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ABSTRACT

New formulas for the backscattered fraction in two-stream theory are derived. They express this fraction,
for either isotropically or monodirectionally incident radiation, as a single integral over the scattering phase
function, thereby effecting a substantial simplification over the customary multiple-integral definitions.
From these formulas the globally averaged backscatter of the earth due to typical aerosols is shown to de-
pend primarily on the forward part (0° to 90°) of the scattering phase function, where the disagreement be-
tween spherical- and nonspherical-particle scattering is smallest. The new formulas also lead to connections,
in terms of standard elliptic integrals, between the backscatter and the phase function asymmetry factor;
while rigorously correct only for the Henyey-Greenstein phase function, these relations are shown to be re-
markably accurate for all spherical-particle phase functions. The detailed relationship between backscatter
and asymmetry factor is shown to be multi-valued ; thus two-stream and Eddington approximations cannot
be uniquely related.

The common approximation of the globally averaged backscatter, or Bond albedo, by the backscatter for
radiation incident at solar zenith angles of 0° or 60° is shown to lead, for a wide range of particle sizes and
optical properties, to systematic and often large underestimates. The solar-spectrum-integrated enhancement
of the Bond albedo due to a uniform, optically thin aerosol layer is examined, holding the total mass of aero-
sol fixed and varying the particle radii and optical properties over wide ranges. The particle radius at which
maximum albedo enhancement occurs decreases from 0.3 um down to about 0.08 um as the particle absorptiv-
ity increases. Also, increasing the absorption of particles smaller than 0.1 ym actually raises the albedo in
contrast to the usual situation where absorption suppresses backscattering.

ized to unity:
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1. Introduction

The azimuthally integrated, plane-parallel, radiative
transfer equation has the following form for wave-
lengths in the solar spectrum:
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Here 7 is the azimuthally averaged diffuse intensity,
u the cosine of the angle measured from the downward
normal, 7 the optical depth, «» the single-scattering
albedo and ug the cosine of the zenith angle at which the
monodirectional flux S, is incident (at r=0). The
azimuthally integrated phase function P is
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where P is the usual scattering phase function, normal-

1 The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

1 L4
E / P(cosh) sinf do=1, (3a)
0

1 1
~ [ Plwrii-. (3b)
2/4
Eqgs. (3a) and (3b) are equivalent.

The Schuster-Schwarzschild two-stream (SSTS)
approximation assumes / to be hemispherically iso-
tropic, i.e.,
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which leads, after integration of Eq. (1) over p €[0,1]
and p &[—1,0], to
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lengths in the solar spectrum:
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monodirectional flux S, is incident (at 7=0). The andu €[-1,0], to

azimuthally integrated phase function P is

1dr+ .

iy - — == (1—)* I+~ 1)

PGuy== [ Plut+ Gt costris, @ 2 dr S

T ‘ wog
’ : . +—1—B (o) Je= /0, (42)

where P is the usual scattering phase function, normal- 2w

—_— 141—

! The National Center for Atmospheric Research is sponsored — ——= (1~—u)[~—wp([+—~]")—— 7luo, (4b
by the National Science Foundation. ponsor 2 dr (1=a) wp( ! ) ﬁ(m)e— )

Unauthenticated | Downloaded 12/01/21 09:19 AM UTC



DECEMBER 1976 w. J.

where 81s the backscattered fraction for monodirectional
radiation incident at zenith angle fo=cos™u,

1
8 (ue)=- f P, u)di, )
2J/o

and § is the backscattered fraction for isotropically
incident radiation,

B= / B)du. ©)

Coakley and Chylek (1975) give a fuller discussion. §
is, of course, related to the spherical or Bond albedo
of a planet illuminated by monodirectional radiation.
Note that 8 and B{u,) are, respectively, triple and
double integrals over the scattering phase function P.
Below we shall reduce them both to single integrals.

A second two-stream approximation, based on the
discrete ordinate method (Chandrasekhar, 1960; Liou,
1973), leads to a backscattered fraction of

Be=3P(1/¥3, —1/V3)

(cf. Lyzenga, 1973). This has been used in applications
primarily in the modified form of Sagan and Pollack
(1967), who assumed

where g is the phase function asymmetry factor
1 x
EE / cosfP(cosh) sindds. ®8)
1]

The Sagan-Pollack two-stream equations are similar
to Egs. (4a,b), except that a mean angle cosine of
1/V3 is used on the left-hand sides in place of %, and
2(1—g) replaces B. Since a formulation of the SSTS
approximation in terms of g may be advantageous in
some circumstances, and for other reasons as well, the
relation between B and g is explored below in some
detail.

For a scattering layer of optical thickness A7<<1—for
example for a typical stratospheric aerosol—the albedo
for monodirectionally incident radiation is

At
R(u) =0 (u)—, ©)

"
and for isotropically incident radiation
R=2uBAr (10)

which is also the Bond albedo. Egs. (9) and (10)
proceed rigorously from Eq. (1) in the limit 7— 0
(Coakley and Chylek, 1975). Since

R(3)=2uB(3)AT,

the genesis of the “60° mean zenith angle approxi-
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mation,” in which R(3) is used for B or 8(3) is used
for B, is apparent. We evaluate this approximation
below, as well as the equally common substitution (at
least in climate modeling) of 8(1) for 8. _

All of the quantities 8(uo), B, B¢, R(ug) and R defined
above have at one time or another been called the
“backscatter.” Such a multiplicity of definitions is
likely to leave the casual user of two-stream approxi-
mations somewhat confused, and this confusion can
only be abetted by theoretical papers which do not
define “backscatter’” in precise mathematical terms.
The situation has been further worsened by the fre-
quently cited paper of Irvine (1968), in which (1) is
mistakenly used in the SSTS approximation, although
Irvine was merely propagating an error committed
originally by Chu and Churchill (1955). In Table 1 we
have indicated a number of papers, dating back to
1921, which have employed two-stream approximations
in meteorological applications. In each case the particu-
lar “backscatter” used, and where feasible a value or

"range of values, is given. The diversity of definitions of

“backscatter” is apparent, although actual values tend
to be concentrated in the range 0.1-0.2. Table 1 also
shows an excessive reliance on Mie calculations, oc-
casioned by the dearth of actual measurements of
scattering phase functions and backscattering. Finally,
it shows a resurgence of interest in two-stream methods
in the last decade, stemming primarily from a need for
simple analytic estimates of aerosol effects on the
radiation budget. One such study (for stratospheric
aerosols) led to the results in this paper.

2. Formula for 8 and discussion

If we expand the phase function in Legendre poly-
nomials P, viz.

P(l‘)= éwnPﬂ(ﬂ)y

then the addition theorem for spherical harmonics and
Eq. (2) lead to

Pun) =§0 wnPa () Pa(i). (1)

Because of Eq. (3a), wo=1. Using Eq. (11) in Eqgs. (5)
and (6) and switching sum and integration give

1

P 1
=15 on f Pl f Po(—u)ii.
n=0 0 0

The second integral, according to the relation Pn(—pg)
= (—1)"P,(u), is proportional to the first one, and
the first integral is given in standard references, which

leads to
1 1 » [Tim+HP
- 2 [ :lw2m+1c
2 8xm=0LT(m+2)

B= (12
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TasLe 1. Meteorological chronology of the use of the “backscatter” concept.
Author(s) “Backscatter” Source
Mecke (1921) B(1)=0.0725 Geometric optics
* calculation, water drop
Dietzius (1922) B(6) for 9=0°, 10° - Same as Mecke (1921)
., 90°; B=8(67°) .
=0.195
Albrecht (1933) 1B(n) +wiB (1= Dietzius (1922)
direct fraction, we -
=diffuse _fraction)
Hewson (1943) B=pB(67°)=0.195 Dietzius (1922)
Roach (1961) Average 8(u)=0.0625 Field measurement
(lowest 1000 ft)
Robinson (1963) B(x) for x=0.2, Deduced from Waldram’s
: 03,...,10 phase function mea-
surements
Lettau and Lettau (1969) tspace Estimated from measure-
B= ments for entire
0.05-0.2 [ground atmospheric column
Charlson and Pilat (1969) 8(1)=0.1 Deduced from Bullrich’s
phase functions
Atwater (1970) 1 Lettau and Lettau (1969)
Rasool and Schneider B8.=0.18 Sagan-Pollack approxima-
(1971) tion, using Mie theory
for g at A=0.55 um
Ensor ¢! al. (1971) B(1) (as “efficiency Mie theory
factor”; no values
given)
Barrett (1971) B(1)=0.175 Mie theory
Mitchell (1971) R(u)=0-0.02 Assumed range
Schneider (1971) R(p)=0.01—0.10 Assumed range
Neumann and Cohen (1972) R(p)=0—0.20 Assumed range
Sellers (1973) 0.18 clear Sagan-Pollack approxima-
: Be= { tion (values refer to
0.08 cloudy entire atmospheric
column) |
Chylek and Coakley (1974) B=0.1 Assumed
Charlson et al. (1974) 8(1)=0.1—-0.2 Nephelometer measure-
: ment
Cadle and Grams (1975) B, 8(3), B(1) (as Mie theory
“efficiency factors”)
Russell and Grams (1975) B(1) (no values given) Mie theory
Chylek et al. (1975) B8(1) (as “efficiency Mie theory
factor”) and R(1)
for whole solar
spectrum .
Joseph and Wolfson (1975) Bw) Robinson (1963)
But since the expansion coefficients w, are given by again switch sum and integration to yield
! Tl S(w)P(u)d (14)
ALY
=3(@2n+1) | P(u)Pa(u)du, (13) 2 4/
-1 where . ( )
2
' . S 2mr)~ (2m+ )[ ] ami1 (1)
we may substitute this expression into Eq. (12) and ()= (2m) Z ? T (m+2) "
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From Mangulis (1965, p. 125), this last series has a
closed-form sum,

2
S(u)=1——cos™,
T
which, when inserted back into Eq. (14), leads to

B= (2m) / cos P (u)du (15a)

-1

= (2r)! / " 6P (cosf) sinbde. (15b)

The phase function normalization condition (3a) has
been used to simplify this result. Eq. (15) gives a simple
representation of 8 as a single integral over the phase
function.

The derivative of the integrand in the form (15a) is
infinite at u=--1, hence the form (15b) is preferable
if numerical quadrature is to be used to compute 3.
This is because standard quadrature rules, being
adapted to polynomials, are very inaccurate when
applied to functions with cusps (see, e.g., Davis and
Rabinowitz, 1967).

Hansen (1969) has shown that the Henyey—Green-
stein phase function

1—g%
(+g—2gu)?
(where g is the asymmetry factor) can be used to
replace the more realistic Mie phase functions in
multiple scattering calculations, with no more than a

few percent error in computed fluxes. For P= Pgg,
Eq. (15) leads to

Pre(p)= (16)

Bra= (17)

gg[§<1+g}x<g2)—1],

where K is the complete elliptic integral of the first
kind:

=2
K(g»)= / (1—g?sin9)—¥d6.
0

Plots of Sug will be given in Fig. 3 and again in Section
4. where Bug is shown to be an excellent approximation
to the value of 3 for spherical particles.

We note from Eq. (15) that the full angular range
of the phase function, 0° to 180° contributes to S.
This is in sharp contrast to 8(1), which has been used
in some meteorological applications (see Table 1) and
which is merely the integral of the phase function from
90° to 180° [see Eq. (23)]. We have found that across
most of the solar spectrum, phase function values
between 0° and 90° contribute at least 709, of the
entire value of B. This is extremely important vis 4 vis
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the effects of non-sphericity on #, for experiments
(Holland and Gagne, 1970; Chylek et al., 1976) indicate
that the primary differences between Mie phase func-
tions and measured ones for non-spherical aerosols are
in the range 90° to 180°. Our result shows that these
differences have reduced leverage to alter B, since at
most 309, of B is associated with the 90° to 180° range
of angles. Thus the effect of non-sphericity on the
globally averaged backscattering, as represented by £,
may not be nearly as large as some have thought.

In order to illustrate the point discussed in the
preceding paragraph, we have plotted in Fig. 1 the
integrand [0 sinfP(cos)] of Eq. (15) versus 6, for
several phase functions P(cosf). The total area under
each curve is proportional to 8, and in each case we
have indicated the fraction of that area associated with
the 0°-90° and 90°-180° angular ranges. Figs. 1a and
1b refer to Henyey-Greenstein phase functions (16)
with g=0.7 and g=0.9, respectively. (These particular
values of g fairly well delimit the variation for aerosols
and clouds.) Note that the forward hemisphere of the
phase function accounts for 749, and 85%, respectively,
of the value of 8 in these two cases. Figs. 1c and 1d
refer to Mie theory phase functions at a wavelength
of 0.5 um for ensembles of scattering particles with
power-law size distributions 7 () <7 (Junge, 1963).
Integrals were calculated over the particle-radius
interval from 0.01 to 10 um for a=4 in Fig. 1c and
a=12 in Fig. 1d for a refractive index of 1.5—0.02i.
These particular specifications are not unrepresentative
of some atmospheric aerosols, and they give values of g
roughly the same as for the two Henyey-Greenstein
cases (Figs. la and 1b). The forward hemisphere of
the phase function accounts for 719, and 729, respec-
tively, of the value of 8 in Figs. 1¢ and 1d. These
percentages are smaller than in the corresponding
Henyey—Greenstein cases, and furthermore do not
increase significantly as g increases. This is because
Mie theory phase functions are not monotonic like
Henyey-Greenstein ones but have secondary peaks in
the 90°-180° region, which are visible in Figs. 1c and
1d; and also because Mie theory phase functions have a
larger percentage of their area associated with very
small angles where the factor 6sinf substantially
reduces the integrand.

3. Formula for 3(u) and discussion

We proceed as we did for B, replacing P in Eq. (5)
by its Legendre polynomial expansion (11), switching
sum and integral, and using the same Legendre poly-
nomial integral as before to yield the series expansion

I‘(m—l-%)

6(#) w2M1P9m+1 (p)
T (m+2)

i1
—— % (-
2

1r‘} m=0

If we now insert the definition (13) of the expansion
coefficient wy, and again switch sum and integral, we
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Fic. 1. Plots of 8 sinf P(cosf) versus 6 for various phase functions P(cosf). Fractions of the
area under each curve due to §&{0°, 90° ] and 9E[90°, 180°] are indicated. Cases (a) and (b)
are for Henyey—-Greenstein phase functions with g=0.7 and g=0.9. Cases (c) and (d) are for
Mie theory phase functions at 0.5 um wavelength, 1.5-0.02¢ index of refraction, and r* and
r~2 size distributions for the radius interval 0.01 um <7 <10 um.

arrive at {1 _
B = / A@aPGHI,  (18)
where -
1 »
A(u,#')—=——% Z=0 (=) (2m+-3)
I'(m+3)
X———Pomi1 () Pomi1(u’). (19)
T'(m+2)

When confronted with a product of Legendre poly-
nomials with different arguments, such as in the last
sum, it is often helpful to use an addition theorem to
replace the product by a single Legendre polynomial
with a more complex argument. The following such
relation proves useful in the present case:

Pn(#)Pn(ﬂ’)

=g / Polup'+ (1 —p2)} (1 —p")? cosg Jd¢.
0

Putting this into Eq. (19) leads to

A (pu")
=t / L'+ (1=} (1—p)? coss1dg,  (20)
where
IR tremt :
Q(#)=;£ﬂ ~1) , " zm 2mt1\M)

From Mangulis (1965, p. 125), Q(u) is simply a step
function,
—1,

+1,

Thus the integral over Q in Eq. (20) is trivial. The
only complication is that the step, which occurs when
the argument of ( vanishes,

—1<pg0

Q(”)={ 0<u<l.

cosf cosf’-+sind sind’ cospo=0
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Fic. 2. The -9’ plane; the stippled region satisfies condition
(21). In the other two regions the argument of Q in Eq. (20) is
strictly positive or strictly negative for ¢ [0,7 ] as indicated.

or
¢o=cos!(—ctnf ctnf’) =1 —cos~1(ctnd ctnd’)

will only occur for ¢,&[0,7] (the integration interval) if
—1<ctnf ctnd’< 1. (21)

The region of the -6’ plane for which this condition
is satisfied is stippled in Fig. 2. It is bounded by the
three straight lines §=7/2, #/=7/2—0 and 6¢'=7/2+6;
within it Eq. (20) becomes

1] T
Aup)=7"1 { / (+dot+ | (— 1)d¢} =2 ¢o—1.
[1]

$0

Outside the stippled region, Q in Eq. (20) is always
either +1 or —1 (for the left-most or right-most
regions, respectively, in Fig. 2), so that A is also either
+1 or —1, independent of # and 6. Summing up,
we have

(+1, 0<o'<~——0

2

T T
A (uuy=1<1-27"1 cos~(ctnd ctnf’), —2-—0< o <E+0

_1’

w
| —2-+0<0'S1r

From this equation and Eq. (3a), Eq. (18) becomes

T [2+6
Bu)=(2mr)? / cos~(ctnf ctnd’) P (cosd’) sind’dg’

)20
1 *
+- P(cos@’) sinf’dp’.
w248 .

(22)

This gives B(u) as single integrals over the phase
function.

While at first we thought Eq. (22) was new, not
having seen it in any of the more recent literature, the
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historical survey for Table 1 revealed that Dietzius
(1922) gave Eq. (22) to within a constant factor. He
gave no derivation, but J. A. Coakley (private communi-
cation) has shown that Eq. (22) follows from purely
geometrical reasoning about the backscattering, which
is probably how Dietzius got it. Nevertheless, our
purely analytic derivation is new, and indeed becomes,
to the best of our knowledge, the only extant derivation
of Eq. (22) in the literature.

Note that the backscattered fraction for mono-
directional radiation incident from directly overhead
follows easily from Eq. (22), and is

1 T
B(1)=- / P(cosf) sinfdé. (23)
2 /2

We can also calculate the backscattered fraction for
grazing illumination, §(0)=3%, from Eq. (22). The
isotropic scattering limit, 8(u)= %, is obtained straight-
forwardly from Eq. (5).

Eq. (22) presents the same problem with respect to
numerical integration that Eq. (15a) for 8 did, namely
the integrand in the first term has cusps at the endpoints
of the interval of integration. However, by making the
change of variable

¢=cos~Y{ctnf ctnd’),

Eq. (22) becomes

{=r
Bu)=(2m)™! EPLus(§) L —ue(®)]
§=0 —sinf
+£ PQdu', (24)
where -
O
HovI= (cosx+ ctn20)%.
HENYEY ~GREENSTEIN
0.5 T T T T T T

0.4

0.3

0.2

BACKSCATTERED FRACTION

0.l

0 0.2 04 0.6 0.8 1.0
ASYMMETRY FACTOR, g

F1c. 3. Backscattered fractions B and 8(u) for the Henyey—
Greenstein phase function versus the asymmetry factor g for a
range of values of u.
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The integrands in Eq. (24) have no cusps or other bad
behavior.

For the Henyey-Greenstein phase function (16),
B(u) can be expressed, after integrating Eq. (24) by
parts, in terms of complete elliptic integrals of the
third kind (see, e.g., Hancock, 1958, Chap. 19). But
the expression is complicated and we have therefore
omitted 1it, especially since numerical integration
directly from Eq. (24) may be more efficient. However,
we have plotted Bug(u) and Brc as a function of g in
Fig. 3 for several values of u. Figure 3 illustrates the
difficulty of selecting a “global mean zenith angle” for
the purpose of estimating the backscattered fraction f.
A value of 60° (u=3%), the mean value of the solar
zenith angle over the sunlit earth, is often suggested.
Indeed, the B and B(}) curves virtually coincide for
£50.3; but as g increases, so does the appropriate
“mean angle.” For g=0.7 it would be about 67°
(u=0.4), the value used by Dietzius (1922), Albrecht
(1933) and Hewson (1943) ;for g=0.9 it would be about

73° (p=0.3). Fig. 3, of course, refers only to the

Henyey-Greenstein phase function, but we expect that
it is representative for the earth’s atmosphere (based
in part on our considerations in Section 5).

05, m=1.5-0i ]
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4. Values of 8, 8() and (1) for spherical particles

In Fig. 4 we plot 8, 8(3) and B(1) versus the Mie
size parameter x=2mr/\ (where 7 is particle radius and
M wavelength) for a range of values of the imaginary
index of refraction from 0 to 1.0. This range of imaginary
index brackets almost any aerosol which one is likely
to find in the earth’s atmosphere (indeed, imaginary
indices >0.1 are rare in the solar spectrum, although
values up to 1.0 are possible for soot and other in-
dustrial pollution material). The real part of the
index of refraction has been taken equal to.1.5 in Fig. 4
and subsequent figures, which is typical for dry atmo-
spheric aerosol; however, our conclusions below are
unaltered by realistic variations in the real index. In
particular, we obtained very similar results when it
was set equal to 1.335.

The behavior of the curves in Fig. 4 as functions of
Mie size parameter and imaginary index is well under-
stood (cf. Hansen and Travis, 1974). The point we
wish to make from Fig. 4 is, however, that

B2B(H)2B(0).

These inequalities hold for all values of Mie size
parameter and refractive index as long as g2 0 (if g<0,

(25)

5-0.005i

YT r veT rrrrey

o4

03

02

0.t - (b)

m=1.5-0.02i

F {c)

BACKSCATTERED FRACTION

100 Ol

MIE SIZE PARAMETER, x

Fi1c. 4. Backscattered fractions 8, 8(1) and 8(3) versus the Mie size parameter x for real refractive index
of 1.5 and a range of imaginary indices. )
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as in small, highly reflective particles, the inequalities
would be reversed). The inequalities can be observed
in Fig. 3 as well, for the Henyey-Greenstein phase
function. Hence we conjecture that (25) always holds for
phase functions typical of the earth’s atmosphere; but
in spite of the formal similarity of Eqs. (15b) and (24),
we have been unable to establish this result rigorously.
We suspect that the general shape of atmospheric phase
functions—Iarge for small angles of scattering, generally
declining as the scattering angle increases—plays an
important role in maintaining (25). It can, in fact, be
shown? that B2 B(1) for phase functions satisfying

mw
P(cos)< P[cos(w—8)] for Eé 6<w, (26)

which is true for most if not all atmospheric phase
functions. Eq. (15b) can be rewritten as

B=i— f 7;2[(”—0)19&05(«-0)]

™

0
+-P (cosﬂ)] sinddd. (27)

w

Using the inequality (26), it thereby follows that the
integrand of Eq. (27) is everywhere greater than the
integrand of Eq. (23).

Hence both B(3) and B(1) are systematic under-
estimates of the globally averaged backscattering ‘8.
No amount of averaging over particle size distribution,
wavelength, optical properties, etc., is going to alter
this state of affairs. 8(1) cannot even be called an
approximation to B, since it underestimates 8 by a
factor of 2-3 almost everywhere. 8(3) typically under-
estimates 8 by about 0.03 and never by more than 0.06,
so it may be a satisfactory approximation in some
circumstances. But using Eq. (15b), it will now be
less difficult to calculate 3 than it had been to calculate

B(3).
5. B as a function of g

As we noted in the Introduction, the well-known
Sagan-Pollack approximation is based on relating the
backscattered fraction to the asymmetry factor g
[Eq. (7)]. There are several reasons for being interested
in such a relationship. First, the two simplest approxi-
mations in radiative transfer, the Eddington (see, e.g.,
Shettle and Weinman, 1970; Joseph et al., 1976) and the
two-stream, are formulated in terms of g and of § and
B (), respectively. Only by discovering the relationships
between B, B(u) and g can we build a bridge between
these two approximations, and thereby discern their
essential interrelation. Second, van de Hulst (1974)
has emphasized that g(=w;/3) is the fundamental
phase function parameter for radiative transfer, and

? We thank one of the reviewers for pointing out this proof.
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that the influence of the higher coefficients (ws, ---) in
the phase function expansion (11) is weak unless single
scattering dominates. Thus, it is of intrinsic interest
to relate any other phase function parameter—such as
B—to g. Third, § and B(u) have a more direct physical
interpretation than g in terms of thin-layer albedos
(Egs. 9 and 10), and thus are simpler to measure. It
would be highly desirable to estimate g directly from
such measurements.

We shall examine three expressions relating 8 and g.
One is Buc(g) [Eq. 177, derived for the Henyey—Green-
stein phase function. The other two formulas are
linear in g: the first is the Sagan—Pollack expression
(7), 3(1—g), and the second involves the first two terms
of the series (12) for 8, 3(1—3%g). (Actually, the Sagan—
Pollack expression is a two-term expansion of the
Chandrasekhar backscattered fraction 8..) In Fig. 5,
B,Buc(g), 3 (1—g) and 1(1—$g) are plotted as a function
of the Mie size parameter #, for the same set of imagi-
nary indices of refraction as in Fig. 4. We observe that
$(1—g) and 3(1—3%g) are lower and upper bounds,
respectively, for §:

31— <BLEA—%p) for g20.

Indeed, these seem to be, based on a large sample of
cases, only a few of which are shown here, the best
possible linear-in-g bounds for §. The arithmetic mean
of the two bounds, 3(1—3%g), approximates § with an
error no worse than g/16 for all g. We also note that
(28) holds rigorously for Henyey-Greenstein phase
functions. As before, the inequalities in (28) must be
reversed if g<O0.

Fig. 5 further shows that Bma(g) is an excellent
approximation to f; it differs from 8 by no more than
0.02 at any value of Mie size parameter when the
imaginary index #in<0.1. For #;n=0.5 and #in=1.0
these maximum differences grow to 0.03 and 0.04,
respectively ; thus Bug deteriorates as an approximation
to B for highly absorbing particles which are large with
respect to the wavelength (2>>1), presumably because
the Henyey-Greenstein phase function does not
properly represent the more reflective nature of such
particles. We note also that Bug(g) is always less than
B for <5, roughly, and greater than 8 for x> 5. Thus
in averaging over any reasonable size distribution of
particles, there will be some cancellation of errors, and
we have found that Brq (g) for specific size distributions
almost always approximates 8 with an error of less
than 0.01. We also suggest that the inverse of the
relation Brc(g) will provide an excellent estimate of g
if 8 is measured.

In Fig. 6 we have essentially taken B(x) and g(x)
and plotted them against each other rather than against
x. In other words, each point on the solid “curves”
represents [g(x),8(x)] for a particular x. The most
remarkable thing about these curves is their erratic,
zig-zag behavior, and the fact that § is often a many-

(28)
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valued function of g. It will thus never be possible to
relate B and g in detail in terms of a single-valued
function. We have found this multi-valued nature to
persist even when one averages § and g over reasonable
size distributions, although in that case the phe-
nomenon is considerably mitigated. The multi-valued-
ness also gradually disappears as the absorbing power
of the particle increases, and in fact is practically gone
at #im=0.1. Of course, both § and g are merely integral
properties of the phase function, and so the phase
function may vary in ways which hold g constant while
B varies, and vice versa; and this is in fact what some-
times happens. That the multi-valuedness disappears
as the absorbing power increases is to be expected,
since the structure in the phase function, and therefore
in B and g, is smoothed out as ;. increases.

As a final comment on the inequalities (28), we note
that, as a consequence of Egs. (8) and (15a), they may
be written

| f 11— coh) Pu)du< f T 0m P

=0 =0

b=m
< [ 1(1—2 cost) P ()

05
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The functions weighting P(p) in these integrals are
plotted in Fig. 7. Since the preponderant part of P ()
lies between 8=:0°.and §=35° in the real atmosphere,
the relationship in which these weighting functions
stand to one another for 6E[0°,35°] goes far toward
explaining the inequalities (28). These inequalities are
clearly not true for all P(u) but are in reality artifacts
of the shape of P (u).

6. Thin-layer albedo for whole solar spectrum

Here we shall examine the effect of particle radius
and imaginary refractive index on globally averaged
albedo due to an optically thin, horizontally homoge-
neous scattering layer of spherical particles.

Let Sy be the wavelength dependent solar flux
(normal to its direction of propagation) at the top of
the scattering layer. Then the thin-layer approximation
[Eq. (9)] gives the reflected flux F} for a particular
solar zenith angle as

F{ (Mo)-_— Ry (IJ'O)FOS)\= w)ﬂx(ﬂo)nS)\-

This of course assumes no upwelling flux at the bottom
of the scattering layer; in the presence of such a flux,
the present results give, to first order, the ckange in the
planetary albedo due to the scattering layer. Averaging

m={5-0.02i
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Fic. 5. Backscattered fraction B and the functions Brg(g), 3 (1—¢) and } (1—% ¢) [e=asymmetry factor] versus the Mie size parameter
« for real refractive index of 1.5 and a range of imaginary indices.
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F16. 6. Backscattered fraction B and also the functions Bue(g), 4 (1— g) and § (1% ¢) versus the asymmetry factor g for real refractive
index of 1.5 and a range of imaginary indices.

over all solar zenith angles gives the “globally averaged
albedo” at a particular wavelength:

1 1
R\= / F (no)dpo / / poSrdio=20)\8r7
0 1]

in consonance with Eq. (10). Integrating over the
solar spectrum gives the planetary albedo

pm

3 pm _ 3
/ RxS)\d)\//
0.3 pm 0.3 um

The 0.3 um cutoff simulates ozone absorption.

Calculated values of R are presented in Fig. 8. We
have, like Cadle and Grams (1975), fixed the mass
concentration M of the scattering layer equal to
1 pg m™®, so that the number concentration

M
4arid

R=

Sxdh. (29)

N=

(d=particle density) varies, in Fig. 8, from 105 cm™*
at »=0.01 gm to 10* cm™ at =10 um. We take
the layer to be of thickness AZ=10 km and as-
sume the particles are of density d=2 g cm™®. The

only thing which recommends these particular values
of M, d and AZ over any others is that they may be
typical of a stratospheric aerosol layer. Because of
linearity in optical depth, R scales linearly with AZ
and M and inversely with d, so Fig. 8 is quite general

in this respect.
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F1c. 7. Integrands 8/2m, $(1—cosf) and 1(1—32 cos) [arising
from the integral form of inequality (28)] plotted versus 6.
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(a) plotted as contours versus particle radius r and imaginary refractive index #im; (b) plotted

" versus particle radius 7 for a range of imaginary indices. Real refractive index is 1.5 in both

Cases.

Values of B were computed for spherical particles
with a real refractive index of 1.5 for large ranges of
imaginary refractive index and particle radius. Thekae-
kara’s (1973) values were used for Sy, although Fig. 8
was barely altered if S\ was approximated by a 6000 K
blackbody. Indeed, Fig. 8 was affected only slightly
when we set Sx=0 in the near-IR water vapor bands
to simulate the effect of putting the aerosol layer lower
down in the atmosphere (this procedure neglects the
effect of Rayleigh scattering on Sy, of course). The

., computed values of R are plotted in two different ways
in Fig. 8: as contours of constant R ()X 100) in Fig. 8a
and versus radius in Fig. 8b for the same selection of
imaginary indices as in previous figures.

From both the contour plot and line drawing we
‘observe that R is maximal (~19,) when all partlcles
are roughly 0.2-0.3 um in radius, as long as the imagi-

nary index #;x is smaller than about 0.2. As 7, in-

creases beyond 0.2, the maximal effect is produced by
progressively smaller particles, until by #im=1, 0.08 um
particles are having the maximum effect on planetary
albedo. When the particle size is held constant, other
'mterestlng effects on R are observed. For particles
20.2 um radius, increasing #i, will tend to suppress
some of their backscattering. After a certain point,
however, the backscattering begins to increase with
increasing absorption; this reversal occurs for #im
values in the range 0.1-0.5, depending on the particle
size. The effect of particles <0.1 pm radius on R is
nearly independent of imaginary index for #in 0.2,
as evidenced by the almost horizontal contours in the
lower left side of Fig. 8a; but as #in increases beyond
0.2, the backscattering effect of these small particles
increases dramatically, which may be seen in the left-
hand part of Fig. 8b. Thus, increasing the absorption
of <0.1 um particles sufficiently far will always result
in a larger planetary albedo than in the no-absorption

case. It should be noted that this anomalous behavior
takes place for a size range of particles for which
measurements are very poor and inconclusive.

7. Summary and conclusion

New formulas give the backscattered fractions §
and B(u) for isotropically and monodirectionally incident
radiation, respectively, as single integrals over the
scattering phase function. These quantities are normally
defined as complicated multiple integrals over the phase
function. Using the new formulas, it is shown that at
least 709}, of the value of 8 arises from the forward
hemisphere of the phase function, where Mie theory is a.
good approximation even for nonspherical particles.
Thus the effect of nonsphericity on backscatter may not,
on the average, be of major importance.

Putting the Henyey—Greensteln phase function into
one of the new formulas gives an approximation to 8
for spherical particles (in terms of the asymmetry
factor g) which is very accurate over wide ranges of
particle radius and refractive index. We conjecture
that a similar procedure will lead to an approximation
for B(u) of comparable accuracy. Very tight empirical
linear-in-g bounds for § are also discovered. The
relationship between 8 and g for spherical particles is
shown to be a multiple-valued one, so that Eddington
and two-stream approximations can never be uniquely
related.

Both 8(1) and B(%) (the former having been used
in many climatic impact of aerosol studies, the latter
being the “60° mean zenith angle approximation’) are
shown to systematically underestimate B, very signifi-
cantly so in the case of 3(1). The correct “mean zenith
angle” for terrestrial aerosols will generally fall between
65° and 75° and will be a rather sensitive function of
the phase function asymmetry factor.

Unauthenticated | Downloaded 12/01/21 09:19 AM UTC



DECEMBER 1976 wW. J.

For a uniform, optically thin aerosol layer of fixed
mass concentration covering a planet, the greatest
augmentation of planetary albedo will be caused by
0.2-0.3 pm particles if their imaginary refractive index
is less than 0.2. For larger imaginary indices, the radius
of the “maximal-effect” particles diminishes to about
0.08 ym. For particles <0.1 um, the planetary albedo
will actually be enkanced as their absorption increases,
dramatically so as their imaginary index rises above
0.2. The latter effect is unlikely to be important for
natural terrestrial aerosols, but might be for man-made
aerosols or aerosols on other planets.
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