Depicting Stochastic Dynamic Forecasts1,2,3

EDWARD S. EPSTEIN AND REX J. FLEMING4

Dept. of Meteorology and Oceanography, The University of Michigan, Ann Arbor

(Manuscript received 14 December 1970, in revised form 23 February 1971)

ABSTRACT

Stochastic dynamic prediction provides information on the variances and covariances of the predicted meteorological fields as well as the expected values of the fields themselves. It is shown that this new information can be depicted in a variety of graphical formats that illustrate various aspects of the certainty and uncertainty of the predictions and demonstrate the value of specific information on uncertainty.

1. Introduction

In a recent study Epstein (1969) proposed a method of prediction that recognizes the inevitability of uncertainty in initial conditions, and produces forecasts that contain explicit statements of uncertainty in the predicted state. The amount of information contained in a complete statement of the uncertainty of a complicated field is extremely large. Although the numerical representation of variances and covariances by a square symmetrical matrix is straightforward, the information it contains is not readily comprehended. The graphical representation of this information is far more complex but can also be much more meaningful. It is the purpose of this paper to present a number of forms of graphical results of stochastic predictions, both to demonstrate how information on uncertainty can be represented and also to illustrate the value of specific information on uncertainty.

2. The stochastic model

For our illustrative purposes we will consider stochastic predictions of a model in which the mean flow in an infinite channel is represented by a streamfunction and the temperature field by departures from a mean value. These two fields are generally represented graphically as in Fig. 1. Boundary conditions are that the flow is periodic in the x direction and there is no flow across the walls at the northern and southern boundaries. These are evident in the figure.

The particular fields shown here are represented exactly by 28 parameters, 14 for the streamfunction and 14 for the temperatures. (There are two modes

2 Research supported by Atmospheric Science Section, National Science Foundation, under Grant GA-019248.

3 Publication No. 189 from the Department of Meteorology and Oceanography, The University of Michigan.

4 Present affiliation: National Meteorological Center, NOAA, Suitland, Md.

in the y direction and wavenumbers 0, 1, 2, 3 in the x direction. Two parameters are required to represent each wavenumber/mode combination, except for wavenumber 0 which requires but one term.) Indeed these fields are a particular realization of a two-level quasi-geostrophic model which we have been using to study various aspects of stochastic dynamic prediction and stochastic analysis. The model includes crude forms of diabatic and frictional effects.

In a deterministic analysis or forecast, the state of the model atmosphere would be represented by a vector of 28 terms. In stochastic procedures one must deal not only with the 28 expected values—or means—of the

fig. 1. Streamfunction for the mean flow (lower) and for the shear flow (upper). These two fields define the state of the two-level model. The streamlines for the shear flow are equivalent to mean isotherms. Units are nondimensional.
parameters, but also with their variances and covariances—a total of 434 terms in all. It requires 28 terms to produce the maps in Fig. 1. There is no single graphical representation (in two or three dimensions) that could illustrate all the information of the 434 terms. There are several representations, however, that would be very useful and meaningful to the meteorologist. The illustrations that follow will refer specifically to a stochastic dynamic prediction that is to be verified against the map in Fig. 1. We will be illustrating the kinds of statements about the atmosphere that stochastic predictions allow. In this particular case the prediction is based on simulated observations, containing random errors, made 24 hr earlier at an array of 30 stations that was also chosen at random. The standard errors of the simulated observations were 0.003 in the units in which the streamfunction and temperature are given in Fig. 1. If we relate the error in the “observation” of the streamfunction to an error of 12 m in the measurement of the height of a constant pressure surface, then the total range of “height” on these maps would be about 800 m. This implies further that the “error” in the temperature observations is ~ 1K and the range of temperatures on Fig. 1 is ~ 50K. In all figures we use the original nondimensional units, but as very crude rules of thumb, one might multiply the values of the streamfunctions by 4000 to get height differences in meters, and multiply the nondimensional temperatures by 300 to get temperature differences in degrees Kelvin. The total dimensions of the region shown in the figures is correspondingly approximately 6300\times12,600 km.

FIG. 3. Fields of standard deviation of the forecast temperatures (upper) and streamfunction (lower).

The predicted expected values of the streamfunction and temperature field are shown in Fig. 2. These are represented algebraically by

$$E[\psi(x,y)] = \sum_{i=1}^{14} B_i F_i(x,y),$$

$$E[T(x,y)] = \sum_{i=1}^{14} B_{i+14} F_i(x,y),$$

where the B_i are the (predicted) expected values of the parameters with the convention that the first 14 terms represents the stream field and the second set of 14 terms refers to the temperatures. The F_i are a set of functions that satisfy our boundary conditions and are orthogonal over the region.

3. Depicting the uncertainty of scalar fields

Since stochastic results include the variances and covariances of the B_i, it is relatively easy to calculate the variances (or standard deviations) of linear combinations of the B_i. Thus,

$$\text{var}[\psi(x,y)] = \sum_{i=1}^{14} \sum_{j=1}^{14} \text{cov}(B_iB_j)F_i(x,y)F_j(x,y),$$

and similarly for the variance of the temperature field. Isopleths of the standard deviations of ψ and T are shown in Fig. 3.

Note that the maximum standard error of estimate is about equal to the interval between contours on the mean charts and is several times the standard deviation of a single observation. One can expect that errors will
usually be less than one standard deviation, but occasionally errors as large as two or three standard deviations may occur. To some degree the maximum uncertainty seems to be where the gradients are largest, but this is not the entire picture at all. The origin of the uncertainty lies in paucity of observations and the uncertainty of the measurements. The patterns of uncertainty reflect to a large degree the locations of the observations. The amount of uncertainty, however, has grown considerably since the observations were made. Initially the standard deviation was less than 0.003 almost everywhere, and necessarily at all observation points, but the standard deviation of the prediction is almost everywhere greater than 0.003.

Fig. 4 gives the actual errors of the expected values, the differences between the maps of Figs. 1 and 2. These patterns depend explicitly on values actually observed, so that the patterns do not particularly resemble those in Fig. 3. Still the magnitude of the differences are within the bounds expected on the basis of the calculated standard deviations. Note that the patterns of error in the two fields are similar, reflecting the strong correlation between the mean flow and shear flow that one would expect from the physical model. This is observed in spite of the fact that the errors in the initial temperature and streamfunction observations were independent.

It may be useful to reiterate that the “expected values” in the forecast are the best set of values that the forecaster is capable of giving consistent with the observations he has, and the knowledge that unknown random observational errors were made. The standard deviations and variances are measures of the uncertainty of the expected values implied by the uncertainty of the data and the known dynamics. Another interpretation in this particular case is one that will be easier for those who adhere to a frequentist view of probability. If this forecast procedure were repeated many times, each with a new set of observational errors, then the average of the forecast expected values would be equal to the “true” value. Also the mean square differences between the true values and the sets of forecast expected values would equal the variances that are forecast. Thus, the maps in Fig. 3 are the rms values of an imaginary infinite array of charts such as are given in Fig. 4. Because stochastic dynamic prediction minimizes mean square error, no other method of forecasting can give less uncertain forecasts (by this measure). Thus, the errors in Fig. 4 are generally smaller than they would have been if we had made a deterministic rather than a stochastic forecast based on the actual observations.

Not only are there strong correlations between the

Fig. 5. Autocorrelation coefficient of the forecast streamfunction and its value at the indicated (arbitrarily chosen) point.
mean and shear flows, but within each field there will be strong correlations from place to place of the streamfunction or of the temperature. Fig. 5 shows this. It is the autocorrelation of the \(\psi \) field with the value of \(\psi \) at an arbitrarily chosen point. The large values of the correlation coefficient that occur at considerable distance from the chosen point are worth noting. They imply that an observation of \(\psi \) at one point will give considerable information about the field elsewhere, not so much because it is a directly relevant measure, but because it would say which, of many possible states of the model, are the most reasonable.

4. Depicting winds and their uncertainties

The wind field is one that is frequently of interest to the meteorologist. Especially he tends to be concerned with the meridional flow. It is simple to derive the \(v \) component of the wind from the streamfunction as

\[
E[v(x,y)] = E\left(\frac{\partial \psi}{\partial x} \right) = \sum_{i=1}^{14} B_i \frac{\partial F_i}{\partial x},
\]

\[
\text{var}(v) = \sum_{i=1}^{14} \sum_{j=1}^{14} \text{cov}(B_iB_j) \frac{\partial F_i}{\partial x} \frac{\partial F_j}{\partial x}
\]

These fields, again as predicted, are given in Fig. 6. A consistent scaling of the nondimensional units would imply that 0.01 in these units corresponds to a wind in the vicinity of 2 m sec\(^{-1}\). Note that the greatest uncertainty (a standard deviation of \(\sim 0.07 \)) does not correspond to a region of maximum meridional wind, but occurs in the vicinity of a ridge where the \(v \) component of the wind is small. This implies that placement of that ridge, and the positions of the other ridges and troughs, are uncertain—but to a measurable extent. The dashed lines in Fig. 2 are lines along which \(E(v)/[\text{var}(v)] = \pm 1 \). It is more likely than not that the ridge and trough lines will lie between the pairs of dashed lines.

Winds are more readily represented by vectors than by their scalar components. Fig. 7 is a view of the forecast wind field. A wind vector of length equal to the

![Fig. 6. The forecast expected meridional wind speed (upper) and its standard deviation (lower).](image)

![Fig. 7. The forecast wind field, indicating both the expected winds and their uncertainty. There is a 50% probability that the true wind vectors terminate within the ellipses drawn around the end point of the expected wind vectors.](image)
distance between grid points corresponds to a wind speed of \(\sim 75 \text{ m sec}^{-1} \). The ellipses centered on the end points of the vectors toward which the winds are blowing require some explanation.

Our stochastic procedures provide forecasts of first and second moments, but not of the complete joint probability distribution. It is known, for example, that this joint probability distribution will not, in general, be multivariate normal. Nevertheless, for purposes of illustration, it is useful to represent the joint distribution as though it were multivariate normal with the given first and second moments. It is a property of multivariate normal distributions that the marginal distributions of linear combinations of the parameters are also distributed multivariate normal. In particular, since \(u \) and \(v \) are both such linear combinations, it is possible to treat the joint distribution of the wind components at each point as though they were bivariate normal. This allows us to construct "credible" ellipses, such that there is a specific joint probability of the true values of the wind components lying within the ellipses. In Fig. 7 each ellipse includes a 50% credible region. The probability that the end-point of each vector lies within its ellipse is 50%. Note that if we know that the wind at one particular grid point lay outside its ellipse, then we would have to revise our statements about the wind at all other grid points, since they are all, in general, correlated to one another. Fig. 7 takes into consideration the correlation of the \(u \) and \(v \) wind components at each point, but not the interrelations among the winds at different points.

The general structure of the wind field is immediately apparent in Fig. 7. It is also apparent that in some places the wind is much better known than elsewhere. For example there are "southwest" winds in the "south-central" section of our space domain and some "northwest" winds further to the "east" that show very little uncertainty. On the other hand the winds in the vicinity of the strong ridge near the "western" boundary show a great deal of uncertainty in their meridional components, although not in their zonal components. This is reflected in the uncertainty of the position of the ridge (cf. Fig. 2a). One notices that, in general, we seem
to have more confidence in our forecasts of the zonal component of the wind than the meridional component.

Fig. 8 is similar to Fig. 7, except that the vectors are thermal winds, derived from the temperature field. We had already seen, from Fig. 3, that the uncertainty of the temperatures was less than that of the streamfunction, and this is substantiated by our finding smaller ellipses of uncertainty in Fig. 8 than in Fig. 7. But note that while the charts of Fig. 3 deal with the uncertainty of ψ and T, the ellipses in Figs. 7 and 8 refer to the uncertainty in the gradients of these fields.

5. Depicting results in phase space

The use of credible ellipses also has application to the representation of the forecast in phase space, which is the multi-dimensional space in which the dependent variables of the model are represented along orthogonal axes. Of course, it is generally feasible to draw pictures in only two dimensions at a time. For example, in Fig. 9, the axes are the parameters B_1 and B_{15}, which represent, in effect, the mean zonal wind and temperature gradients. The shape, size and orientation of the 50\% ellipse tell us not only the limits within which we expect these quantities to lie, but also the extent to which a larger temperature gradient will be accompanied by a stronger zonal wind. If, for example, we observe tomorrow a stronger than expected zonal wind, then we can infer (quantitatively) a stronger than forecast mean zonal temperature gradient, and vice versa.

We can carry this analysis one step further. The curve labeled ψ in Fig. 10 is the 50\% ellipse for the parameter pair which are the coefficients of the sine and cosine terms of the streamfunction for the longest wave in the model. A vector from the origin to the center of that ellipse represents the phase and amplitude of the
"expected" wave. The curve labeled \(T \) is the 50% ellipse for the corresponding temperature wave.

These two ellipses both represent marginal distributions of the particular pairs of parameters. It is also possible to illustrate various conditional distributions. If we were dealing with the probability distribution for only two parameters, then the joint probability density \(f(x, y) \) would be related to the marginal densities \(g_1(x) \) and \(g_2(y) \) and the conditional densities \(h_1(x | y) \) (read "\(h_1 \) of \(x \) given \(y \)") and \(h_2(y | x) \) by

\[
\int_{-\infty}^{\infty} g_1(x) \, dx = \int_{-\infty}^{\infty} g_2(y) \, dy = \int_{-\infty}^{\infty} h_1(x | y) \, dx = \int_{-\infty}^{\infty} h_2(y | x) \, dy = 1.
\]

The marginal density defines the probabilities of different values of a parameter without regard to the values of any other parameters. The conditional density gives the probabilities of one parameter when the other has some specific value. If \(h_1(x | y) = g_1(x) \) for all \(x \), then \(x \) and \(y \) are independent. When the conditional and marginal densities differ, then knowledge of \(y \) implies information about \(x \), and vice versa.

In the present application, think of each of \(x \) and \(y \) as vectors, specifically with components given by the sine and cosine coefficients of a wave. Then \(g_1(x) \) and \(g_2(y) \) are each two-dimensional marginal densities for the end points of the wave vectors. The ellipses labeled \(\Psi \)
and T are chosen such that the integral of the densities over parameter values within the ellipses is $\frac{1}{2}$.

The skewness of the ellipses with respect to the coordinate axes implies that the sine and cosine components of the waves are not independent, i.e., that information about one implies knowing something also about the other. In a similar way there is information about the temperature wave contained in knowledge of the streamfunction wave, and vice versa. This is illustrated by the fact that the ellipse labeled $\Psi | T$, which refers to the conditional distribution of the streamfunction wave given that the temperature wave is represented by the small symbol of the T ellipse, is different from its marginal distribution (the Ψ ellipse). Of course, it follows that the T ellipse and the ellipse labeled $T | \Psi$ are different. The ellipse labeled $T | \Psi$ is the 50% credible region for the temperature wave given that the streamfunction wave vector lies on the Ψ ellipse at the point indicated by the small triangular symbol.

The use of the multivariate normal distribution as a model for representing our knowledge about these parameters also implies homoscedasticity. That is, the variances (and covariances) of the conditional distributions are not dependent on the values of the “given” parameters. As the assumed value of T changes, the center of the $\Psi | T$ ellipse will change, but its size, shape and orientation will not. Indeed, if the indicated point on the T ellipse were to move around that curve, the center of the $\Psi | T$ curve would trace out the ellipse labeled $E(\Psi | T)$. The curves labeled $T | \Psi$ and $E(T | \Psi)$ have entirely symmetric interpretations.

Notice in Fig. 10 that the ellipse $T | \Psi$ is considerably smaller than the T ellipse. This implies a large degree of correlation between the ψ and T waves. If the correlation were perfect, then knowing Ψ would imply complete knowledge of T and the $T | \Psi$ ellipse would shrink to a point. On the other hand if the ψ and T waves were independent we would not be able to distinguish between the $T | \Psi$ and T ellipses, i.e., between
the marginal and conditional distributions. In this case the \(E(T|\Psi) \) ellipse would be just a point in the center of the other two ellipses. That means that one's judgment about the mean value of \(T \) would be the same regardless of what one knew about \(\Psi \).

In algebraic terms the ellipses are readily written in terms of their mean value vectors

\[
\bar{\Psi} = \begin{pmatrix} B_i \\ B_j \end{pmatrix} \quad \text{and} \quad \bar{T} = \begin{pmatrix} B_{i+14} \\ B_{j+14} \end{pmatrix},
\]

where \(i \) and \(j \) represent an appropriate pairing of indices; and the variance-covariance matrices are defined as

\[
\Sigma_\Psi = \begin{pmatrix} \text{var}(B_i) & \text{cov}(B_i,B_j) \\ \text{cov}(B_i,B_j) & \text{var}(B_j) \end{pmatrix},
\]

\[
\Sigma_T = \begin{pmatrix} \text{var}(B_{i+14}) & \text{cov}(B_{i+14},B_{j+14}) \\ \text{cov}(B_{i+14},B_{j+14}) & \text{var}(B_{j+14}) \end{pmatrix}.
\]

Then the \(T \) ellipse is given by (Mood and Graybill, 1963)

\[
(T - \bar{T})^* \Sigma_T^{-1} (T - \bar{T}) = C,
\]

the \(E(T|\psi) \) ellipse by

\[
(T - \bar{T})^* \Sigma_\Psi^{-1} \Sigma_T \Sigma_\Psi^{-1} (T - \bar{T}) = C,
\]

and the \(T|\Psi \) ellipse by

\[
(T - T_*)^* (\Sigma_T - \Sigma_\Psi^{-1} \Sigma_T \Sigma_\Psi^{-1})(T - T_*) = C.
\]

The constant \(C = -2 \ln(1-p) \), where \(p \) is the probability that the appropriate vector will lie within the ellipse. Finally,

\[
T_* = \bar{T} + \Sigma_T^{-1} \Sigma_T \Psi \psi (\Psi \psi - \bar{\Psi})
\]

is the expected value of \(T \), given \(\Psi = \Psi \psi \).
Returning to Fig. 10, we see that the conditional distributions provide considerable information not contained in the marginal ellipses. For example, it is apparent that the ψ wave is leading (in the meteorological sense) the T wave by about 40°, and very likely by at least 30°, but no more than 50°. There is an uncertainty of the position of either wave by as much as 60°, but relatively little uncertainty in their relative positions. This is, of course, directly related to the heat flux being accomplished by the wave.

As we examine the phase diagrams for some of the other waves, shown in Figs. 11–15, we see that the phase relations are generally known much better than the positions of the waves. The most substantial eddy flux of heat is brought about by wave 2, mode 1 (Fig. 11), and is also in the expected “northward” sense.

In the case of wave 3, mode 1 (Fig. 12), the uncertainty is so large compared to the expected amplitude of the wave that it would be reasonable to think of this wave as “unpredictable.” Any position for the wave is credible, and an amplitude very near zero is a distinct possibility. Nevertheless, even here the temperature and streamfunction waves are so closely correlated that one can be sure that the waves, if they have any sizable amplitude at all, will be very nearly in phase and will still give rise to negligible heat flux. In that sense, at least, they are not entirely unpredictable.

In making these predictions we have used a stochastic model that assumed that the basic zonal heating, which is the ultimate source of the energy in the model, is not known precisely. Its standard derivation has been taken as 10% of its expected value. We have also made a stochastic forecast using the same simulated observations, but assuming no uncertainty in the zonal heating. We find that the major benefit of knowing this forcing term exactly is that the mean zonal wind is more predictable, and knowledge of the phase difference between the (wave 2, mode 1) ψ and T waves, where the
greatest heat flux is being accomplished, is particularly improved. Compare Figs. 16 and 17 with Figs. 9 and 11. It is an interesting sidelight concerning the model, and the stochastic method, that even though the rate of generation of available potential energy is what is particularly uncertain in the former case, it is largely in the uncertainty of the kinetic energy that this uncertainty appears in the forecasts. The model not only converts zonal available potential energy to eddy APE, and on to eddy kinetic energy, but it also fully accommodates conversions of "uncertain" components of these categories of energy (Fleming, 1970).

6. Conclusion

There is almost no limit to the variety and complexity of the information that stochastic predictions can make available to the meteorologist. We hope that this introduction to some of the forms that the presentation of this information can take will serve to demonstrate the value of stochastic information. There is a great
deal of significant information that can be effectively communicated and comprehended. We hope to whet the appetite of meteorologists for producing forecasts that contain such information. We must warn, though, that operational stochastic prediction is a very formidable task that will require greatly improved computing methods and capabilities. Still we think of it as the way of the future.

Fig. 17. Forecast of wave 2, mode 1 in the case of known heating. Compare with Fig. 11.

REFERENCES