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ABSTRACT

A tropical-wave, zonal-flow interaction model is used to test the hypothesis that through the CISK pro-
cess the “critical-latitude mechanism’’ (mass convergence in the tropical planetary boundary layer tends to
concentrate around the latitude where the Coriolis frequency equals the wave frequency) is responsible for
the development of the ITCZ.

The wave, zonal-flow interaction model is formulated as a multi-level numerical model from the ground
(sea surface ) to the top of the boundary layer, which is set at 5.5 km. The primitive equations are used for the
interior dynamics of the boundary layer, These are coupled with the vorticity equation applied at the top
through a CISK parameterization. The model is then integrated in time, using observed wave scales. The
results show that for the case of asymmetric mode waves (pressure asymmetric about the equator), an ITCZ
consisting of both the mean and perturbation components is developed 1°-3° north of a critical latitude
which corresponds to the maximum Doppler-shifted frequency of the waves. This northward displacement is
attributed to the latitude dependence of the heating efficiency of the boundary layer pumping. The develop-
ment of the ITCZ does not take place if the waves are symmetric about the equator. In both cases, the
existence of an “equatorial region,” characterized by zonal mean and perturbation wind structures different
from those of the mid-latitude Ekman layer, is found. This is in accord with observations of time-mean
radiosonde data at some stations near the equator. These results thus indicate that the critical-latitude
mechanism may be important for the development of the ITCZ when cross-equatorial perturbation flow
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takes place.

1. Introduction

One of the most common features which appears on
meteorological satellite photographs is a narrow east-
west belt of clouds, usually 5°-15° away from the
equator, formed by a series of broken bands or cloud
clusters which stretch nearly continuously around the
earth. This belt of clouds is the visual evidence for the
existence of the so-called Intertropical Convergence
Zone (ITCZ), a feature of the general circulation which
has been known for a very long time.

The ITCZ is the region of the tropics where rising
motions are mostly concentrated with vigorous cumu-
lonimbus convection extending to the tropopause. Riehl
and Malkus (1958) have shown that these cumulonim-
bus towers contain most of the upward mass flux in
the tropics, and that the release of latent heat carried
aloft by this flux is an important energy source of the
tropical circulation.

In addition to the relatively persistent features of the
ITCZ, westward propagating, synoptic-scale distur-
bances have also been observed in the tropics for quite
a long time. Riehl (1945, 1954) summarized the earlier
studies of these disturbances in the Caribbean area in
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his “easterly wave” model, according to which the
waves have the following characteristics: ~2000 km
wavelengths, periods of 3-4 days, and amplitudes which
are largest in the lower troposphere. Another well-
known earlier model is Palmer’s (1952) “equatorial
wave” model. Based on data from the western Pacific
stations, Palmer’s model has zonal and time scales
similar to those of Riehl’s but there are also a few
differences. Riehl observed a wave speed slower than
the zonal flow with maximum convection lagging the
wave axis, while in Palmer’s model the zonal wind speed
is slower than the wave speed, and the maximum con-
vection is ahead of the wave axis. Another difference
is that Palmer places the maximum wave amplitude at
the equator while Riehl did not attempt to answer the
question of latitudinal distribution of wave amplitude
in his model.

Recently, spectral analysis of time series has enabled
synoptic meteorologists to carry out more extensive
studies of the wave disturbances in the tropics. The
results of these analyses generally agree with the earlier
models in that the time scale of the waves falls in the
vicinity of 4-5 days, but a rather wide range of esti-
mated horizontal scales has been reported. Among them,
Wallace and Chang (1969) and Chang ef al. (1970)
found that the wavelength of the synoptic disturbances
is on the order of 4000 km, while Yanai e al. (1968),
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Nitta (1970) and Yanai and Murakami (1970) all ob-
served a 6000-8000 km wavelength range. Wallace
(1971) has shown that some of this confusion may be
due to different analysis techniques as well as the
presence of different types of equatorial wave modes,
but a conclusive answer to this problem is yet to come.

Interest in developing theories of the ITCZ and of
the synoptic-scale wave disturbances arose shortly after
the recognition of their existence. Palmer (1951) cate-
gorized the early theories concerning the development
of I'TCZ into three schools of thought: the “climato-
logical” school viewed everything in terms of seasonal-
mean maps and regarded the ITCZ as an invariant
phenomenon over a short period of time ; the “air mass”
school treated the ITCZ as the counterpart of the
higher-latitude weather fronts ; while the “perturbation”
school was more concerned about the easterly waves
imbedded in the basic zonal current. However, no
dynamic framework had been developed in those early
years.

Conditional instability of the second kind (CISK),
as proposed by Charney and Eliassen (1964), Ooyama
(1964), Ogura (1964) and Kuo (1965) in the study of
hurricanes, has become a major new concept in studying
the dynamics of tropical systems. This is basically a
scale-interaction theory which holds that thermal
energy may be released in a fluid which is gravitationally
stable with respect to large-scale motion if it is gravi-
tationally unstable with respect to small-scale con-
vective process. In the tropical atmosphere, this in-
teraction mechanism works in a way such that the
condensational heating due to cumulus-scale convec-
tion is derived from large-scale frictional convergence
of moisture. A method of parameterizing the small-scale
convection in terms of large-scale variables was in-
troduced by Charney and Eliassen (1964) using the
frictionally induced vertical velocity at the top of the
Ekman layer, which is linearly proportional to the
geostrophic vorticity at that level. This relation, which
was first shown by Charney and Eliassen (1949), is
valid for quasi-geostrophic motions. Based on the CISK
theory with this parameterization method, Charney
(1966) proposed a zonally symmetric model for the
development of the ITCZ. Two factors determine the
latitudinal dependence of CISK forcing in his model:
first, the efficiency of Ekman pumping, which is pro-
portional to the Coriolis parameter, increases away
from the equator, which makes the growth rate tend
to increase with latitude; and second, an assumed in-
creasing gravitational instability of the moist air
toward the equator makes the growth rate tend to de-
crease with latitude. The joint effect of these two
factors produces a maximum heating at some com-
promise latitude and thus accomplishes the purpose of
developing an I'TCZ about 10°-15° from the equator.

The dependence upon the Ekman layer formulation
makes Charney’s model doubtful, however, as to the
validity of the boundary layer structure close to the
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equator, since the ITCZ has been observed in latitudes
as low as 5° or even lower. Another question may be
raised concerning his second assumption, that the moist
air is more gravitationally unstable toward the equator.
This assumption does not seem justified by observa-
tional evidence. Riehl’s (1954) finding suggested that
the distribution of lapse rate of equivalent potential
temperature is nearly uniform over the vast tropical
region, while Palmén and Newton (1969) indicated that
near the longitudes of India, convection is most
favored in summer over latitudes considerably removed
from the equator.

After successive theoretical studies of free tropical
waves (Rosenthal, 1965; Matsuno, 1966; Lindzen,
1967; Koss, 1967), attention has been focused on the
mechanism of developing and maintaining the observed
waves. Considerable amount of interest has been
stimulated by the possibility that the CISK process
serves as the energy source of these waves. Numerous
studies have been carried out along this line, such as
those of Ooyama (1969), Yamasaki (1969, 1971),
Hayashi (1970, 1971) and Murakami (1972). In a
diagnostic model, Holton (1971) used a specified heating
distribution with cloud-cluster scale to study the re-
sponse in tropical wave structure. Most of these
analyses showed that condensational heating as an
energy source produces wave structures similar to those
of the observations. For the many investigators who
approach the problem by means of linear instability
analysis, a substantial amount of effort has been aimed
at explaining the horizontal scales of the waves.
However, the results of these studies seem to be nu-
merous enough to cover all the different observations,
and Chang (1971, 1972) failed to find any maximum
growth rates on the scale of observed tropical waves in
both quasi-geostrophic and primitive equation models.
In addition, Chang (1972) noted that because of the
smallness of amplification rates found in many CISK
wave models, the role played by the CISK mechanism
probably is to maintain existing waves rather than to
select the scale of the waves.

Because there is a strong lateral shear of zonal wind
commonly associated with the ITCZ, barotropic in-
stability as the source of wave energy has also been con-
sidered by many investigators. Nitta and Yanai (1969)
and Lipps (1970) examined the observed low-level
mean zonal wind profile at some tropical stations and
concluded that such a mechanism is possible. Williams
et al. (1971) were able to simulate the vertical structures
of some observed waves by the inclusion of an Ekman-
type parameterization of frictional convergence in a
numerical model of barotropically unstable tropical
waves, without any influence of diabatic heating. All
of these studies on barotropic instability found a pre-
ferred scale of the waves in the order of 2000 km.

A third possibility, that the tropical wave distur-
bances are forced by mid-latitude motions, has been
investigated by Mak (1969). Some interesting results
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on the time and zonal scales of tropical disturbances in
accord with observations have been obtained.

Barotropic instability and CISK forcing have been
considered together by Bates (1970). He added wave
perturbations to Charney’s ITCZ model to study the
integrated tropical circulation system. Synoptic-wave
motions are generated initially from the mean zonal
wind field through barotropic instability, and the
2000-km most unstable wavelength perturbation is then
allowed to grow under both the barotropic process and
CISK forcing. His result shows that although Reynolds
stresses continuously act in such a way that kinetic
energy is being converted from zonal mean flow into
perturbation, the CISK heating eventually takes over
as the dominant energy source. The zonal current is
always maintained by the CISK heating.

Recent analyses of satellite photograph data by
Chang (1970) and Reed and Recker (1971) have shown
that many cloud clusters in the vicinity of the ITCZ
can be identified with large-scale, westward-propagating
wave disturbances. This evidence clearly supports the
importance of condensation heating and the strong
correlation between latitudinal preferences of travelling
tropical wave disturbances and the ITCZ. Although all
the barotropic instability models, especially Bate’s,
offer an explanation of this correlation, an alternative
view was recently presented by Holton et al. (1971).
In their study of equatorial boundary layer theory, the
fact that the Ekman solution becomes singular and
convergence approaches infinity at the “critical lati-
tude,” where the frequency of passing waves is equal
to the Corlolis frequency, was suggested as a possible
explanation of the westward-propagating cloud clusters
in the vicinity of ITCZ. This is because the ITCZ and
associated travelling cloud clusters are usually observed
at latitudes where the Coriolis frequencies are within
the range of synoptic-scale wave frequencies. They
postulated that because the critical latitude represents
a region of large velocity gradients, and the upward
motion is much more concentrated than the downward
motion, nonlinear effects may be important so that the
synoptic-scale Reynolds stresses associated with the
moving wave could force a mean circulation pattern
near the critical latitude. Thus, the frequency of propa-
gating waves will determine the latitudinal dependence
of both the wave activity and the ITCZ.

Holton et al. (1971) and Chang (1973) also pointed
out the differences in wave structures for the region
equatorward of the critical Jatitude, as compared to
the poleward region in their boundary layer solution.
The solution for the latter region resembles the classical
Ekman layer while the solution for the former is quite
different. This finding is not without observational
evidence. Estoque (1971) could not find an Ekman
layer at the equatorial station of Christmas Island (2N),
but a boundary layer character is noted in the vertical
shear of the mean wind. Janota (1971) analyzed monthly
mean low-level winds of Marshall Island stations and
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data from Line Island Experiment and BOMEX, and
obtained results that clearly indicate the existence of
two distinctive types of boundary layer with different
wind structures north and south of the ITCZ.

The foregoing results of current studies thus indicate
the importance of careful handling of the tropical
planetary boundary layer. Since both theoretical and
observational evidence indicate that the boundary layer
depths becomes much larger near the ITCZ, the in-
fluence of boundary-layer dynamics on both the wave
and zonal mean motions in the tropics can hardly be
ignored.

Along this line, the purpose of this study is to in-
vestigate the development of the ITCZ in a coupled
system of zonal mean and perturbed motion fields.
The study will be carried out with a numerical model,
in which both CISK and barotropic energy sources are
possible. The equation of motion governing the tropical
planetary boundary layer will be retained in its primi-
tive form. The main feature distinguishing this model
from Charney’s and Bate’s ITCZ theory is that there
will be no ¢ priori assumption about the latitudinal dis-
tribution of CISK heating; therefore, the development
of the ITCZ away from the equator will be solely due
to the nature of tropical boundary layer dynamics.

2. Formulation of the tropical-wave, zonal-flow
interaction model

a. Basic equations

The basic equations of the model are formed in the
log-pressure coordinates (x’,3',3") on the equatorial
B-plane, where x' and 3’ are the eastward and north-
ward coordinates, respectively, and z'=—H In(p/p,) is
the vertical coordinate. Here H is a constant scale
height, p the pressure, and p, a standard reference
pressure. All equations are non-dimensionalized using a
length scale L= (¢/8)}, a time scale 7= (c8)~}, and a
depth scale H; where ¢= (gH)? is a horizontal velocity
scale and 8=2Q/a, with @ the angular velocity of the
earth, ¢ the radius of the earth, and g the gravitational
constant.

Assuming a single zonal wavenumber A and sepa-
rating out a density factor, exp(z/2), all non-dimen-
sionalized dependent variables can be separated into
zonal mean and perturbation components:

m*= (m—}-mei"’)em, (1)

where m* is the total quantity,

m= e"’/z[ /‘; o m*dx] / 2x/N)

is the zonal mean component, and  is the amplitude
of the perturbation component.

The horizontal equations of motion for the planetary
boundary layer z<zr (where zr is the top of the bound-
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ary layer) and the continuity equations are v Jv d¢ a* 1

Y layer) v —FiNdoto—= —yu——+K< +—>v+Fv, ©
du* ou* w* u* ot dy ay 9z 4

—~+u —t-v* ——+w —
ox dy Jz

Ip* d u*
R G NG
X 2 z

¥ av* ov* v*

—twr—t v —tw*—
ot ox dy dz

9p* ] v*
= —yu*———+ez:9—<Ke“ >+F 5 (3)
2

dy dz
ou*  ov*
—+ +ez—(e""w*) 0, 4)
where:
w*(x,y,2) zonal velocity
v*(x,y,2) meridional velocity
w*(x,y,2) vertical velocity
¢*(x,y)  geopotential height, non-dimensionalized by
¢?, assumed to be independent of height
K vertical eddy wviscosity coefficient, non-
dimensionalized by H?2(c/B)% assumed
constant

In (2) and (3) we let F,* and F,* represent some
damping process such as horizontal diffusion or the
vertical transport of vorticity by cumulus clouds. The
necessity of including these terms will become clear
as the model is developed.

Applying (1) to Egs. (2)-(4), we obtain the equations
for the zonal mean flow:

ou ou 9w 9 9% 1 -
— 4 —t—F—ur= y@-{—K(———)lH'F w (5)
ot  dy dz Jy 9z 4
o dv o d._
——-l—v——-i—w—“l-—’v2
dy 9z 9y
¢ 2 1
=itk ©
dy 9z 4
v I 1
dy \oz 2

where the synoptic-scale vertical Reynolds stress
terms, duw/dz and dvw/ 3z, are assumed to be neglegible
as seen a posteriori. The “linearized” perturbation
equations (for deviations from the zonal mean) con-
sistent with the foregoing equations are

ou o 9 1
—+dutv—=xyv —i)\qﬁ—i—K(———)u-l—Fu, (8)
a¢ dy 9z 4

dv 9 1
i)xu+—+(——e)w =0,
dy \oz 2

(10)

where the advections by the mean meridional and mean
vertical motions are also neglected as justified @

posteriori.

The governing equations for the “free” atmosphere

(22 2r) are the vorticity equation

S S
——t et —
ot ox dy

a9
=~ O,
Z

(1

where {* is the vorticity and F¢* a damping term, and

the thermodynamic energy equation
T* T*

—u*
ot

* G — Q*
ox dy

(12)

where T* is the temperature, S=RT/c,+dT/dz is the
static stability parameter, and Q* the diabatic heating
rate non-dimensionalized by (c,¢®)/ (RL). Here ¢, is the
specific heat at constant pressure and R the gas constant.

Since the observed temperature fluctuations in the
tropics are very small, Wallace (1971) suggested that
the terms involving local change of temperature and
horizontal advection in the thermodynamic energy
equation (12) can be neglected. A detailed scale analysis
for the tropical motions provided by Holton (1972)
clearly supports this simplification. Thus, we will assume
that (12) can be replaced by the simple statement that
the adiabatic vertical motion field always acts to

balance the diabatic heating, i.e., that
w*S=0%
Combining (11) and (13), we obtain
a* ac* ot

—t v —
a¢ oz dy

3
=—v"+ (y—l—{*)e’g-(e"Q*) +F*.
Z

(13)

(14)

In Eq. (14), the only vertically differentiated term is
the heating term. This means that the system is
vertically coupled only through diabatic heating. Thus,
if we can pre-specify the vertical profile of the heating
function Q% (14) can be applied at any level above the
boundary layer as an ordinary differential equation

with y as the only independent variable.

The CISK process will be written in a form such that
the diabatic heating function Q*(z) is related to the
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vertical velocity at the top of the boundary layer
(wr*) by

Q*(z) =n*(3) (Wrtwr), (15)

where 7*(2) is the proportionality function which speci-

fies the vertical profile of heating. In the perturbation’

fields (15) implies negative heating when downward
motion is taking place at the top of the boundary
layer. This implication is very difficult to avoid when
we want to separate the x-dependence of the perturba-
_ tion quantities, but is avoided in the mean flow by
specifying '

2(g)wr, for wr>0

0, for wr<0

Substituting (15) into (14) leads to

ac* ar* ot
—tut—tvt—
of dox dy

] *(2) (W
- —v*+<y+;*>ez;e—ﬂ_EZSW__W

2

+Fi’*> (16)

which can be separated into mean and perturbation
components by using the definition of (1):

T T + )y /d _
_{.{_5. ?{ v§=_5+(y SL)WT/—E—Z>+F;, an
at 9y 9y S \dz 2
a¢ oo
—t\u¢ +v—
d¢ dy
+O)wrttwr]/d
=—v+[(y Owr T]/—j—2>+F;. (18)
S \&z 2

~ We have neglected a term §{wg(dn/dz—n/2), because
it is of the same order as that of the synoptic-scale
vertical Reynolds stress term d(wf)/9z.

We now specify the heating profile n(2) such that
(d/dz—%)p=2S at the top of the boundary layer z=2y.
[Egs. (13) and (15) require that n=>S5 at z=27. For a
lapse rate of 6C km— and wr*=1 cm sec™, this magni-
tude of » will in turn produce a heating rate of 2.5C
day~'.] Since the slope of the heating function is
defined, we imply that the heating function is smoothly
varying in the vicinity of 2=2¢. To reconcile our pre-
vious assumption that ¢* is independent of height for
z< zr, this means that the smaller but finite heating in
the uppermost layer of the boundary layer acts in such
a way that the geopotential perturbation remains con-
stant in height. Egs. (17) and (18) may now be applied
at the top of the boundary layer. Thus, Eqs. (5)-(10),
(17) and (18) form a complete system, where (5)-(10)
are the “interior” governing equations in the boundary
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layer while (17) and (18) play the role of the non-
steady “upper boundary conditions” at the layer top.
They are coupled together through ws* and the vertical
friction terms.

To facilitate the calculations, we need to write the
upper boundary conditions in terms of %z, vy, ¢ and
dr, D7, ¢. This may be done by considering zr as close
to the non-divergent level, since the free atmospheric
flow at the top of the boundary layer can then be
assumed to be quasi-nondivergent. [Eq. (16) may be
viewed as a barotropic vorticity equation with a source
term (the divergence forced by heating) and a sink
term (the damping term).] Therefore, using a stream-
function y* defined by

av*  du*
V=t ————)
ox Oy

together with the balance equation, we can derive the
velocity components and geopotential at the upper
boundary z=32r from the vorticity field. This process is
summarized as follows:

1) The mean and perturbation streamfunctions

r
"t (19)
ay*
Or
—\Yr+ ={m, (20)
dy?
or )
i}
__lpz =dr, (21)
dy
Wy l
—_——=Up
ey (22)
’i)\l//T = 'DTJ

are used to find the velocity components (97 is set equal
to zero permanently because the non-divergent assump-
tion implies 977/9y=0 which together with the sym-
metry conditions given in the next section requires
that 7 =0).

2) A perturbation balance equation

l2

¢ -
—>\2¢+;’; =y{r—up-+iN vy, (23)
y

which is derived from taking the divergence of the
equations of motion [(8)~(9)] and dropping the terms
involving divergence, is used to find ¢.

3) A mean balance equation

dé d_.
= —yip——1?,

dy dy

(249
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which is derived from (6) by setting #7=0, is used to boundary conditions” apply, i.e., that
find d¢/dy.
: . . . du*

We now shift our attention to the damping terms in- K—=Cpu*
cluded in the system. Eq. (18) is a linearized equation 9z
which has the possibility of possessing exponentially N , atz=é, (26)
growing and decaying solutions. Therefore, the in- Kai= Cro*
clusion of the damping terms in the “free” atmospheric 3z p

equations is necessary to prevent the system from
having infinite growth. The same is true for the bound-
ary layer equations. The vertical friction terms only
act to adjust the boundary layer flow in response to the
“free” atmospheric flow above; thus, they do not repre-
sent the same kind of damping as is represented by F:*
in the vorticity equation.

Since the real damping process could involve a
number of mechanisms such as horizontal diffusion,
vertical transports of vorticity and momentum by
cumulus clouds, etc., our knowledge regarding the exact
formulation of the damping terms is rather inconclusive.
We will thus take the liberty of specifying the damping
process in a quadratic form so that the linear instability
associated with CISK and the barotropic processes
may be balanced at some finite amplitude. The speci-
fication is as follows:

Fu=—p.U|121W

Fr=—uU|{]

Fu=—upViu|l |’ (25)
F,=—uV|v|

Fe=—uV|g| |

where

2 D2
U=— |1Z7'|dy;
)

2 oy
VE—/ ~(|ur|+|2vr])dy,
DJe 2

and u is a constant which must be specified. [Eq. (25)
does not meet the condition described by Eq. (1)
because generally U V. However, since the formula-
tion of damping is somewhat arbitrary, there is no
way to tell which one is more suitable. The specification
in (25) assures that the growth of the waves will not
be hampered by strong mean flow, and development of
mean flow will not be hampered by strong waves.]

In addition to the foregoing equations, lower bound-
ary conditions are needed to solve the system. We
assume that there exists a surface layer underneath
the planetary boundary layer and that the “geophysical

where Cp is a surface drag coefficient non-dimensional-
ized by (¢8)*H" and & is the depth of the surface layer.
We also let w*=0 at the ground (z=0).

b. Lateral boundary conditions

The “free” atmospheric system (17)-(24) is assumed
to meet the channel flow conditions that all meridional
winds vanish at the walls of the channel y=4-D/2.
Due to the frictional force the meridional winds in the
boundary layer are not necessarily zero at y=2-D/2.
Thus, we have a closed lateral boundary system at thz
top of the planetary boundary layer but an opex
boundary system for the planetary boundary layer
itself.

It is possible to simplify our work by using the sym-
metry property of the equations with respect to the
equator (y=0), so that one hemisphere will be enough
to represent the complete structure. Hereafter our
discussions will be concerned with the Northern
Hemisphere only. The lateral boundary conditions are
summarized as follows:

1) At the equator:
(1) Zonal mean flow is assumed to be symmetric
with respect to the equator for all cases; thus,

1=0 l
d$ ou >, at y=0.

@7)
0

dy 9y
(if) Perturbation fields can be asymmetric or sym-
metric with respect to the equator; thus,

v dy

g&zd_y =01 , at y=0 (for the asymmetric mode), (28)
o=u=0 J
v=y¢=0 )

d¢ ou 3, aty=0 (for the symmetric mode). (29)

2) At the northern boundary: All meridional veloci-
ties at the top of the boundary layer vanish; thus,
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(i) For the zonal mean equations

r=0
dtr , aty=D/2, (30)
dy B
and
(i) for the perturbation equations
I =¢/T=0\
aMT
gy . aty=D/2. (31)
el
—tyur=0
dy J

The last condition of (31) which is simply the geo-
strophic wind equation is derived from the meridional
equation of motion by setting v7=0.

3) In addition to the above, we specify the following
lateral boundary conditions for (19):

dyr

—=0, aty=0

dy . (32)
Yr=0, aty=D/2

The first condition of (32) means #r=0 at the equator.
This is an arbitrary specification, because in the real
atmosphere # at the northern boundary depends on
the Coriolis torque of the return flow which is not being
taken care of in our model. Since the mean boundary
layer convergence is likely to generate positive mean
vorticity in the tropical region, this specification is
adopted in order to simulate the .observed easterlies.
The second condition of (32) is specified solely to facili-
tate the derivation of the mean energy equation in the
next section.

c. Energy equations

The energy equations for the free atmospheric flow
at the top of the boundary layer can be obtained by
multiplying Egs. (17) and (18) by —¢r and —yr, re-
spectively, and then integrating and averaging over the
channel to give

or 2 DJ2 dﬁ/_/T
) ]
LD Jo dy
ar 2 D2 { dl//T\2
cHEEH
alLD Jo 2\dy/
ar2 Pgp?
bl 5]
oD J, 2

= ZKE (zonal kinetic energy) = —Is+Iu+1p, (33)
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T

)]
d(2 P2t 2
s [ L () Jo)
alD Jo dy

A2 [P ug+ug?
3

oiLD Jo 2

= EKE (eddy kinetic energy)=Ip+In1+Tne+1q,
(34)

a 2 DJ2 d2¢
vl
at D 0 dy

where the relations (19)-(22) have been used, and

3§'T 2 pDiz 0 —
Iy=— / 'UTl//T—dy =—— Yr—ordy,
D 0 ay

biz (y-I-s“ )T /dy 7
et [,
S dz 2

2 Df2
ID——#Uf —¥rlrdy,

(y+8Er) gdn
e [ T,

dz 2
——W7T dn n

1h2=——/ -MS“T—(‘—‘—')dy,
dz 2

D2
1= "—#V/ —!//Tdey
D 0

The terms in these energy integrals may be inter-
preted as resulting from a simple interaction between
the zonal mean and perturbation flow. Both flows are
forced by heating, as long as (d/dz—3)n>0 (provided
that the streamfunction is negatively correlated with
the vertical velocity—which is generally true); and
they are both dissipated by damping. The barotropic
conversion term I3 is the only process which converts
energy between the zonal mean and perturbation fields.
There is no storage of available potential energy in our
system, i.e., vertical motions converts available po-
tential energy to kinetic energy at the same rate that
it is generated. This is a result of our simplified thermo-
dynamic energy equation (13) [see Wallace (1971)].

Energy equations can also be derived for the bound-
ary layer system by multiplying the equations of
motion by the appropriate velocity components. But
because we have somewhat artificially assumed that
the effect of heating for z<zy is such that the geopo-
tential will remain constant with height and part of
the forcing is introduced indirectly through the vertical
diffusion terms, it is not very meaningful to study the
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energy equations of the boundary layer. Therefore,
only the energetics of the “free” atmospheric flow at the
top of the boundary layer will be examined.

d. Method of solution

The governing equations and boundary conditions
are now expressed in finite-difference form in space
and in time. The complete system of difference equa-
tions is given in Chang (1972).

Fig. 1 illustrates the spatial difference model. The
northern boundary is set at 25N, and a staggered grid
system in y with a grid spacing Ay=1° is used. The
vorticity and vertical velocity variables are evaluated
at 0°, 1N, 2N, ---, 25N, while all other variables are
evaluated at 0.5S, 0.5N, 1.5N, ..., 24.5N, 25.5N.
A simple grid system is used in z between the ground
(3=0) and the top of the planetary boundary layer
(z=2r), with a grid spacing Az=0.25 km. The top of the
surface layer is set at 2=6=0.125 km. Central differ-
ences are used for spatially differentiated terms except
that backward differences in y are used for the northern
boundary whenever it is necessary. The mean advection
terms are expressed in such a way that the advections
of squared quantities at the open boundaries are ac-
curately represented. For closed systems these expres-
sions will conserve the squared quantities.

The difference equations are integrated forward in
time using an electronic computer. The time step in-
terval At varies from 4 hr to 0.5 hr during the integra-
tion, depending on the criteria for linear numerical
stability. (Gravity waves are absent due to the constant
geopotential in z.) The integration scheme used is
essentially the three-level central differencing (“leap
frog”) method, with two exceptions:

1) The “drag type” terms are expressed by a three-
level averaging implicit method; i.e., the equation
om
?= —Cm-t-other terms,
¢

is expressed as

741 =1 7+1 T 7—1
M — Mk i,k +mi pt+m;x
=—C ~tother terms,
2A¢ 3

or

741 1 71 C T 7—1 1 C
Mj,k =[—mj,k ——(mjxtm;x )]/(——‘*‘—)
2A¢ 3 2A1 3

~+other terms,

where the index 7 is the time step and 7, % represent the
grid points in the y and z directions, respectively. If
the coefficient C is time-dependent, it will be evaluated
at time step 7.
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Fi16. 1. The finite-difference model. Vorticities and vertical vel-
ocities are expressed at the crosses, all other variables at circles.
(Vorticities are not needed for levels z <zr.)

2) The vertical friction terms are expressed by a
backward differencing method; i.e., the equation
dm 2 1
—=K (——-—)m—l—other terms,
d¢ 0z¢ 4

is expressed as

741 7—1 -1 T+1
M — Mk i, k1 1 17 1 My
=K - 1 :Imf.k + }
2At (Az)2 L2(Az)? 4 (Az)?

~+other terms.

Thus, all boundary layer equations of motion may be
written in the quasi-implicit form:

+1 7+1 7+1 T 7—1
B gr1+Bom; i +Bsmj.k—1=f('m/ mo), (35)

and are solved as a two-point boundary value matching
problem between the lower boundary and the top of the
boundary layer using a method described by Richtmyer
(1957). The detail of this method is given in Chang
(1972).

The integration procedure is as follows:

1. The continuity equations (7) and (10) are used to
evaluate W and w. The vertical velocities at the top of
the boundary layer, wr and wr, are set to be equal to @
and w at the level immediately below the top of the
boundary layer.

2. Egs. (17) and (18) are then used to advance {r
and ¢{r.

3. Egs. (19) and (20) are used to evaluate the stream-
functions ¥r and yr from the vorticities using Richt-
myer’s matching method. The new velocity components
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at the top of the boundary layer are then obtained from
the streamfunctions by using (21) and (22).

4. The perturbation balance equation (23) is inte-
grated over y to find ¢, again using Richtmyer’s
matching method. '

5. Eq. (24) is used to obtain d¢/dy. (The mean geo-
potential ¢ is not needed.)

6. Egs. (5), (6), (8) and (9) are used to advance 4, 7,
and v for the boundary layer flow, as described earlier
for (33).

To carry out our three-level integration, the Matsuno
method is used at the beginning to generate the values
for the second time step. In addition, the even and odd
time-step values are averaged every 60 time steps in
the following fashion:

M| wow=0.25m140.5m7+0.25m™,

in order to eliminate the computational mode.

3. Results and discussion
a. Initial conditions and constant paramelers

Although it is possible to employ the linear boundary
layer solutions expressed by Chang (1973) directly, we
will instead use the two simplest non-trivial solutions
for barotropic channel flow:

u={ sinly
} (asymmetric mode), (36)
=1\ cosly

u=—1 cosly

} (symmetric mode). (37

v=1\ sinly

As our initial conditions at all levels we let the linear
perturbation fields evolve adiabatically (no heating and
no damping) until they reach a steady state that re-
sembles the boundary layer solutions given in Chang
(1973). Heating is then turned on and the zonal mean
fields are allowed to develop. The quantity x, which
is a sort of a nonlinear drag coefficient used in the
damping terms, is increased from zero when the heating
starts up to a constant value of 8.0, corresponding to
an e-folding damping time of 3 days for an averaged
wind speed of 2 m sec™.

The following constants are used: H=10 km,
K=0.0117 (or 10 m? sec™* in dimensional form), and
(d/dz—%)n=2S at z=2r; in addition, the surface drag
coefficient Cp is set to be 1.6X10™% (or 5.1X1073
m sec™).

A difficult task in choosing the constants is to specify
zr, the top level of the planetary boundary layer. There
are three criteria for the proper selection of this level:

(i) Chang (1973) has demonstrated that the usually
adopted 100-mb boundary layer depth in many tropical
models is unsatisfactory to represent the deep con-
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vergence around the critical latitude. Thus, a deep
boundary layer depth is desired in our model.

(ii) The flow in the vicinity of zr should be quasi-
nondivergent.

(iii) The vertical gradient of heating profile at this
level should be positive.

Regarding the first criterion, Chang (1973)-suggested
that zr has to be approximately >4 of the scale height
in order to produce maximum convergence around the
“critical latitude,” for both modes of symmetry about
the equator. Regarding the second criterion, Williams
(1970), Wallace (1971), and Reed and Recker (1971)
all reported from radiosonde analyses that the non-
divergent level for the tropical waves is around 400 mb,
and all indicate that divergence-is generally small in
the 500-350 mb layer. The third criterion concerns the
upper limit of z7. Nitta’s (1970) observation places the
maximum heating level at 400 mb. [It can be inferred
from the simplified thermodynamic energy equation
(13) that the maximum heating level should coincide
with the non-divergent level.] Therefore, any level
below 400 mb should satisfy the third criterion. How-
ever, we would like to specify zr as low as possible so
that the heating in the modeled boundary layer will
be small to minimize the effect of the assumption that
the perturbation geopotential is independent of height
in the boundary layer. After all these considerations,
our final choice for z7 is 500 mb (5.5 km), or 2r=0.55.

The time integrations do not reach steady state in the
time period we carried out. However, all integrations
do become “quasi-steady,” so that both the zonal mean
and the perturbation flows undergo only small irregular
fluctuations some 400 hr after the heating starts.
Thus, the results will be presented by means of clima-
tological averaging over the 400th, 430th, 460th, -- -,
640th and 670th hour. The maximum deviation for
any individual time step in the averaging period is
~209%, for the wind speed and 21° for the phase of the
perturbation quantities for all grid points.

b. The case of asymmelric perturbations

One of the most frequently observed wavelengths
(4000 km) is used in the first study of the asymmetric
perturbation case. Fig. 2 is a latitude-height section of
the resulting mean zonal velocity @. A strong lateral
shear is centered around 10N, with a westerly maximum
of 2.2 m sec™! immediately south of it and an easterly
maximum of 5.2 m sec™ near 17N. The region south of
7N is mainly occupied by very weak mean zonal winds
changing slowly from westerlies to easterlies toward
the equator. The strongest lateral shear region is in the
narrow latitudinal zone of 8.5-11.5N. In the region
north of 10N, the vertical shear of 4 is mainly confined
to the lowest 1 km and becomes virtually zero above
1.5 km. South of 10N, the vertical shear in the lowest
1 km is much weaker than in the northern region, but
it continuously extends upward to the middle levels as
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¥16. 2. Latitudinal and vertical distribution of # (m sec™!) associated with
the 4000-km wavelength asymmetric perturbation.

high as 3 km in the region of 8.5-9.5N. Thus, the area
around 10N not only forms a strong horizontal wind
shear zone but also a partition between two different
mean boundary layers characterized by the vertical
shear of the mean zonal wind.

Fig. 3 is a latitude-height section of mean meridional
velocity 7. North of 10N the northerly winds prevail,
especially in the layer between 0.5-0.75 km with a
maximum speed of 1.6 m sec™ near 14N. Equatorward
of 10N, 7 is mainly weak southerlies with a maximum
value of 0.6 m sec™ in a broad region enclosed by the
latitudes of 5 and 9N, and 1- and 3-km levels. As with

the mean zonal wind, vertical shear of the mean
meridional wind north of 10N is stronger and con-
fined to the lower levels as compared to the region
south of 10N.

The above distribution of 7 indicates a strong con-
vergence zone near 10N throughout the depth of the
boundary layer. This is shown by Fig. 4 which is the
latitudinal profile of wys. (The profile of 4y is also in-
cluded for comparison.) The mean vertical velocity at
zr reaches its maximum value of 4.5 cm sec™ right at
10N, the center of the strong shear zone, and falls to
~1 cm sec™! one degree either side of the maximum.
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Fic. 3. As in Fig. 2 except for & (m sec™).
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F16. 4. Latitudinal profiles of the mean vertical and zonal winds (Wr, cm sec™; 4p, m sec™?)
at the top of the boundary layer associated with the 4000-km wavelength asymmetric per-

turbation.

Outside of the 7.5-13.5N area, which covers the com-
plete shear zone, wr is generally negative with the
strongest sinking motion (~0.8 cm sec™) taking place
at the equator. Thus, the mean motion fields resemble
the structure of an ITCZ as far as the zonal mean vor-
ticity and vertical motion distributions are concerned.

The structure of the perturbation fields® at the 5.5-km
level (top of the boundary layer) is shown in Fig. 5.
The vertical motion wr and the vorticity {7 both possess
sharp maxima near 9N with values of 4.2 cm sec™ and

4.9X1075 sec?, respectively. The concentration of {7
is stronger than that of wr, with a “peaking width” of
~1° for the former compared to >3° for the latter.
There is a problem in defining the critical latitude even
though the waves have a constant period of ~5.1 days.
This is because the mean zonal wind shears both
laterally and vertically; consequently, the Doppler-
shifted frequency #=v»--Mi is a function of both y and .
However, we can obtain a ‘“maximum Doppler-shifted
frequency” fmax corresponding to the Coriolis frequency
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F16. 5. Amplitude and phase distribution of the following variables at the 5.5-km level (top of bound-
ary layer) for the 4000-km wavelength asymmetric perturbation mode: % (thin solid lines, m sec™?),
v (dotted lines, m sec™!), w (thick lines, cm sec™), —¢ (dashed lines, m) and ¢ (dash-dotted lines, 107°

sec™h).

3 Throughout this work, the negative phase line (trough) of ¢ is shown in the phase diagrams.
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F1c. 6. As in Fig. 5 except for the 3-km level, and that 1) thick lines are
convergence (107° sec™) and 2) vorticity is not plotted.

at 6N from the maximum westerly wind of 2.2 m sec™
mentioned earlier. Therefore, the maximum convective
activity of the waves takes place at a latitude (which
we will call the “maximum wave convection latitude,”
or MWCL) north of the “northernmost critical latitude”
in the above described sense, and is very close to the
center of the “mean ITCZ.” This relationship between
ITCZ position and wave frequency will be discussed in
more detail later in this section.

The perturbation meridional velocity vz also reaches
its maximum value of 4.6 m sec™ at the MWCL,
although its y gradient in that vicinity is not as strong

as those of ¢y and wy. The maximum value for the
perturbation zonal velocity #r is 3.9 cm sec™ near 11N
which is somewhat north of the MWCL. These ampli-
tude distributions of the perturbation velocity com-
ponents are evidently due to influences of the mean
ITCZ and CISK forcing, because otherwise we would
expect a maximum in #r at the northern boundary and
a maximum in o7 at the equator, as indicated by the
free wave solution (36).

The perturbation geopotential ¢ assumes the smooth-
est profile with a maximum value of 4.5 m near 10N.
This is also different from the free-wave solutions which
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Fic. 7. As in Fig. 5 except for the 1-km level, and that 1) thick lines are
convergence (107° sec™) and 2) vorticity is not plotted.

8QDXWKHQWLFDWHG _

'RZQORDGHG



202 JOURNAL OF THE ATMOSPHERIC SCIENCES VoLUME 30
55 \ /
f-'zz V7 |22 [
sk | | ]
\
\ / /!
\ / /!
| / /1l
o ‘\ / /]
i / /]
\ / 1
\ / /,
- 3 \ ! I
] \ / ,
x / | !
¢ I ||
g .l / ||
x I I l
/ |
/ / |
/ / |
i // // ‘
/ / |
7/ v,/ vl v
e 7/ 7} | Va2 22
T e

AMPLITUDE (M/S)

PHASE

T1c. 8. Comparison of vertical structure of perturbation velocities between the mid-lati-
tude region (represented by winds at 22N, solid lines) and the equatorial region (represented
by winds at 7N, dashed lines) for the 4000-km wavelength asymmetric mode. The phase of
each component is plotted with respect to its phase at the boundary layer top.

shall place the maximum of ¢ near the center of the
channel.

The perturbation vertical velocity wr and the pertur-
bation vorticity ¢{r are roughly in phase throughout
most of the channel, and both undergo abrupt phase
changes (~% cycle) twice, once near the MWCL and
once near 12.5N. This in-phase relationship appears to
agree more with the geostrophic relation described by
Charney and Eliassen (1949) than with the boundary
layer solutions without forcing shown in Chang (1973),
because the latter solutions predict a phase difference
2 % cyclein the “equatorial region” south of the MWCL.
However, the in-phase relationship between {7z and wr
found in this model is mainly due to a different mecha-
nism. As will be shown later in Section 3d, a major
portion of the energy for the waves is contributed by
the first heating term on the right-hand side of (18);
thus, this term (which is proportional to wr) balances
most of the damping. This balance inevitably requires
{r to be in phase with wr (see Holton and Colton, 1972).

The phase of #r also changes rapidly around the
MWCL by ~#% cycle, although #7 does not reach
maximum in amplitude at this latitude. In contrast
to wr, {r and ug, the phase changes of v7 and ¢ are
much smaller except that ¢ reverses its phase at a
mode near 24N due to the geostrophic boundary condi-
tion (31) at the northern boundary. However, the phase
axes of both quantities do tilt slightly NE-SW south
of the MWCL and NW-SE south of the MWCL.
These tilting directions are consistent with the zonal
wind shear if the waves are barotropically unstable
south of the MWCL and barotropically stable north of
the MWCL.

Figs. 6 and 7 show the wave structures at the 3- and
1-km levels, respectively. The structures are generally
similar to those at the top of the boundary layer. Two
features are particularly noted: 1) Maximum con-
vergence is situated at the MWCL at both levels, but
the maximum in o7 shifts slightly northward toward
lower levels (10N at 3 km and 11.5N at 1 km). 2) Con-
vergence in the ‘“mid-latitude region,” especially north
of 15N, is mainly confined to the lower levels; while
convergence in the “‘equatorial region” is much deeper.
This is the main reason why the “equatorial region”
produces larger vertical motion at the top of the
boundary layer than the “mid-latitude region” does
as shown in Fig. 5.

Other differences between the two regions separated
by the MWCL can also be identified by comparing the
vertical profiles of the perturbation velocities. Fig. 8
shows the amplitude and phase distributions of # and v
as functions of height at two latitudes, 7 and 22N.
The equatorial region, represented by the 7N latitude,
has an increase in the amplitude of v and a small
decrease in the amplitude of % upward from the 1-km
level; while the mid-latitude region represented by
22N maintains nearly constant amplitudes for both #
and v above this level. The phase profiles are also
different. For both velocity components, the ground
level leads the top level in the equatorial region but
lags the top level in the mid-latitude region. In addition,
although the shift in ¢ is quite small, phase lags of both
components in the equatorial region extend all the way
up to the top of the boundary layer. This is in contrast
to the mid-latitude region where phase lags occur only
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Fic. 9. Total flow (arrows) and vertical velocity patterns (wr, solid lines, cm sec™) over one wave-
length at the 5.5-km level (layer top) associated with the 4000-km wavelength asymmetric perturbation
mode. Maximum velocity plotted 1s 6.4 m sec™®. The perturbation geopotential (¢, dahsed lines, m) is

also plotted.

in the lowest 1.5 km, and the change of v is greater
than that of .

The total flow patterns (mean plus perturbation) at
the 5.5-, 3- and 1-km levels are shown in Figs. 9, 10
and 11, respectively. The total mass convergence in
the boundary layer is plotted as contours of vertical
velocity at the 5.5 km level (zr), and the total con-
vergence field at individual levels below zr are plotted

accordingly. The perturbation geopotential fields are
included for the purpose of identifying the wave axes.

The difference between the mid-latitude and equa-
torial regions in the convergence field is again apparent
in Figs. 10 and 11. The convergence area is narrower
north of the ITCZ at 3 km compared to that at 1 km,
while those south of the ITCZ are about equal at the
two levels. In the ITCZ, the total convergence appears
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¥1G. 10. As in Fig. 9 except for the 3-km level and that the thick lines are
. convergence (1075 sec™).
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Fic. 11. As in Fig. 9 except for the 1-km level and that the thick lines are
convergence (107% sec™).

to be larger at the lower levels as its maximum value is
~2X10%sectat 1 km butis ~1.5X10"%sectat 3 km.

From Fig. 9, it is clear that the strong rising motion
is much more concentrated and larger in magnitude as
compared to the sinking motion that spreads more or
less uniformly in the broad areas on both sides of the
region of the rising motion. The narrow latitude band of
strong convective activity around 9-10N can thus be
viewed as the ITCZ where both the mean cloudiness
and trains of propagating cloud clusters have been
observed from satellite photographs.

In general, the above results apply to all synoptic-
scale asymmetric perturbations. To illustrate this, zonal
mean and perturbation fields at the top of the boundary
layer for two different perturbation wavelengths, 8000
and 2000 km, are shown in Figs. 12-15. Properties
similar to those for the 4000-km wavelength case are
generally present, with some deviations:

1) For the 2000-km wavelength case, rising motion
in both the zonal mean and perturbation fields is smaller
in magnitude and less concentrated, compared to the
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T1G. 12. As in Fig. 4 except that the perturbation wavelength is 8000 km.
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Fic. 13. As in Fig. 5 except for the 8000-km wavelength.

longer wavelengths. Thus, the ITCZ in this case is not
as strong as in the others.

2) The locations of the “mean ITCZ” and the
MWCL, which we regard as the “perturbation ITCZ,”
vary somewhat as the wavelength varies.

The second point should be of no surprise if we expect
a frequency dependence of the ITCZ. Just as in the
case of the 4000-km wavelength perturbation discussed
earlier, the maximum Doppler-shifted frequency y= fmax
can be evaluated for each case. Table 1 is a summary
of the comparison of the corresponding northernmost
critical latitudes and the positions of the ITCZ for

different perturbation wavelengths. It suggests that the
ITCZ is generally north of the y=/sna.. latitude (al-
though in the 2000-km wavelength case the MWCL
cannot be distinguished from the y=#u.x latitude due
to our latitudinal grid resolution). This is understand-
able if we consider the two main factors that control
the ITCZ development in our model:

1. The dynamics of the equatorial boundary layer in-
herently possess a quasi-singular behavior in the con-
vergence field. This behavior tends to concentrate the
mass convergence in the boundary layer at the critical
latitude when the Doppler-shifted frequency # is con-
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TG, 14. As in Fig. 4 except that the perturbation wavelength is 2000 km,
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