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ABSTRACT

A relatively sophisticated cloud phase parameterization scheme based on the gamma distribution is
presented which, it is hoped, will eventually make it possible for cloud modellers to include the effects
of microphysics more realistically than has been so far possible.

Cloud phase calculations are presented using Lagrangian parcel theory, one-dimensional Eulerian
formulation in the vertical, and two-dimensional Eulerian formulation in the horizontal and vertical
directions. The solutions obtained using the parameterized scheme were compared with the more con-
ventional finite-difference microphysical calculations of Clark and there was found to be very good

agreement for all cases treated.

The efficiency of the scheme allowed a one-dimensional study on the effect of vertical spatial resolution
on the prediction of microphysical parameters such as droplet number concentration, mean droplet
radius and supersaturation. It was found that poor spatial resolution results in a rather slight under-

estimation of the droplet number concentration.

i. Introduction

Cloud models which include dynamics as well as
microphysical processes, such as those of Arnason and
Greenfield (1972) and Clark (1973), require a great
deal of calculation even with the present level of
precision. If one investigates the present accuracy of
these models from the standpoint of calculating
nucleation zones as well as regions of droplet evapora-
tion, it is immediately clear that 100 m grid resolution,
for example, in the vertical and horizontal is not
sufficient but that possibly as much as 10 m resolution
is required. This does not mean that the overall results
of these models are wrong but only that certain details
of the calculations are not well resolved. Also, as far as
the resolution of the spectrum of water droplets is
concerned, probably a much larger number of categories
is required than has been used; otherwise, one cannot
ascertain to what degree droplet spectra are correctly
calculated by these models. For example, when pre-
dicting droplet spectra widths in the first 200 m above
cloud base, one would like to be sure that the spectra
widths were determined by the assumed physical equa-
tions and not by numerical dispersion. It is important
to note that poor spatial resolution has a strong effect
upon the droplet radius domain calculations when we
consider that the characteristic time for water particles
to pass through a given radius domain range can be
much smaller than the time required to pass through a
single grid point. This effect would be particularly

1Present affiliation: Atmospheric Environment Service,
Downsview, Ontario, Canada,

strong in regions of nucleation and droplet evaporation
where rapid droplet growth or evaporation can cause
droplets to pass through many Eulerian radius cate-
gories in the space of 100 m. This argument suggests
that increased resolution in the spectral domain should
be accompanied by increased resolution in the spatial
domain so that the substantial time derivative of each
particle category is more accurately represented. This
approach is only possible with one-dimensional models
where computation time and storage requirements are
not too severe. (See the Appendix for a more detailed
discussion of truncation errors associated with micro-
physical finite-difference Eulerian cloud models.) This
rather brief criticism of two-dimensional, finite-
difference, microphysical-dynamical cloud models sug-
gests the need for a more practical method of treating
the cloud phase processes which for low spatial resolu-
tion will give essentially equivalent results. The need
for a more practical scheme for treating the micro-
physics is even more obvious when one considers
extending these models into three spatial dimensions
where hopefully one will be able to compare calculations
more readily with nature. It was this latter point which
was the main incentive for the development of the
parameterization scheme presented in this paper.
Kessler (1967) proposed a parameterization scheme
where the cloud phase is represented by the single
parameter g., the mixing ratio of cloud water to air.
Autoconversion from cloud water to rain water was
treated empirically by assuming a conversion rate
dependent on the value of g.. Berry (1965) and Cotton
(1972) have suggested more sophisticated auto-
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conversion rates which empirically include the effects of
droplet number concentration and cloud-droplet radius
dispersion. It is the author’s contention that in order to
significantly improve the warm rain parameterization
schemes such as those of the above authors, a more
physically representative cloud phase scheme is needed
where the cloud droplet number concentration and
radius dispersion are model-predicted from the initial
cloud condensation nuclei (CCN) distributions.

The present paper presents a cloud phase parameter-
ization based on the gamma distribution which repre-
sents the cloud droplet distributions. The super-
saturation of the air with respect to a plain water surface
is considered which allows a prediction of the droplet
concentrations produced through nucleation of the
assumed CCN. The coefficients of the gamma distribu-
tion are considered as field variables which allows
prediction of the droplet distribution mean radius and
to a lesser extent the radius dispersion. In addition, it
is possible that this scheme is as accurate (or could be
made so) as the pure finite-difference method of treating
the droplet distribution because some of the problems
associated with radius domain resolution are either
lessened or altogether eliminated. For example, in a
poorly resolved nucleation region it seems conceivable
that better results could be obtained by using an
assumed type of droplet distribution than by the usual
finite-difference approaches of Arnason and Greenfield
(1972) or Clark (1973). In the distribution approach
one is treating integrated variables (such as droplet
number concentration and mean radius, etc.) which
have longer time scales than integrated number
concentrations over say a 1-um radius interval.

Since it is not possible at present to evaluate the
representativeness of a model by direct comparison
with nature, the author chose to assess the parameter-
ized scheme by comparison of solutions with more
conventional finite-difference microphysical solutions.
For this purpose the Clark (1973) microphysical model
will be used as a qualitative gauge of the representa-
tiveness of the parameterized solutions.

The gain in computational speed (crudely estimated
as 10 times faster than the Clark nucleation, condensa-
tion and evaporation calculations) and the gain in
computer storage (4 field arrays instead of the approxi-
mately 65 used for nuclei and droplets in the Clark
model) allowed a study on the effect of using low spatial
resolution in microphysical cloud models such as those
of Arnason and Greenfield (1972) and Clark (1973).
This is considered an important problem in the field of
cloud modelling because using the current numerical
techniques it appears to be quite impractical to resolve
the small spatial dimensions likely to exist in nucleation
zones as well as evaporation regions. Thus, it is im-
portant to understand the effects of using such poor
resolution as, say, 100 m grids on the prediction of
microphysical parameters before one can thoroughly
evaluate the results of such microphysical models. The
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results of this paper are considered encouraging to the
continued microphysical modelling of clouds.

2. Parcel theory application of cloud phase
parameterization

The main assumption in formulating the cloud phase
parameterization is that the spectra of droplets can be
described by the gamma distribution for all time and
space. The gamma distribution has three variable
parameters which allows time dependency (and space
dependency for the Eulerian case) for the number
concentration N of the droplets, their mean radius &,
and the spectrum width which is described by the
coefficient of dispersion u which is given as

u=(R/R*~1)% €Y

All other characteristics of the droplet spectrum can be
described in terms of these three parameters. The
distribution function is given as

NBere—t

Jon= exp(—r), ()

T{e)

where f(r)dr is the number of droplets cm™® between
radii r and r-dr, I is the gamma function, and N the
total number of droplets cm™3 between r=0 to r=c0.
The pth moment of the distribution is given by

— I
RP= _(_.i?L), (3)
T()p*
and
w=1/c. (4)

Levin (1958) has observed that the gamma distribution
gives a rather good fit to observed droplet spectra with
a ranging between 6 to 10. The procedure in this section
will be to let a range anywhere from 3 to 400 even
though values larger than 10 may not be found in
nature. The reason for letting « have such a wide range
is to show how accurately the parameterized solutions
for N, R, p, g. and .S compare with the solutions of a
high-radius-resolution, finite-difference model. The
problem of spectrum broadening of cloud droplets is
still one of the main unsolved problems of cloud physics
and will not be attempted in this paper. Thus, it is the
intent of this paper to solve the specified governing
equations (which do not predict broad spectra) as
accurately as possible in the framework of this
parameterization.

The equations governing the droplet distribution
moments are derived from the kinetic equation
(velocity divergence assumed zero in this section)

af i} dr
E(r>+a—r<f(r>z)=0, ®)
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Fic. 1. Lagrangian parcel solutions of S vs § for a constant ver-
tical velocity of 2 m sec™? and a maritime CCN distribution.

o) o

where £=0.98 (um)? sec™, ¢=0.115 um, and S is the
percent supersaturation. The equations governing the
first two moments of the droplet distribution are found
from (5) and (6) to be

where

dR - —_ _dlnN
—=k(SR1—eR?)—R X )
dt dt

d__ __  _—_dhN
—R?=2k(S—aR)—R? . (8)
di dt

Combination of (3), (7) and (8) result in

g 3kSp? SkaB* dInN
= - ﬁaﬂ ] (9)
dt al@—1) ale—1)(a—2) dt
de  4kSB? 6kaB® dInN
—_—= - —ala+1) (10)
dt (@—1) (@—1D@-2) at
‘Nucleation is treated by letting
N dn
—_— == (11)
dt dt

where 5 is the cumulative number of condensation
nuclei available for nucleation below the supersatura-
tion .S, and is a function of time in the sense that once a
certain number of nuclei have been activated, then
these nuclei are no longer available for future nucleation
-unless a nuclei source is considered. In later sections of
this paper, the spatial dependence of » will include the
fact that the critical supersaturation S, for a given salt
mass (NaCl assumed) is a function of the temperature;
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for non-Lagrangian calculations advection is also
considered.

In practice, the method of treating 7 is to let it equal
the total number of nuclei available for nucleation over
a wide range of supersaturation. In order to decide haw
many nuclei are actually available for nucleation below
a given S value a table is used which contains the
information on how large » should be for different S
values. In computing, this method involves one field
array 7 plus one table and is easiest to apply when
homogeneous initial conditions are assumed for the
nuclei. In the present section no temperature depen-
dence for S, has been considered.

Two cases for initial cumulative number distributions
n are treated ; for the first 5 is given by

7=2008°5, (12)

taken from Warner (1969), representing maritime
conditions, and for the other

7="200054, (13)

from Twomey (1959), representing continental condi-
tions. These distribution functions are good approxima-
tions to observational data only above a finite value
of S; and do not necessarily apply to large and giant
salt nuclei. In the present parameterization, no account
will be taken of salt mass in the droplet growth equa-
tion, so (12) and (13) will be used from S,=0 up to
whatever maximum value of S, that might occur in the
calculations. This approximation might be considered
equivalent to assuming there are very few large CCN:
To be consistent the same physical assumptions will be
applied to the more conventional Lagrangian model
which is used as a gauge of the accuracy of the parame-
terization scheme. As will be seen, due to the exclusion
of large and giant salt particles, the conventional
Lagrangian model required rather high radius resolution
in order to resolve the very narrow resulting spectra.
To complete the system of equations for the La-
grangian model, in which parcel ascent is considered,

1= 2000 54
W =2m/sec
{. diff.

- - L L S I —
Q 10 20 30 40 50 &0 70 80 90 100
TIME (sed)

F16, 2, As in Fig. 1 except for a continental CCN distribution,
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we have the equation for S (see, e.g., Fletcher, 1962),

ds
—=Tg—H:Cy, (14)
dt

where
Ts=Hyw, Hy=2.69X10*
} (15)
H,=0.059, m™, w= 2 m sec™?

were assumed. Cq is the condensation-evaporation rate
and is given by

dq.
Co=—,
dt

(16)

where ¢, is the cloud water mixing ratio. In terms of
the gamma distribution

471072 (1) (0+2) _
=— NE

qe 3, an

3 »

where p is the ambient air density, and NV is in cm™ and
R in MY,

In this parameterization formulation, the first and
second moments of the distribution are calculated
explicitly through (9) and (10), whereas the derived
third moment of the distribution ¢, is used for Cg
adjustments of water vapor, liquid water and tempera-
ture. Inaccuracies in determining g, are eliminated
through (14) because of the strong negative feedback
effect of the supersaturation field. Thus, this method
results in accurately predicting the four variables N, R,
R* R? within the constraining assumption that the
gamma distribution is obeyed.

7 =200 $¢
W=2m/sec
—— |, diff.
e~ param.

L i
140 160 180 200

1 ! L
0 20 40 60 80 100 120
TIME (e}

Fic. 3. Lagrangian parcel solution for B vs ¢ for a maritime
CCN distribution,
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Fic. 4. As in Fig. 3 except for a continental CCN distribution.

Initial conditions have to be specified before a solu-
tion can be obtained using this scheme. The following
initial conditions were arbitrarily chosen as

N=1cm3, R=0.6um, «=3. (18)

The scheme was tested against a finite-difference
model where 1000 radius increments of Ar=0.05 ym
each were considered. The formulation of this model is
straightforward and will not be described in detail in
this paper. A similar numerical formulation used by
Clark (1973) was applied except that instead of the
logarithmic radius increments used by Clark, equal
radius increments of 0.05 um from r=0.6 to 50 um were
employed in this section. Since the effects of salt mass
on the diffusional growth of droplets is ignored, it was
assumed that transfer occurs from the cumulative
number distribution of CCN to the smallest radius
value in the droplet domain.

Figs. 1 and 2 show a comparison between the parame-
terized solutions and the finite-difference solutions of .S
for the maritime and continental cases, respectively.
There is surprisingly good agreement between the
solutions, with the main difference being that the
parameterized solutions predicted the maximum values
of S to be ~59% smaller than the finite-difference
values. The reason for this slight difference is probably
due to the choice of initial conditions (18). The values
for N which were reached (and maintained constant)
after Smax was passed are shown in the figures for each
case. _

Figs. 3 and 4 show the comparisons for R, where once
again there is very good agreement. The comparisons
for g, are not shown but were found to be the most
accurately predicted variable by this parameterization
scheme.

Fig. 5 compares the parameterized and finite-
difference solutions for u. Here we see by far the largest
difference, although in the author’s opinion there is
still very good agreement considering two points. First,
we are comparing against an extremely highly resolved
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F1c. 5. Lagrangian parcel solutions for u vs ¢ for a maritime
CCN distribution.

finite-difference scheme. For example, it was found
that if 0.5 um radius grids were used for the finite-
difference scheme then u leveled off at approximately
0.05. Thus, it is important to remember that the
conventional finite-difference schemes require very high
resolution before one can realistically talk about pre-
dicting u according to the specified governing equations.
If one uses low resolution, in the radius domain, then
the truncation error essentlally determines u. Second,
there is a problem of specification of initial condltlons
for c.. If the initial minimal value of =3 was increased
to a somewhat higher value, say 4, then the two curves
would be in much better agreement. The reasoning
behind this point is that once nucleation is completed

[neglecting the curvature effect in (9) and (10)] then it

can be shown that u is inversely proportional to R2.
Therefore, increasing the initial value of o will have the
effect of shifting the parameterization solution of u
closer to the finite-difference solution. The indications
are that this proposed parameterization scheme solves
Eqgs. (5) and (6) very accurately when compared to a
highly resolved finite-difference scheme (say Ar=0.05
pm) under the specified physical assumptions.

The next sections will consider the extension of this
parameterization to an Eulerian formulation in which
the Lagrangian time derivative is replaced by a local
time derivative plus an advection term. The effect of
vertical resolution will then be studied in order to
ascertain the qualitative effect of using low spatial
resolution in a multi-spatial dimensioned, microphysical
cloud model when the nucleation region is poorly
resolved.

3. Eulerian formulation of the parameterized model
in a kinematical framework

The governing equations for the spectrum pa,rameters
are derived from the kinetic equation

af 7
;t—-}-V- (Vf>+a—r(f5)_ V-(KVf), (19)
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which has been generalized from (5) to include divergent
flow as well as an eddy mixing term. V-is the wind
velocity and K the eddy mixing coefficient which will
be assumed constant in this paper. The diffusional
growth rate for the droplets is given by

dr k a
i
dat r r

where S is the supersaturation, and & and ¢ are functions
of environmental pressure and temperature. For com-
parison purposes, the identical functional form is used
for k and a as used by Clark (1973).

Multiplying (19) by 1, r and #3, and integrating from
r=0to «, we obtain

(20)

oN :
;ﬂ-v- (VN)=C,+V-(KV-N), 21)

(NR)

+v- (VNR) NE(SR—aR~?)+V-(KNE),(22)

i)
gt'(ch)+V- (pVqo)=pCu+V- (KVpq.), (23)

where (21) represents the conservation of droplet num-
bers, (22) the equation for NR, and (23) the conserva-
tion of cloud water. C, represents the nuclei source-sink
term which depends on the supersaturation for the
production of droplets during condensation. During
evaporation, all droplets are assumed to go back into
nuclei once enough evaporation has occurred to reduce
g to the initial value assumed in (18). A similar
equation to (21) is assumed for the cumulative number
distribution of condensation nuclei 5, such that

0
£+V- (Vi) = —Cy+V-(KVy). (24)

Egs. (21) plus (24) guarantee exact conservation of the
total number of nuclei plus droplets in a closed domain.
It is more appropriate to advect B instead of NE in
a numerical model because B is less susceptible to
spatla.l truncation error than NE. The reason for this
is the spatial gradients of B are very much smaller in
magnitude than those of NR. In continental clouds the
ratio of these gradients could be as much as three orders
of magnitude. Combining (21) and (22), we arrive at

R o . —_— R
—+V-(VR)=RV-V+k(SR——aR™?) —Ec,,
at

1 R
+—V-(KVNR)——V-(KVN). (25)
N N

A prediction equation for R?%s not used because
once N, R and ¢, are defined at a point, R? is derived
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LAGRANGIAN F. DIFF,
P 2 12.5 m RESOLUTION EULERIAN PARAM,
=0 25.0 m RESOLUTION EULERIAN PARAM,
....... % 100. m RESOLUTION EULERIAN PARAM. B
= SR T
w |\ S T o
2501 =
2401 ° °
R 230~ u
§ 00 - .
Z 210+ =
200} _
190}~ _
1801 _
170 L L
100 150
8 .
E
2
[~°4
| 1
100 150 200
Z(m)

F16. 6. Solutions of S, N and R in a one-dimensional vertical column where the vertical mass flux of air is constant. Solutions
for steady state are shown for 100, 25 and 12.5 m vertical resolution using the parameterized model. The equivalent finite-

difference (radius domain) Lagrangian (in time) solutions are shown as solid lines.

through the gamma distribution. Actually, R? is never
explicitly used in the calculations. Tt was found more
convenient to use N, R, g., @ and 8.

As in the Clark (1973) model, the T's prediction is
taken from the equations for potential temperature and

as

al

30* V-(oV8%) LCq V-(pKV6*)

mixing ratio of water vapor. These equations are given

: , o)
P Cyl p

Unauthenticated | Downloaded 09/26/21 10:01 PM UTC



148

15 . T
A
R
J/
i
i gamma
param
10} ]
= i
@ i
< j
£
x J
o
E
RS 4
Ol vy i e e L
0 10 20 30 40

TIME (min)

Fre. 7. Maximum vertical velocity |®|mex vs ¢ for runs I
and IT from Clark (1973), and the present two-dimensional
parameterized solution.

dq, V-(pVq,) V- (0K Vq.,)
H H
1 = —LlaT .

at P P

@7

The saturation mixing ratio of water vapor, ¢,,, was
taken as

g =0s,(2) exp[(L/R,T)6*], (28)
and the supersaturation as .
S=[(g+/q.)—1)], (29)

where 6* is the ratio of the perturbation potential tem-
perature and the layer mean value ®, and 7 the en-
vironmental temperature.

The parameterization scheme will now be sum-
marized. First, we initialize N, E, g., 7, 6* and ¢,. The
next step is to advect and diffuse N, ¢, 1, R, 6* and ¢,
through Egs. (21), and (23) to (27), respectively. The
next step is to calculate a dynamic supersaturation
tendency Ts which is to be used for condensation-
evaporation and nucleation calculations. The parame-
ters o and B of the gamma distribution are also calcu-
lated using the new values of N, K and g.. Through
Egs. (9), (10), (11) and (14), the new values of R, N, n
and ¢. are calculated. The final step is to adjust 6* and
g, using Cy in (26) and (27), respectively. The finite-
difference methods used by Clark (1973) were used for
the treatment of the equations. This involves centered
time and space derivatives for ¢* and ¢,, and second-
order Crowley (1968) advection with forward time
steps for N, R, n and ¢.. The dynamic tendency term
T's for the supersaturation equation was determined as
the difference between the future S due to advection,
adiabatic cooling and diffusion and the advected past .S
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divided by the large dynamic time step. Small forward
time steps were used for the explicit treatment of the
condensation-evaporation and nucleation calculations.
H, was derived according to Clark (1973) so that we
are insured the large time step .S values and the short
time step S values are consistent at the proper time
levels. For further details about the numerical scheme
we refer the reader to Clark.

Some of the weaknesses and problems associated with
the proposed scheme will now be outlined.

1) As already mentioned, one of the problems still
troubling cloud physicists is how nature develops such
broad droplet spectra in the initial phases of convec-
tion. The equations outlined in this paper do not appear
to account for broad spectra and this leads to a technical
problem when treating the equations numerically.
Truncation error due to advection can produce un-
realizable spectra widths, i.e.,

4107 2N R > pg.; (30)

if we compare (17) and (30), values of <0 can result.
An adjustment scheme was implemented after each
advection calculation so that the minimum allowable
coefficient of dispersion p was arbitrarily set equal
to 0.05. This adjustment was carried out by decreasing
R (and when necessary also decreasing N) so that the
predicted value p was always greater than 0.05 after
advection. Once the physics for droplet spectrum
broadening is well understood, it is hoped that the
physics can be included in the parameterization so that
the above-mentioned weakness will be considerably
reduced.

2) During nucleation, spectral broadening can occur
to the point where a becomes too small. Since Egs. (9)
and (10) become indeterminate at a=2, nucleation was
not allowed to broaden the spectrum beyond the
arbitrary value of a=3. Once salt mass effects are
included in the gamma parameterization, this problem
will most likely be resolved.

3) Spatial truncation error can_and does lead to
meaningléss predictions for NV, 5, R and ¢, unless one
chooses to use highly diffusive differencing schemes such
as upstream differencing. Negative values for N, 9, I
and g, occur notably near cloud boundaries where the
gradients of these variables are very large. A conserva-
tive hole filling scheme, as employed by Clark (1973),
was used to correct for these deficiencies. The author
doubts that two- and, especially, three-dimensional
cloud models will be able to adequately resolve the
gradients in N, 5 and ¢, near cloud boundaries for
decades to come. Five to ten meter spatial grid resolu-
tion would probably be necessary to accurately model
the strong gradients mentioned. This is completely im-
practical on even the most advanced computers of the
day when considering the modelling of even a relatively
small cumulus cloud. Thus, the above-mentioned weak-
ness is not a weakness particular to this cloud model but
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F1c. 8. Comparison of condensation-evaporation rates for run II of Clark (1973) and the present two-dimensional
parameterized solution. Contour interval is 5)X 1076 sec™?. Negative regions are shown by shading,.

a weakness of all present day microphysical cloud
models (for two or three spatial dimensions) and we
must learn to deal with the problem.

4) One of the main weaknesses of the parameteriza-
tion is that a single gamma distribution was assumed.
This led to the explicit treatment of NV, R and ¢, during
advection whereas during condensation-evaporation the
explicit treatment of &, B and R? was considered. As
previously mentioned, g. is accurately treated during
condensation-evaporation because of the strong nega-
tive feedback effect of S. Therefore, during advection
and diffusion we are heavily relying on the assumption
of the gamma distribution holding, from which we
derive the prediction of R%. Mathematically, such a
scheme can probably not be justified, but on the other
hand, as will be seen, the qualitative as well as quantita-
tive results obtained by using the scheme appear to be
at least as acceptable as those obtained for the explicit

treatment of 20~40 droplet category number concentra-
tions where truncation error in the radius domain can
be rather large. This deficiency could possibly be
corrected by considering more than one gamma distri-
bution so that the number of degrees of freedom is
increased. Of course, the author recognizes that the real
advantage of using a Jarge number of droplet category
number concentrations lies in the fact that this type of
model has a much better chance of simulating nature
as the model’s resolution is increased.

4. Effect of spatial resolution and convergence of
the solution for a one-dimensional kinematical
model

A one-dimensional vertical column is considered
where the half-width of the column is kept constant at
100 m. The vertical height considered is 5 km with
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Fic. 9. As in Fig. 8 except for & fields with a contour interval of 2 ym.

inflow occurring into the column from the sides in the
first 100 m of height and outflow occurring from the
sides in the last 100 m. The mass flux in the column was
kept constant with height by letting

(31)

The initial conditions for #* and ¢, were taken as
identical to those used by Clark. This gives the first
1 km of height as a neutrally stable layer with the
relative humidity ranging from 689, at the ground
to 879, at the 1-km level. The next 3 km was taken as
a conditionally unstable layer to moist convection with
a constant potential temperature lapse rate of 3.3C
km™. The relative humidity ranged linearily from 879,
at the 1-km level to 809, at the 2-km level, after which
it remained constant at 80% up to the 4-km level. From
4 to 5 km the layer was assumed isothermal with the
relative humidity varying from 80%, to 409,. The initial
nuclei distribution was adapted from Warner (1969)

pw=5X102m gm cm™® sec™™.

and was represented by
7 =200(T /273)1-550-5, (32)

The assumed temperature dependence in (32) was
chosen primarily because it gave a reasonably good fit
to the vertical variation of 7 used by Clark (1973).
The initial conditions as specified by (18) were used
for N, R and a. '

This numerical framework will be used to study the
steady-state solutions for N, R and S which will then
be compared with an equivalent Lagrangian finite-
difference model for the first 200 m above cloud base.
Cloud base was approximately at the 825 m level. From
this comparison we can deduce some of the qualitative
effects of low spatial resolution on the predictions of
the microphysical parameters. Three Eulerian type
calculations were performed with 100, 25 and 12.5 m ver-
tical grids using the parameterized cloud phase model.
Also considered is a finite-difference Lagrangian model
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F1c. 10. As in Fig. 8 except for S fields with a contour interval of 0.2%.

where 100 droplet categories were considered with
0.5 pum radius grid resolution assumed. The reason for
the choice of 0.5 um radius increments was to make the
finite-difference minimum values of u approximately
correspond to the arbitrary cutoff value of 4=0.05 used
for the parameterized model. Adiabatic expansion,
changes with height above cloud base of vertical
velocity, as well as the thermodynamic variables, were
made to correspond as closely as possible to the Eulerian
model. The main difference in physical assumptions
between the two models is that the Eulerian model has
vertical mixing explicitly modelled whereas the
Lagrangian model has none. The explicit diffusion was
modelled with an eddy coefficient of 50, 12.5 and 6.25
m? sec™ for the 100, 25 and 12.5 m resolution cases,
respectively.

Fig. 6 shows a comparison of the steady-state solu-
tions for the three Eulerian cases and the one

Lagrangian case for S, N and R. The steady-state

solutions for the Eulerian case appear to be converging
to the Lagrangian parcel theory solution. One main
effect of low spatial resolution is to cause under-prediction
of the droplet concentration, i.e., the nucleation region is
spread out in the vertical which causes S values to be
too low, which in turn causes NV to be too small, and
future values of B to be too large. It is indeed en-
couraging that even though the 100 m resolution model
does not adequately resolve the nucleation region
(~350 m thick) the solution is not completely destroyed.

Some possible approaches with regard to combating
the problem of low spatial resolution in a microphysical
cloud model of this type come to mind. The first is to
bias the initial nuclei conditions toward continental
conditions in order to make up for the effects of low
spatial resolution. A second approach might be to
consider a mixed FEulerian-Lagrangian model. This
appears to be a challenging and possibly important
problem in the field of cloud modelling.
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5. Application of the paraméterized scheme in a
fully time-dependent cloud model

Clark (1973) presented a two-dimensional micro-
physical cumulus model in which one example (run II)
was presented where only nucleation and condensation-
evaporation theories were modelled. In his model he had
37 droplet-raindrop categories with radii ranging from
0.6 to 2314 um. Also, there were 40 nuclei categories
which were used to represent the physics of nucleation.
The spatial grid resolution was 100 m with 50 vertical
and 150 horizontal grids. The same example will now be
presented except that the finite-difference microphysics
package is replaced with the parameterized micro-
physics described in this paper. This run used the
adaption of Warner’s (1969) nuclei distribution as
given by (32). ..

The convection was initiated by a warm bubble in
the 1-km neutral layer as was the case in run II. There
is one small difference in the formulation of the dy-

namics between run II and the present case. Between
the time run II was performed and the present calcula-
tions, the Clark model had been generalized to allow for
nonlinear eddy coefficients (Smagorinsky, 1963) so that
the diffusion terms for momentum are slightly different. -
In the present model the momentum equations are
given by

d 3 9
—(ow)= -+ - +—(pKG)+—(pKD), (33)
at 9z ox
d 4 i}
—(pu) =+ +—(pKD)=—(KG),  (3%)
ai dz ox
where
' ow du
D=—tf—, (33)
dx 0z
dw Jdu
G=———. (36)
0z Oox
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The present formulation is taken from Lilly (1962) and
reduces to exactly the same form as used by Clark when
the velocity divergence is set equal to zero in these
models. The difference in the momentum diffusion
formulation appears to have caused some slight
differences in the resulting flow. The maximum values
of the streamfunction at the latter times of the models
integration were slightly larger for run II than for the
present case. The differences were so slight that the
author did not consider it worthwhile to change the
model’s formulation back to its previous form in order
to run this comparison experiment. '

Fig. 7 shows a comparison between the maximum
vertical velocity for runs I and II of Clark (1973) and
the present case. Run I was an experiment where no
microphysics had been included, ie.,, R.H.=1009%
during condensation, with instantaneous evaporation
if R.H.<100%. The present case and run 1I are almost
identical whereas the deviations between runs I and II
are much larger.

Figs. 8, 9, 10 and 11 display field comparisons
between run II and the present case for the Cq, I, S
and N fields. Two time levels are shown, the latest
time of which (4=30.3 min) represents the time level
at which run II was terminated. The parameterized Ca
fields fall approximately halfway between runs I and 1
(only run II Cy is shown) in regions of evaporation. One
possible reason for this is that the parameterized
evaporation calculations did not consider accomodation
coefficient effects which result in larger evaporation
rates for the parameterized model. Also, differences in
implicit diffusion of ¢, in the evaporation regions may
account for the differences in Cy between the micro-
physical and parameterized model.

The R fields (Fig. 9) compare very well qualitatively
but there are quantitative differences. The E values are
slightly higher for the parameterized model, most
likely because the parameterized model predicted higher
N values. Since ¢, values were very similar, positive
differences in N result in negative differences in B. An-
other contributing factor to the difference between 2
plots is that the spectra widths in run II were typically
larger than in the present case. In run II, 4 was always
larger than 0.2 whereas in the present case y attained
minimum values of 0.05 (which was the arbitrary lower
limit imposed). The large values of u predicted by run
11, although reasonably realistic, were most likely in-
fluenced by truncation error. Unfortunately, this is one
parameter which the conventional microphysical models
do not seem to be able to even qualitatively predict due
to their rather low spatial resolution. At any rate, a
narrower spectrum results in a slightly larger value of
R for a given g,

The S field comparisons in Fig. 10 clearly show the
tendency for the parameterized model to have lower
values of S resulting in a more maritime cloud character,
since the same aerosol distribution was assumed for
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both runs. The neglect of accomodation coefficient
effects in the parameterized model was probably the
main reason for the differences in maximum S values
during nucleation. At the time of these numerical ex-
periments the author did not know of a simple method
of including such effects using only a single gamma dis-
tribution. Recently, it has been found possible to include
such effects (using a single gamma distribution) and this
method will be described in the future. The parameter-
ized mode! can be seen to have had the effect of confining
the nucleation region to one grid point. As will be seen in
a later figure, the Smax oscillations still persist.

The N fields (Fig. 11) also compare relatively well
except that as before the parameterized model is more
maritime in character.

Fig. 12 shows Smax vs ¢ for run IT and the present case.
The parameterized model has lower Suax values by
~0.5%. The oscillations still persist in the present case
and are attributed to low spatial resolution. These
oscillations occur in the nucleation regions of the
modelled clouds.

Thus, a comparison of the two-dimensional cloud
model results suggest that most of the differences may
be due to the fact that accommodation coefficient effects
were considered in Clark (1973) but were neglected in
the present parameterized model. This is probably why
the present fields are more maritime in character than
run II of Clark (1973).

6. Conclusions

The parameterization of the cloud phase was success-
fully applied to three cloud model calculations. The
scheme was tested in a Lagrangian bubble calculation,
a one-dimensional Eulerian calculation, and a two-
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dimensional Eulerian calculation. In each of the above
cases, the parameterized solution was compared with
an equivalent finite-difference type microphysical
calculation where a specified number of radius categories
was used to describe the droplet spectra.

The Lagrangian bubble application of the parameter-
ization gave very accurate results for S, N, B and p.
In the one-dimensional Eulerian calculation, it was
shown that the effect of poor spatial resolution (for the
parameterized model) in regions of nucleation is to make
the microphysical solutions more maritime in character,
i.e., lower IV values with lower spatial resolution,

The two-dimensional Eulerian finite-difference calcu-
lations of Clark (1973) were rerun using the parameter-
ized model. Qualitatively, as well as quantitatively, the
solutions of IV, B and S compare very accurately. One
difference between the two solutions was that the
nucleation region spread out with higher Si.x values for
the finite-difference approach. Treatment of a single
distribution function (gamma) for the cloud droplets
resulted in sharper gradients of V and R for the parame-
terized model. This had the effect of confining the
nucleation region to a single grid point in the vertical.
This is considered an advantage of the gamma distribu-
tion approach because the vertical dimensions of the
nucleation region are likely to be smaller than a single
grid point (100 m).

The results of this paper are encouraging to the
continued microphysical modelling of clouds because it
has been shown that poor resolution of nucleation
regions appears to have only a slight quantitative effect
on the prediction of the microphysical variables. For
example, the difference between N predictions using
100 m vertical grids was only 159, lower than the
12.5 m vertical grid case for a one-dimensional calcula-
tion presented.

APPENDIX

Truncation Errors in Microphysical Eulerian Cloud
Models Associated with Condensation Theory

Microphysical cloud models which treat the dynamics
a$ well as the microphysics of condensation in Eulerian
formulation will be affected by truncation errors in the
time, radius and spatial dimensions. A simple example
will be considered in order to estimate the radius and
spatial resolutions required to accurately represent the
analytical equations in second-order finite difference
formulation.

The steady-state equation

af 9 /dr
w—+—<— f>=0
0z 9dr\di

(A1)

describes a balance between advection and diffusional
growth for the droplet density function f. This type of
steady-state assumption for f might be a reasonable
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approximation for a cloud edge evaporation region or
for a cloud base region where we are considering sizes
of droplets considerably larger than the radii of any
freshly activated nuclei. The vertical air velocity w will
be assumed constant and the diffusional growth rate
dr/dt of a droplet of radius r will be taken as

dr kS
;= —=Vr=constant, (A2)
t

where R is the mean radius, S the percent super-
saturation and k=1 (um)? sec™'. Eq. (A1) now reduces
to the linear form

of af
w—+VE—=0.
dz r

(A3)

The second-order finite-difference approximation of
(A3) is taken as
(ZU/ZAZ)U(T, Z+AZ) _f(r) Z—AZ)]
+ (VR/ZAr)[f(r+A77 Z)—f(f—A?’, Z):|=0,
where Az and Ar are the grid increments in the spatial

and radius dimensions, respectively. Expanding terms
in a Taylor’s series we have

[f(r, z4-Az)— f(r, 2—Az]/(2Az2)

af Az 9%f
=4 O, (AS)
dz 6 9z

(A4)

L/(r+Ar, 5)— f(r—Ar, 2) 1/ (247)

of Ar?9d
_—__f+_f__J_(+0(Ar4)_
dr 6 ord

(A6)

In order for (A4) to be an accurate approximation
of (A3), we require

Az? 93 )

A [P a7
6 9s° 0z

Ar? 33 )

A 1. 48)
6 673| L Or

Also, a practical requirement is that
RE 3 f
‘wAz2—{ ~ | VEAr*—i, (A9)

923 ard

so that we have similar accuracy in both dimensions.
The density furiction will be assumed to take the form

f=N(\/2Tm)_—1 exp[—(r—R)¥/2¢*],  (A10)

where ¢? is the variance, V the total number of particles
between r=0 to 4w (it is being assumed then that
R>>0), R the mean radius, and o/R the coefficient of
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dispersion . From (A2) and (A3) we have

which with (A10) will allow an estimation of the magni-
tudes of the various derivatives in (A7)-(A9).

The assumption is now made that, in order to
predict u, (A4) should be accurate at r=R-4-¢. This
reduces (A7)-(A9) to

(Ar/R)2<<3u2, (A12)
Az~ ArRw/ (kS), (A13)

where (A10) and (A11) have been applied. Eqs. (A12)
and (A13) can be used to estimate the radius resolution
required to accurately represent diffusion growth at
r=R4-¢ and the spatial resolution required to maintain
the same degree of accuracy, respectively. For the
simplified case, it is apparent from (A12) and (A13)
that the accuracy of the solutions to (A3) depend on
both spatial and radius domain resolution. This point
should be considered by modellers when they are increasing
the number of spectral categories in their cloud model in
order to better represent the evolution of the droplet
spectrum.

Of course, no account was taken in this Appendix of
how large (or small) g should actually be as a result of
the prediction equations. If microphysical modellers use
the “proper” equations which actually simulate nature,
then u should be equal to observed values. At the same
time, there is still likely to be a strong balance between
advection and diffusional growth so that (A12) and
(A13) can be used to determine whether truncation
error had a strong effect on determining u or whether it
was actually determined by the specified equations,
initial conditions and boundary conditions imposed.

Consider the resolution which might be required at
about 50-100 m above cloud base: R=5 um and p=0.2
would require [from (A12)] Ar<1.7 um. Say we let
Ar=0.3 um, then with $§=0.5%, and w=2 m sec?, we
would require [from (A13)] Az=6 m. Even the pre-
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sently published one-dimensional models are far from
having this high a resolution. Evaporation region
calculations could require even higher spatial resolution
because the absolute value of S could be much larger.
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