, Eq. (3.1) reduces to an
ordinary differential equation which is only first-order
in T,. Consequently, if we wish to apply twoboundary
conditions to T,, we cannot neglect the second term
in Eq. (3.1). The singular behavior is not present if one
or more boundary condition is applied to 7. Physically,
the flux divergence between the two boundaries must
be disposed of in order to maintain a steady state.
When Ra=0, this can only be accomplished by hori-
zontal diffusion, and thus the horizontal diffusion term
must be as large as the vertical term, even though €«<1.

I T~0(e?), then from Eq. (2.14) we see that
¢~O(Rate?). Furthermore, if we re-scaled ¢ and T by
these magnitudes, the parameters which occur in the
equations are Ra and . Consequently, the proper ex-
pansion for the solution when both Ra and e are small is

1
T= —2|:T00+ RaTop+Ra?Toet - -]
€

+[Tiwt+RaTu+ - He[Tot-- T+, (3.4)
Rat
=-—T[dow+Rapo+Ra*po+-- -]
€
+eRal[¢1+Ragut -]
+€3Ra*[¢20+ e ]_.l_ PN (3.5)
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Substituting these expansions into Egs. (2.13) and
(2.14) and equating coefficients of equal powers of the
parameters, we obtain

02T g0
=0, (3.6)
92
*To1 Opoo 0T 00 oo 0T 0o
—— =0, (3.7
922 9z dy 9y 9z
62T10 62T00
— =0, (3.8)
9z 92

?*Tn | 92T o1 , 310 0T 00 l 900 8T 10

922 ' Jy? N dz dy 9z 9y
010 0T 00 dpoo 9110
TR T R (3.9)
dy 0z Ody 0%
*poo 9T
2 %o, (3.10)
azt 9y
b0 dTo1 ddoo oo oo 9%
e 2 TR g (3.11)
az* dy 9z dydz* 9y 9% .
b0 O'Po0 0T
2 } =0, etc. (3.12)

4 T 2T
9z 9?0922 dy

Substituting Egs. (3.4) and (3.5) into the dimensionless
forms of Eqs. (2.9)-(2.12), we find for the boundary
conditions

OB mn
bmn= =0 at z=0 for all mn, (3.13)
0z
62¢mn
Dmn= =0 at z=1 for all mn, (3.14)
022
9T'10
= fo(y) at z2=0, (3.13)
2
9T 10
=fi(y) at z=1, (3.16)
Jz
aTmn
=0at z=0and z=1 for all mn
9z
except m=1, n=0. (3.17)

Here, fo and f; are the dimensionless forms of the flux
boundary conditions and are therefore of order unity.
The form of the expansions (3.4) and (3.5) show that
when X1, the relative size of the nonlinear terms de-
pends on the magnitude of Ra. On the other hand, if
instead of flux boundary conditions we apply at least
one boundary condition to the temperature, then there
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is no singular behavior as e— 0 and we could directly
expand the solution to Egs. (2.13) and (2.14) in powers
of eRal. In fact, only the alternate terms in such an
expansion are non-zero, and therefore the relative size
of the nonlinear terms when we do not have two flux
conditions depends on the magnitude of e€Ra. Referring
to our definition of Ra [Eq. (2.17)] and recalling that
we have scaled the temperature by AT=Gd, we see
that one must apply a boundary condition on T of
magnitude AT~O0(Gde?) in order to produce nonlinear
affects equal in magnitude to those produced when one
applies a boundary condition on T, of magnitude G.

The solution of Egs. (3.6)-(3.12) is straightforward
since they are all of the form 92T ,.,/92% of &*¢pmn/02*
equal to known functions. In each order there are some
undetermined functions of y which are determined by
applying the boundary conditions to equations of next
higher order. Thus, using boundary conditions (3.13)-
(3.17), we readily find

Too=B(y), (3.18)
dB\ z* 5z 2
Tum (=) = a0, (3.19)
dy/ L1120 192 48
B2 ) (3—29) (3.20)
¢ = —(g— —_— Zy 3. O
® dy 48
1 dB&#BF 2 1 31 1
¢01=‘-——'———[—'—29+—Zs—_57+”56
(482 dy dyl. 45 4 70 2
3 1357 349
SR
10 2520 840
dar 1t 5 1
+_[__Z4+_z3——z2]’ (3.21)
dyL 24 48 16
where
d2
—= fo(y)— f1(y), (3.22)
dy?
@4 1 @ydB\* 1 d/ dB
4_ ____(_) ___( fo——>. (3.23)
dy 19202\ dy/ 320dy\" dy

Since ¢X1 in geophysical situations, we will not con-
sider the solutions for the first-order terms in the € ex-
pansion. The first-order solutions in the Rayleigh
number expansion T o1 and ¢ contain the first nonlinear
effects. Once the boundary conditions f, and f; are
specified, we can integrate Egs. (3.22) and (3.23),
using the boundary condition that T is periodic in ¥ to
complete the solution. The constant terms in 4 (y) and
B(y) are determined by the requirement that the mean
value of T is zero (T is the deviation from the mean
temperature), but we will arbitrarily set these constants
equal to zero since they do not affect any of the proper-
ties we will discuss.
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4. Solutions for specific examples

First of all we will consider the model discussed by
Goody and Robinson (1966) which has an insulating
bottom, i.e.,

f0=07

and periodic differential heating from above, which we
shall represent by

(4.1)

f1=cosy. (4.2)

These choices correspond to an atmosphere in which
all solar radiation is absorbed at the top, with y=0
being the subsolar point and y=r the antisolar point.

Substituting the above choices for the boundary
conditions into Eqgs. (3.22) and (3.23) and integrating,
we obtain

B=cosy, (4.3)
1
A=— siny. (4.4)
1920

Using Eqs. (4.3), (4.4), and (3.18)-(3.21), we can
calculate the solution with the first nonlinear effects
included from the expressions, i.e.,

1 Ra?
T=—;(T00+RaTm)+O(1, —2) (4.5)
€

€

5

Ra.% Rasi
¢=—(¢oot+ Ra¢ox)+0< eRal, ~——) (4.6)
€

€

Fig. 1 shows the isotherms and Fig. 2 the streamlines
calculated from Eqs. (4.5) and (4.6) when the non-
linear effects are zero (Ra=0).2 These fields are com-
pletely symmetrical about y=m/2. The velocities are
strongest near the top since it is stress-free while on
the bottom the velocity goes to zero.

In general, ¢oi/doo~ To1/Too~1072. In Figs. 3 and 4
we plot, respectively, the isotherms and streamlines
when Ra=>500 as calculated from Eqgs. (4.5) and (4.6).
The main effect of the nonlinearities is to tend to con-
centrate the flow and the horizontal temperature gradi-
ents toward the right and toward the top, especially
the former. Also, the solution is everywhere stably
stratified (7,>0).

As a second example we shall consider a case with
heating from below; in particular, we choose

4.7
(4.8)

fo=—cosy,
f1=0.

These choices correspond to a flux from the ground
into the fluid varying from a maximum at y=0 to a
minimum at y=, with an insulating top. Substituting

2 In Figs. 1 through 8 the values given for T and ¢ have had the
respective factors 1/¢® and Ra?/e factored out.
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F16. 1. Isotherms when Ra=0.

Egs. (4.7) and (4.8) into Egs. (3.22) and (3.23) and
integrating, we obtain

B=cosy, (4.9)
cos2y

A=— :
1280

sin®y+ (4.10)

1920

Since B is the same for this case as for the previous one
of heating from above, the solution when Ra=0, which
depends only on B, will be identical in the two cases
(see Figs. 1 and 2).

Figs. 5 and 6 show the isotherms and streamlines, re-
spectively, for Ra=>500 for the case of heating from

172—

14—

|
oO /4 2

3r/4 ™

Fic. 2. Streamlines when Ra=0.

F1c. 3. Isotherms for the case of heating
from above when Ra=500.

below. In contrast to our first case, the flow and
horizontal temperature gradients now tend to be con-
centrated by the nonlinear terms into a region near the
lower boundary towards the left. Again the flow is
everywhere stably stratified. )

As a final example we consider a model with the same
amount of heating from both above and below, i.e.,

fo=—cosy, (4.11)
Ji=cosy. (4.12)
1 T T T
z
34— .
72— -
va— .
EXAMPLE |
Ra =500
o [ | ¢=0 |
[¢] /4 w/2 3r/4

y s

F16. 4. Streamlines for the case of heating
from above when Ra=>500
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Fi16. 5. Isotherms for the case of heating
from below when Ra = 500.

In this case, integrating Egs. (3.22) and (3.23), we
obtain

B=2 cosy, (4.13)
Am et + L cos2 (4.14)
= —— sin?y-+—— cos2y. .
480 ’ 640 ?

Once more the solution calculated by substituting Egs.
(4.13) and (4.14) into Egs. (3.18)-(3.21) and then sub-
stituting the results into Egs. (4.5) and (4.6) gives the
same solution, when Ra=0, as our previous two models
(aside from a multiplicative factor of 2).

| —T —T T
4 z
370l ] 3/41—
12 4 e
74— ] 1/4f—
EXAMPLE 2 EXAMPLE 3
Ra =500 Ra = 500
o L_$0 | 1 0 | A
) Y73 /2 3rA s 0 773 /2 /4 -
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1

z
3/4— 3
1/2r— -
— —
@ &
4= EXAMPLE 3 7

Ra = 500
! L i

OO /4 /2 3n/4 T

Y

Fic. 7. Isotherms for the case of heating from both
above and below when Ra=>500.

The solution for this last model with equal heating
from above and below when Ra=0500 is shown in
Fig. 7 (isotherms) and Fig. 8 (streamlines). In this
case the nonlinear effects are intermediate between the
effects in our first two models. The flow and horizontal
temperature gradients tend to be concentrated to-
ward both the upper right-hand and lower left-hand
corners, but particularly toward the former. (Neither
corner would have been favored if we had applied the
same velocity boundary conditions above and below.)
Once more the flow is stably stratified.

1 T T T

Fi1G. 6. Streamlines for the case of heating
from below when Ra=>500.

y

F16. 8. Streamlines for the case of heating from both
above and below when Ra=>500.
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The above simple solutions show that, in general, the
meridional dependence of the flow will be asymmetric
when nonlinear effects are important [cf. Stommel
(1962) and Rossby (1965)]. In addition, they clearly
demonstrate that what kind of asymmetry occurs
depends crucially on the boundary conditions.

5. Behavior for large Rayleigh number

In geophysical problems not only is Ra>>10%, but in
general the horizontal and vertical eddy coefficients are
not equal. Consequently, it is preferable to use in place
of Egs. (2.13) and (2.14) the equations one would
derive from Eqs. (2.1)-(2.4) if one replaces k by «, in
the vertical diffusion terms, and by xz in the horizontal
diffusion terms. In the definition of Ra [Eq. (2.17)]«
is now replaced by «,. The resulting equations, derived
in exactly the same way as Eqs. (2.13) and (2.14) are

2T e 9*T
— 4 ——+eRat(p.Ty—¢,T.)=0, (5.1)
928 u 3y
9% €& 9? 82 o?
o)
022w 9y*/\oz ay?
82 62
+ eRaél:tﬁz(—‘F €2“‘)¢y
dz? 9y?
2 6? i
_¢y<—+eﬂ—>¢zJ+eRaiT,,=0, (5.2)
0z* dy?
where
KL'
=" (5.3)
KH

The most interesting question when RaZ10® is
whether or not the solutions still have a singular be-
havior as e— 0. If we apply different flux boundary
conditions at 2=0 and z=1 and neglect the T, term
in Eq. (5.1), the advection terms are now available
to remove the flux divergence and maintain a steady
state. Thus, in general, we have no reason to expect a
singular behavior.

Suppose, however, that the flux boundary conditions
are symmetric about some value of y, say y=yo (as
they would normally be in a planetary atmosphere).
Egs. (5.1) and (5.2) preserve symmetry, the solution
for T would consequently be symmetric about y= 1y,
and the solution for ¢ would be antisymmetric. Thus,
at y=yo, ¢,=T,=0, and in the limit ¢—0, eRal21,
Eq. (5.1) reduces to

T

;;— eRalgp,T.=0, at y=9yo.
%

(5.4)

This equation is of first order in 7', and one cannot
therefore satisfy two flux conditions. Physically, at
points of symmetry there is no horizontal advection,
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and if we also neglect horizontal diffusion, we are only
left with vertical advection to balance a vertical flux
divergence. In general, however, this is not possible,
since vertical advection can redistribute the flux in the
vertical, but cannot redistribute it so as to match two
arbitrary flux boundary conditions.

We conclude that the solution for large Ra is also
singular as ¢e— 0 in the vicinity of points where the
horizontal advection goes to zero, such as at points of
symmetry. To properly satisfy the flux boundary condi-
tions at these points, we must rescale the equations
so as to retain the T,, term in Eq. (5.1). In the geo-
physically interesting case when eRa®>1, the horizontal
advection terms cannot balance the vertical flux di-
vergence except in a very small region about y=1y,.
Consequently, ¥ is the proper variable to rescale in
order to retain the T',, term near y=1y,. Such a scaling
is also suggested by the solutions found in Section 4
which show that the nonlinear effects tend to concen-
trate the rapid variations near the points of symmetry
y=0 and y==. Thus, internal boundary layers will
form at points of symmetry in the boundary conditions.

When eRa¥>>1 the solution of Eq. (5.1) will also be
of boundary layer character in the z direction, since
we must retain the T, terms in order to satisfy the
boundary conditions; these terms will be in balance
with the nonlinear terms only if the z scale is small.
Such a boundary layer is necessary for all values of y.
Therefore, the internal boundary layers will have a
small z scale associated with them and will be confined
near the horizontal boundaries. (If eRat~1, there is no
small vertical scale associated with these internal
boundary layers, and they will extend wvertically
throughout the interior of the fluid.) Internal boundary
layers like these have been termed mixing regions by
Goody and Robinson (1966). We shall also use this
terminology.

In general, however, only one mixing region is
necessary at symmetry points y=1y,. This conclusion
follows from the fact that when we do neglect T, in
the temperature equation we can still obtain an interior
solution which satisfies one flux boundary condition,
and we therefore only need rescale y near the boundary
where the other flux condition is not satisfied. If we
integrate Eq. (5.4), since w=¢,, we obtain

8T aT 2
——— exp{eRa*f wdz}, at y=1y,, (5.5)
93 9z 2=0 0

or
oT oT 1
—= ex‘p{—eRaﬁ/ 'wdz}, at y=1y, (5.6)
0z  0zl.1 z

depending on whether we satisfy the boundary condi-
tion at =0 or z=1. If y=1y, is a point where the fluid
is being heated, then rising motions will occur near
y=190, w>0. Thus, if we chose to apply the boundary
condition at z=0, the flux would grow exponentially
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into the interior, whereas if we chose to apply the
condition at z=1, it would decay exponentially into the
interior. The former case is physically implausible com-
pared to the latter, since it implies fluxes in the interior
of the fluid exponentially larger than those applied at
the boundaries, and would require a mixing region near
the top which makes an exponentially large correction
in the flux. Consequently, at symmetry points where
rising motions occur, one should use the interior solu-
tion to satisfy the boundary condition at the top, and
then use a mixing region to produce the correct flux
near the bottom. Conversely, at symmetry points where
cooling is applied, sinking motions occur, and one
should use the interior solution to satisfy the lower
boundary condition, and a mixing region will be neces-
sary near the upper boundary in order to produce the
correct flux. These conclusions are also suggested by
the solutions for small Ra which showed that the non-
linear effects tend to concentrate the large gradients
near the lower boundary at symmetry points where
heating is occurring, and near the upper boundary at
symmetry points where cooling is occurring.

Because there are so many constraints on the mathe-
matical balances which must occur in the equations for
the mixing regions, it is possible to determine uniquely
the scales of y, z, T and ¢ appropriate to these regions.
In particular, from the above considerations, we know
that when eRa®>1, we must retain both the T.. and
T,, terms in Eq. (5.1) in order to satisfy the flux condi-
tions. In addition, we must retain the ¢,... term in
Eq. (5.2) in order to satisfy the velocity boundary
conditions, and finally, T, must be of order unity since
it is specified to be so at the boundary of the region.
These four conditions can only be met if the dimension-
less variables have the following scales in the mixing
regions:

)
)
gy
-

These scalings yield the following magnitudes for the

corresponding dimensional quantities in the mixing
regions:
Kokm\ 2
zmr = ( ) ’ (5. 1 1)
agG
K H3 %
Vmr= ( ) ’ (5. 1 2)
k,08G
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Kok HG3\
Tm=< > , (5.13)
ag
k,°0gG\t
wm,-—*( ) , (5.14)
kg
Umr= (KHKvagG)}. (5.15)

Since the mixing regions occur at points of symmetry,
where v=T,=0, they are not regions of large horizontal
temperature gradients (only T, is large) or of large
horizontal velocities. However, the small y scale does
mean that they are regions of relatively large vertical
velocities (w=¢,) and of large horizontal diffusion.
The approximate equations for these regions, when we
assume that €& e/u<<1, eRat>>1, and that the above
scales hold, are

a*T & 9T
—_+_——+€Ra%(¢zTy_¢'yTz)=0, (5.16)
072 u 0y
& 32\o%
(_"i'"—' -——) -+ eRal
3z u 9y 92°
X [petyeo— yzeet Ty 1=0. (5.17)

It is also possible to find the scaling for the boundary
layers along the horizontal boundaries adjacent to the
mixing regions. In this region the v scale is larger and
horizontal diffusion of momentum and temperature is
no longer necessary to satisfy the vertical boundary
conditions. Consequently, the horizontal diffusion
terms can be neglected. Then the conditions that 7.,
and ¢,... be retained in the equations when eRai>>1,
and that T,~1, are sufficient to find the scales of z, T
and ¢ in terms of the y scale. The results for the bound-
ary layer scales are:

y%
z~0< ‘}Raﬁ)’ (5.18)
€
]
T~0 ) (5.19)
éRat/’
y§
¢~0( ﬂw). (5.20)
€

In dimensional terms these scales imply the correspond-

ing magnitudes:
ko2 L2\
(22
agG

k2LAGO\ ¥
e (220
ag

(5.21)

(5.22)



K, agG\* 3
'wbl:( > ) (5.23)
Iz

Vo= (agGKvL)%, (524)

where L is the y scale. The approximate equations for
these regions, when we assume that <<e/pK1,
eRa¥>>1, and that the above scales hold, are

0T .
";‘f" eRa! (¢1Ty_¢‘yT2) =0,

9z%

(5.25)

R
B-4+ eRa’ [¢z¢yzz —¢yPozet Tu] =0.
Z

(5.26)

It would be natural to choose for L the horizontal
scale of the boundary conditions. However, one could
specify boundary conditions that had no such scale,
e.g., conditions that contained a single point of sym-
metry. Furthermore, if there were such a scale in the
boundary conditions and we identified it with L, then
the boundary layer would not, in general, join on to the
mixing region, in the sense that they would have
different depths. However, there is one other horizontal
scale in the problem which we will identify with L
because it is not subject to these difficulties; namely,
the distance from the point of symmetry in the bound-
ary conditions. Thus, the magnitudes of the boundary
layer quantities given by Egs. (5.21)-(5.24) vary with
distance from the mixing region. In particular, the
boundary layer depth grows like L}, and at L=y, its
depth is equal to the depth of the mixing region, so the
two regions join smoothly. Also, the vertical velocities
decay very slowly (~L~%) away from the mixing region.
Since the vertical velocity averaged over y must be
zero, this implies that strong rising motions (or sinking
motions as the case may be) will not, in general, be
confined to the mixing regions. The horizontal velocities
will be relatively large in the boundary layer because
of the small vertical scale (v=—¢.).

The fact that the scalings depend on the y scale
suggests that Egs. (5.25) and (5.26) contain a similarity
solution of the form indicated by Eqs. (5.18)-(5.20). A
little manipulation shows that this is indeed true, and
that one solution of Egs. (5.25) and (5.26) is of the form

T'= e 18Ra-1I6y13 f (), (5.27)
é= e 2/5Ra—1/3y218g (1), (5.28)

where
Z3
x=eRal—.
y

When this dimensionless solution is put in dimen-
sional form, L completely drops out of the solution.
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F16. 9. Schematic diagram of the streamlines
without rotation when eRa¥>1.

The functions f(x) and g(x) satisfy the equations

@f 6df 1/ dg af
L)
dx? dx dx

(5.29)

S =0,

xdx ot

dg d?g dg 1 d @2
81x*—+3240—+168—— ——(4 g—g—i- 36xg—g
dxt dx® dx? %3\ dx dx?

Pg 1 df
+1842% 3—|—gf—xd—>=0. (5.30)

dx %

These equations, although ordinary, are still highly
nonlinear and therefore very difficult to solve. In any
case the natural boundary condition for a solution of
the form (5.27) is a constant flux on the horizontal
boundary x=0, which is not the kind of condition we
are concerned with here. It is, however, interesting to
note that this solution [Eq. (5.27)] corresponds to a
temperature which increases along the horizontal
boundary even though the flux is constant.

Unfortunately, there are not sufficient @ priori con-
straints available for the interior motions to determine
a unique scaling for them. Only after the boundary
layer equations have been actually solved so that one
knows what scales of the variables emerge into the
interior can such a scaling be found. However, using the
information available from the scalings for the mixing
regions and boundary layers, it is possible to draw a
schematic diagram of what the motions will be like.
Fig. 9 shows such a diagram for the motion when the
boundary conditions contain symmetry points at y=0
and y=, with heating occurring at the former point
and cooling at the latter.
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6. Effects of rotation

When we add rotation to the regime we have been
considering, the system will contain a zonal component
of velocity #. If the rotation vector is vertical, then
Eq. (2.2) is modified to

dr v 1 9P &% 6%
r—+w—=— ju———+k—Fks—, (6.1)
ay 9z po 0y 97 8y

where f is the Coriolis parameter. To have a determinate
set of equations, we must now add the zonal momentum
equation,

du  u Fu  Fu
r—+w—= otk ——+Kkg—. (6.2)
dy oz 0z 9y

The continuity, vertical momentum, and energy equa-
tions are unaffected by rotation, since we are assuming
a symmetrical state. The boundary conditions on # are
the same as those on v.

If we now proceed in the same manner as in Section 2
in order to reduce equations (2.1), (2.3) (2.4), (6.1) and
{6.2) to dimensionless form, we obtain in place of Egs.
(5.1) and (5.2) the equations

*T & &T ‘
—+——+eRai(¢.Ty—¢,7.)=0, (6.3)
dz2  u 9y?
a?. 62 02 62 62
ey
922 u 9y*/\gz? ay?
iy 62 62
A
It Iy
9?2 92 -
- ¢y< + 52—>¢2J
dz* dy?
1
+ eRa%‘[ Tl,—l———u,] =0, (6.4)
R
Fu €& u . eRal
—+— —+ eRa¥[¢pu,— d,u, |— ¢.=0, (6.5)
32 u Iy? Ry

where % has been made dimensionless in terms of the
same units as v, namely (agdAT)}, and the new param-
eter which appears in the equations is a thermal
Rossby number,

_ (egdG)?
~—

The conclusion drawn in Section 5 that an internal
boundary layer was necessary at symmetry points in
order to satisfy flux boundary conditions was based
solely on an analysis of the energy equation. Since Eq.
(6.3) is unchanged when rotation is added to the

o (6.6)
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problem, the same conclusion holds. In addition, the
v scale of this region is very small compared to the
scaling length. Consequently, the Rossby number for
the mixing region will in general be very large, and to a
first approximation the #, term may be neglected in
(6.4). Thus, the equations for the mixing region will be
identical for both the rotating and non-rotating Hadley
regime, and the scalings we derived in the preceding
section are equally valid for the mixing region in a
rotating system.

Furthermore, the scaling derived for the boundary
layer region adjacent to the mixing region in the pre-
ceding section will also be valid for a rotating system
so long as its y scale is small enough. In particular, it
will be small enough if the rotational term Ro~'u, does
not exceed the 7', term that was assumed to be in
balance with the ¢..., term in Eq. (6.4). For these small
scales # is found by first solving Egs. (6.3) and (6.4)
for ¢ and T, and then using the results to solve Eq.
(6.5) for . In order to satisfy the boundary conditions
on # when eRat>1, the ., term must be in balance
with the driving term ¢, in Eq. (6.5). This condition
enables us to determine the scale of # in the boundary
layer. Using the results of Section 5, we find that

¥y
U~ O(-), 6.7)
Ro
which corresponds to the dimensional magnitude
Ub= fL (68)

If we now equate the magnitudes of %, and RoT, for
the boundary layer region, we find the value of L for
which rotation first becomes important, i.e.,

k.0gG\ *
(25
f3

Our scaling for the non-rotating case will be equally

valid for the rotating case so long as we are concerned

with distances from the symmetry point which do not

exceed this value of L, and so long as this value of L

exceeds the y scale of the mixing region, so that the

separation of y scales assumed in our analysis of the

two regions is valid. Using Eqgs. (5.12) and (6.9), this
latter condition can be expressed as

(6.9)

Trn<ww0gG. (6.10)

If this condition is not met, then rotation must be taken
into account even near the symmetry points.

When the distance from the symmetry point exceeds
L,, anew balance is formed in Eq. (6.4). The old balance
between the ¢.... and T, terms is now inconsistent since
it leads to a u, term larger than those assumed to be
in balance. If we replace this condition by the condition
that the ¢.... term be in balance with the u, term, but
otherwise use the same conditions used in determining



654

the boundary layer scalings, we can solve for the ¢, T,
u and z scales in terms of the v scale. We then find that
the depth of this new layer is just that of a conventional
Ekman layer, and, in fact, in terms of our parameters
(assuming €<<e?/u<k1<<eRat) the various scales are

Ro?\1

z~0< > , (6.11)
e€Ra
Ro?\?

T~O(———) , (6.12)
€Ra

4 i

¢~O<———y———) s (6.13)
eRo’Ra

u~0<—y—>. (6.14)
Ro

The magnitude of the corresponding dimensional quan-
tities for this Ekman layer are

Ky 4
Zel1= (“‘) (615)
f
K.\}
T61=G(_) (616)
f
Wer= (va)% (6.17)
va=ua=fL. (6.18)

Since the last two depend on L, the requirement that
the solutions in the Ekman layer join onto the adjacent
boundary layer where rotation is unimportant, necessi-
tates that we interpret L in the Ekman layer either as
a variable scale, equal to the distance from the mixing
region, or as the fixed scale L=L,. Note that as L in
Eq. (5.21) approaches the critical value L., 25— %a.
Thus, the boundary layer effects a smooth transition
from the mixing region to the Ekman layer.

The corresponding approximate equations in the
Ekman layer are

T
—2+ eRal(¢.T,—¢,T.)=0, (6.19)
0z

¢ 1
_"+ 5Ra*[¢z¢yzz_ ¢y¢zzz+ Ty+'—'uz] = 0: (6'20)
dzt Ro

N*u
——-2+eRa*[¢zuy—¢yu,—

1
¢z]=0. (6.21)
07 o

R
Actually, in Eq. (6.20) the magnitude of the ratio
of the T, term to the Ro—u, term is (L,/L)? Thus, if we
interpret L as the distance from the mixing region, the
T, term will only be important in Eq. (6.20) in that
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F16. 10. Schematic diagram of the meridional streamlines with
rotation near a point of heating at the lower boundary when
eRab>1.

part of the Ekman layer adjacent to the boundary layer
where rotation is relatively unimportant (i.e., where
L~L,). Note that the Ekman layer equations for our
problem are essentially nonlinear no matter how we
interpret L.

Using the information gained from our scalings for the
three regions in a rotating system, we can schematically
picture the kind of flow that occurs when &<&Xe?/u<k1
and eRa*>1. Such a picture is shown in Fig. 10, and
for simplicity the streamlines are only indicated in the
vicinity of a symmetry point where heating occurs.
Once again no direct information can be obtained about
the interior regions until the equations are actually
solved.

7. Possible geophysical applications

a. The atmospheric circulations on Venus

Goody and Robinson (1966) proposed a heuristic
model of the atmospheric circulations on Venus based on
studies of sideways convection without rotation. In
discussing their model they used exactly the same
equations of motion as we have, except that in making
them dimensionless they picked for the units of the
vertical variable a value for d such that eRa*=1. This
scale corresponds to the depth of the boundary layer
[Eq. (5.21)]. They also attempted to scale the equa-
tions for the boundary layer and mixing regions, but
arrived at different results from those we have given
in Section S. -

The reason for the difference is that in the boundary
layer, although they arrived at expressions identical to
ours [Egs. (5.21)-(5.24)], they interpreted L as the
horizontal scale of the boundary conditions, rather
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than as the distance from the symmetry point. Con-
sequently, in scaling the mixing region in order to have
it join onto the boundary layer, they imposed the condi-
tion that zy=32mn,, with L interpreted in the above
manner. This condition replaced the condition that the
T.. term be retained in Eq. (5.1), which we imposed
so that we could satisfy the flux boundary condition at
the edge of the mixing region. As a result Goody’s and
Robinson’s scaling for the mixing region differs from
ours, and their approximate equations for the mixing
region do not contain any vertical diffusion terms, and
cannot therefore satisfy any flux boundary condition.
This is a nonphysical result, for if the fluid cannot see
the boundary conditions, it cannot tell that a symmetry
point is located there, and will not know that there is
any need for a mixing region.

In Goody’s and Robinson’s model the flow is con-
centrated into one boundary layer, at the top of the
atmosphere, in the cloud layer where most of the solar
radiation is absorbed. This boundary layer merges into
a mixing region located in the vicinity of the antisolar
point. Our results indicate that, in general, one would
also expect a second mixing region and boundary layer
at the ground (see Fig. 9). However, Goody and Robin-
son considered the special case T,=0 at z=0. Therefore,
G=0 and in this case we see from Egs. (5.11)-(5.15)
that Zm,, Ymr— © and Tuy, Pms, Wnr — 0. Actually,
Zmr Will have an upper bound given by the depth of the
system d, and corresponding to this value there will be
a correspondingly larger value of y,, and correspond-
ingly smaller values of Ty, ¥ and wm,. Thus, although
a much enlarged mixing region will still be necessary
in order to satisfy the zero flux boundary condition at
the ground, dynamically it will be inactive compared
to the upper mixing region. Therefore, to a first approxi-
mation this lower region may be neglected in describing
the flow appropriate to Goody’s and Robinson’s model.

Consequently, our results agree qualitatively with
Goody’s and Robinson’s model. However, quantita-
tively, our results for the mixing region differ consider-
ably from theirs. We will use their estimates of the
values of the parameters for Venus to re-calculate the
scales and magnitudes of the motion in the mixing
region. The magnitude of the boundary value of T,
which we have denoted by G, is related to the magnitude
of the flux F by

F=1,pC,G, (7.1)

where C is the ratio of specific heats. For an atmosphere
T is identified with the potential temperature, and this
expression assumes that the main mechanism of
vertical heat diffusion is turbulence. Goody’s and Rob-
inson’s values for Venus are d=40 km, L=20,000 km,
F=1.6X10% ergs.cm™2 sec?, pC,=2.7X10* ergs (°K)~?
cm™3, g=870 cm sec™?, k,=10* cm? sec), ky= 10" cm?
sec™!, a=4.3X1073(° K), and f=4X10"" sec’.. From
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these values, using Eqs. (2.16), (2.17), (5.11)-(5.15),
(6.9), and (7.1), we calculate

e=2X10~2
Ra=6X10t5
eRat=1.5X105
Zmr=130 m
YVenr=150 km
Tw=8K

Wmr= 0.5 cm sec™?
Vaur=5 m sec™
L,=100,000 km.

Since the critical distance L, for which rotational
effects become important is much larger than the radius
of Venus, which is about 7000 km, it is clear that the
effects of rotation on the motions will be minor, The
above values for the scales may be contrasted with the
values found by Goody and Robinson, i.e., Z»,= 800 m,
Ymr=3 km, Tpr=40K, ®Wn,=10 m sec”), and v=34 m
sec™?, It is important to note that the values of &, and
kg for Venus are not known and therefore estimates
such as the above may be considerably in error. The
value of yn. is particularly uncertain since it is propor-
tional to kz!, and kg is the most uncertain quantity.
Since the magnitude of the vertical velocity only falls
off as L~ as one moves away from the mixing region, the
magnitude of w at L=20,000 km (corresponding to the
distance from subsolar to antisolar point on Venus),
given by Eq. (5.23), is w;;=0.1 cm sec. Consequently,
the requirement that there be no net mass flux suggests
that the sinking motions are not confined to the mixing
region, but extend a considerable distance into the
boundary layer.

b. The tropical circulation

The tropical circulation on the earth in many respects
resembles a Hadley type circulation of the kind we
have been discussing. In particular, the tropical circula-
tion frequently includes a narrow region where vertical
velocities are relatively large and horizontal tempera-
ture gradients are relatively small, namely the Inter-
tropical Convergence Zone [e.g., see Palmer (1951) and
Bjerknes (1966)]. Such a region is analogous to the
mixing and boundary layer regions which occur in our
model near points of heating at the lower boundary.
An additional similarity is that the characteristics of the
mixing regions in our model are independent of latitude,
and, in fact, the general structure of the Intertropical
Convergence Zone does not appear to change with its
position. This similarity could be coincidental in view
of the fact that our model leaves out many processes
that are probably important in determining the struc-
ture of the ITC. For example, we have not included
condensation, and we have not allowed for any response
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of the lower boundary condition to the heating and
wind stresses imposed on it by the atmosphere. Since
the lower boundary on the earth is largely fluid, such
effects can generate currents and a redistribution of the
heat sources at the lower boundary. This might, for
example, lead to a flux boundary condition whose
horizontal variations were small compared to the flux
itself. Under such circumstances our scaling analysis
would not be wvalid, since we implicitly assumed
throughout that the flux variations were comparable in
magnitude to the flux itself.

In any case it is of interest to take typical values for
the earth’s equatorial regions to see how strong an asym-
metry can be produced in a Hadley regime by the
effects that we have considered by themselves. We will
adopt the following values as typical: d=10km, F=1.4
X105 ergs cm™? sect (109, of the solar constant),
pCp=10% ergs (°K)™! cor~?, g=10® cm sec™?, «, = 10° cm?
secd, ky=10" cm? sec?, =3.3X107? (°K)~!, and f=3
X 10~5 sec! (corresponding to 15° of latitude). Also,
we shall interpret L as L, in the Ekman layer. From
these values, using Eqs. (2.16), (2.17), (5.11)-(5.15),
(6.9), (6.15) through (6.18) and (7.1), we calculate the
following magnitudes:

e=5X10"3
Ra=4.6X10"
eRai=1.1X10?
Zmr=T70 m
Ymr="700 m
Twm:=10K

Wmr=15 cm sec™!

Tmr=1.5 m sec™!

201=0600 m
L,=400 km
T.a=8K

V== 12 m sec!
wa=1.7 cm sec1.

If we now assume that the Hadley cell has a total
horizontal extent of 2000 km, then we can use the above
values for the vertical velocities to estimate the width
of the region where strong rising motions occur neces-
sary to balance the slower sinking motions everywhere
else. We find that rising motions will occur over a
region about (1.7/15)2000 km=2200 km wide. The fact
that this value ‘corresponds well with the observed
size of the ITC suggests that any complete theory of
the ITC should include as one important process the
interaction between flux boundary conditions, hori-
zontal diffusion, and nonlinear advection of the kind
present in our simplified model.
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¢. Oceanic sinking regions

Stommel (1962) suggested that the apparent small-
ness of the sinking regions in the earth’s oceans might
be due to the nonlinear effects in sideways convection.
He made some calculations using a model that was
essentially similar to ours, except that it neglected non-
linear terms in the momentum equations and applied
thermal instead of flux boundary conditions. He found
strong asymmetries, but did not attempt to estimate
magnitudes for an oceanic circulation. Since the oceans
are heated from above, the mixing region of our analysis
in this instance would be located near the surface of
the ocean, and would be located at the point where
cooling is a maximum.

In the oceanic case there are again many important
effects which have been left out of our simple model.
In this connection we would particularly point out the
ability of the flux boundary condition to adjust itself,
as discussed above, and the fact that our assumption of
symmetrical motion cannot be strictly valid in the
oceans. However, we will again estimate how much of
an asymmetry could arise solely from the kinds of
effects included in our model, and for this purpose will
adopt the following values as typical for oceanic sink-
ing regions: d=3 km, F=1.4X10% ergs cm~2 sec™! (109,
of the solar constant), pC,=4.2X107 ergs (°K)~* cm™3,
g=10° cm sec™?, x,=102 cm? sec™!, ky=10% cm? sec™,
a=3.6X10"% (°K)~! and f=1.3X10"4 sec! (corre-
sponding to 60° latitude). Again we will interpret L in
the Ekman layer as L,. In this case we calculate from
our results the following magnitudes:

e=5X10*
Ra=1X10"
eRat=35X10°
Zmr=50 cm
Ymr=170 m
Tmr=0.16K

Wme=0.19 cm sec™!

mr=06 cm sec™!

2a=10m
L,=700 m
Tel= 0001K

We;=0.11 cm sec™!

V== 10 cm sec™L

The above results show that the magnitudes of the
vertical velocities in the mixing region and the Ekman
layer are not well separated. Consequently, we do not
expect that the kind of interaction included in our model
will lead to oceanic sinking regions appreciably narrower
than the rising regions. The much stronger asymmetry
that Stommel (1962) found can probably be attributed
to the fact that he applied thermal boundary conditions.
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The result was that his strongly asymmetric solutions
were accompanied by a strongly asymmetric flux at
the top boundary, with the fluid being cooled only
above the sinking region, and heated everywhere else.
Thus, it might be possible to explain narrow oceanic
sinking if one could explain such a highly asymmetric
flux boundary condition, but without such an asym-
metric condition our results indicate that the nonlinear
effects of sideways convection by themselves cannot
explain narrow oceanic sinking regions.
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